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Foundations of quantum statistical mechanics

Quantum ergodicity: John von Neumann ‘29
(Proof of the ergodic theorem and the
H-theorem in quantum mechanics)
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(Alternatives to Eigenstate Thermalization)

Marcos Rigol (Georgetown University) Quenches in disordered quantum systems August 21, 2012 4 / 31



Foundations of classical statistical mechanics

One of the first numerical experiments:

Fermi, Pasta, Ulam, and Tsingou ’53

(Studies of nonlinear problems)

Vibrating chain of oscillators with non-linear couplings
Quasi-periodic behavior, lack of ergodicity
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Foundations of classical statistical mechanics

One of the first numerical experiments:

Fermi, Pasta, Ulam, and Tsingou ’53

(Studies of nonlinear problems)

Vibrating chain of oscillators with non-linear couplings
Quasi-periodic behavior, lack of ergodicity

Chaos theory and modern approach to classical statistical mechanics

Quasi-periodic behavior was not the result of Poincaré recurrences

Korteweg-de Vries (KdV) equation and solitons in nonlinear systems

Dynamical chaos and ergodicity

Kolmogorov-Arnold-Moser (KAM) theorem

Marcos Rigol (Georgetown University) Quenches in disordered quantum systems August 21, 2012 5 / 31



Quenches in disordered quantum systems

1 Introduction
Foundations of statistical mechanics
Experiments with ultracold gases in 1D
Unitary evolution and thermalization
Results for nonintegrable and integrable systems

2 Non-equilibrium dynamics in the presence of disorder
Nonintegrable system
Integrable system

3 Summary

Marcos Rigol (Georgetown University) Quenches in disordered quantum systems August 21, 2012 6 / 31



Experiments with ultracold gases in 1D

Effective one-dimensional δ potential
M. Olshanii, PRL 81, 938 (1998).

U1D(x) = g1Dδ(x)

where

g1D =
2~asω⊥

1 − Cas

√
mω⊥

2~
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Experiments with ultracold gases in 1D

Effective one-dimensional δ potential
M. Olshanii, PRL 81, 938 (1998).

U1D(x) = g1Dδ(x)

where

g1D =
2~asω⊥

1 − Cas

√
mω⊥

2~

Girardeau ’60

T. Kinoshita, T. Wenger, and D. S. Weiss,
Science 305, 1125 (2004).

T. Kinoshita, T. Wenger, and D. S. Weiss,

Phys. Rev. Lett. 95, 190406 (2005).

2 &γeff=
mg1D

~2ρ
& 20

Lieb, Schulz, and Mattis ’61

B. Paredes et al.,

Nature 429, 277 (2004).

γeff=
U
J

≈ 5–200
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Absence of thermalization in 1D?

T. Kinoshita, T. Wenger, and D. S. Weiss,

Nature 440, 900 (2006).

γ =
mg1D

~2ρ

g1D: Interaction strength
ρ: One-dimensional density

If γ ≫ 1 the system is in the
strongly correlated

Tonks-Girardeau regime

If γ ≪ 1 the system is in the
weakly interacting regime

Gring et al., arXiv:1112.0013.
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Quenches in one-dimensional superlattices
Quantum dynamics in a

1D superlattice
Trotzky et al.,

Nature Phys. 8, 325 (2012).

Initial state |01010 . . . 1010〉

Unitary dynamics under the
“Bose-Hubbard” Hamiltonian

Experimental results (◦) vs
exact t-DMRG calculations

(lines) without free parameters

local observables (top)
vs

nonlocal observables (bottom)
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Exact results from quantum mechanics

If the initial state is not an eigenstate of Ĥ

|ψ0〉 6= |α〉 where Ĥ|α〉 = Eα|α〉 and E0 = 〈ψ0|Ĥ|ψ0〉,

then a generic observable O will evolve in time following

O(τ) ≡ 〈ψ(τ)|Ô|ψ(τ)〉 where |ψ(τ)〉 = e−i bHτ |ψ0〉.
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If the initial state is not an eigenstate of Ĥ

|ψ0〉 6= |α〉 where Ĥ|α〉 = Eα|α〉 and E0 = 〈ψ0|Ĥ|ψ0〉,

then a generic observable O will evolve in time following

O(τ) ≡ 〈ψ(τ)|Ô|ψ(τ)〉 where |ψ(τ)〉 = e−i bHτ |ψ0〉.

What is it that we call thermalization?

O(τ) = O(E0) = O(T ) = O(T, µ).

One can rewrite

O(τ) =
∑

α′,α

C⋆
α′Cαei(E

α′−Eα )τOα′α where |ψ0〉 =
∑

α

Cα|α〉,

and taking the infinite time average (diagonal ensemble)

O(τ) = lim
τ→∞

1

τ

∫ τ

0

dτ ′〈Ψ(τ ′)|Ô|Ψ(τ ′)〉 =
∑

α

|Cα|2Oαα ≡ 〈Ô〉diag,

which depends on the initial conditions through Cα = 〈α|ψ0〉.
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Width of the energy density, sudden quench

Initial state |ψ0〉 =
P

α Cα|α〉 is an eigenstate of bH0. At τ = 0

bH0 → bH = bH0 + cW with cW =
X

j∈σ

ŵ(j) and bH|α〉 = Eα|α〉.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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α Cα|α〉 is an eigenstate of bH0. At τ = 0

bH0 → bH = bH0 + cW with cW =
X

j∈σ

ŵ(j) and bH|α〉 = Eα|α〉.

The width of the energy density ∆E is then

∆E =

s

X

α

E2
α|Cα|2 − (

X

α

Eα|Cα|2)2 =

q

〈ψ0|cW 2|ψ0〉 − 〈ψ0|cW |ψ0〉2,

or

∆E =

s

X

j1,j2∈σ

[〈ψ0|ŵ(j1)ŵ(j2)|ψ0〉 − 〈ψ0|ŵ(j1)|ψ0〉〈ψ0|ŵ(j2)|ψ0〉]
L→∞
∝ Ldσ/2

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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q
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∆E =

s

X

j1,j2∈σ

[〈ψ0|ŵ(j1)ŵ(j2)|ψ0〉 − 〈ψ0|ŵ(j1)|ψ0〉〈ψ0|ŵ(j2)|ψ0〉]
L→∞
∝ Ldσ/2

Since the width of the full spectrum diverges as LdL

∆ǫ =
∆E

LdL

L→∞
∝

1

LdL−dσ/2
,

dL(dσ) is the dimensionality of the lattice (of the region affected by the quench).

since dL ≥ dσ then ∆ǫ vanishes in the thermodynamic limit.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Description after relaxation

Hard-core boson Hamiltonian

Ĥ =

L∑

i=1

−t
(
b̂†i b̂i+1 + H.c.

)
+ V n̂in̂i+1 − t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′n̂in̂i+2 + µin̂i
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Ĥ =
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i=1

−t
(
b̂†i b̂i+1 + H.c.

)
+ V n̂in̂i+1 − t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′n̂in̂i+2 + µin̂i

Dynamics vs statistical ensembles

Nonintegrable: t′ = V ′ 6= 0, µi = 0

-π -π/2 0 π/2 π

ka

0.2

0.3

0.4

0.5

0.6

n(
k)

initial state
time average
microcanonical

MR, PRL 103, 100403 (2009);

PRA 80, 053607 (2009).

Integrable: V = t′ = V ′ = 0, µi 6= 0

-π -π/2 0 π/2 π
ka

0

0.25

0.5

n(
k) After relaxation

Thermal
GGE

MR, V. Dunjko, V. Yurovsky, and

M. Olshanii, PRL 98, 050405 (2007).
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Eigenstate thermalization
Eigenstate thermalization hypothesis
[Deutsch, PRA 43 2046 (1991); Srednicki, PRE 50, 888 (1994).]

The expectation value 〈α|Ô|α〉 of a few-body observable Ô in an
eigenstate of the Hamiltonian |α〉, with energy Eα, of a many-body
system equals the thermal average of Ô at the mean energy Eα:

〈α|Ô|α〉 = 〈Ô〉microcan.(Eα).
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system equals the thermal average of Ô at the mean energy Eα:

〈α|Ô|α〉 = 〈Ô〉microcan.(Eα).

Nonintegrable

0

1

2

3

n(
k x=

0)

-10 -8 -6 -4 -2 0
E[J]

0

1

2
ρ(

E
)[

J-1
]ρ(E) exact

ρ(E) microcan.
ρ(E) canonical

MR, V. Dunjko, and M. Olshanii,

Nature 452, 854 (2008).

Integrable (ρ̂GGE =
1

ZGGE
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P
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A. C. Cassidy, C. W. Clark, and MR,

PRL 106, 140405 (2011).
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What changes in the presence of disorder?

Many-body localization

D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. 321, 1126 (2006).

V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).

A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).

. . .
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D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. 321, 1126 (2006).

V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).

A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).

. . .

Some questions we would like to address

How is the relaxation dynamics?

Will observables fail to equilibrate?

O(τ) 6= O(τ)

If an observable equilibrates, will it fail to thermalize?

O(τ) 6= O(E0) = O(T ) = O(T, µ)
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Model Hamiltonian and the localization transition

Spinless fermion Hamiltonian in 1D

Ĥ =
∑

ij

Jij

(
f̂†

i f̂j + H.c.
)

+ V
∑

i

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)

E. Khatami, MR, A. Relaño, and A. M. García-García, PRE 85, 050102(R) (2012).
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Ĥ =
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ij

Jij

(
f̂†

i f̂j + H.c.
)

+ V
∑

i

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)

E. Khatami, MR, A. Relaño, and A. M. García-García, PRE 85, 050102(R) (2012).

Hopping amplitudes
Gaussian random distribution 〈Jij〉 = 0

˙

(Jij)
2¸

=

"

1 +

„

|i − j|

β

«2α
#−1

Limit V = 0:

Properties depend on α but not on
β > 0

α < 1, eigenstates are delocalized

α > 1, eigenstates are localized

α = 1, eigenstates are multifractal

Mirlin et al., PRE 54, 3221 (1996).
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Metal-insulator transition

η = [var − varWD ]/[ varP − varWD]

var: variance of level spacing distribution
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Dynamics after a quench

Quench protocol
Start from an eigenstate of Ĥ (|ψ0〉) in a certain disorder realization.

Evolve under another disorder realization with the same α.

E = 〈ψ0|Ĥfin|ψ0〉 is the energy of a thermal state with temperature T = 10.

Everything is computed by means of full exact diagonalization.

Normalized differences: ∆O =

P

k
|OA(k)−OB(k)|
P

k
OB(k)

, disorder averages: 〈∆O〉dis
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Model Hamiltonian and the localization transition

Microcanonical vs diagonal
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Model Hamiltonian and the localization transition

Microcanonical vs diagonal
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Model Hamiltonian and the localization transition

Hard-core boson Hamiltonian in 1D (λc = 2J)

Ĥ = −J

L−1∑

i=1

(b̂†i b̂i+1 + H.c.) + λ
∑

i

cos(2πσi + δ) n̂b
i where σ = (

√
5 − 1)/2

C. Gramsch and MR, arXiv:1206.3570.
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Dynamics after a quench from the ground state (λI = 0 → λF 6= 0)
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Ĥ = −J

L−1∑

i=1

(b̂†i b̂i+1 + H.c.) + λ
∑

i

cos(2πσi + δ) n̂b
i where σ = (

√
5 − 1)/2

C. Gramsch and MR, arXiv:1206.3570.

Dynamics after a quench from the ground state (λI 6= 0 → λF < λI )
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Dynamics after a quench from the ground state

10-3

10-2

10-1

100

10-2 10-1 100 101 102 103 104 105 106

δO
(τ

)
δn

(a)λ = 0 → 1

10 sites
100 sites
1000 sites

10-2 10-1 100 101 102 103 104

δm

(b)

10-2 10-1 100 101 102 103 104

δη

(c)

10-2

10-1

100

10-2 10-1 100 101 102 103 104 105 106

δO
(τ

)

(d)λ = 0 → 2

10-2 10-1 100 101 102 103 104

(e)

10-2 10-1 100 101 102 103 104

(f)

10-2

10-1

100

10-2 10-1 100 101 102 103 104 105 106

δO
(τ

)

τ

(j)

λ = 0 → 4 0.15

10-2 10-1 100 101 102 103 104

τ

(k)

10-2 10-1 100 101 102 103 104

τ

(l)

Marcos Rigol (Georgetown University) Quenches in disordered quantum systems August 21, 2012 24 / 31



Dynamics after a quench from the ground state

10-3

10-2

10-1

100

10-2 10-1 100 101 102 103 104 105 106

δO
(τ

)
δn

(a)

λ = 8 → 1

10 sites
100 sites
1000 sites

10-2 10-1 100 101 102 103 104

δm

(b)

10-2 10-1 100 101 102 103 104

δη

(c)

10-2

10-1

100

10-2 10-1 100 101 102 103 104 105 106

δO
(τ

)

(d)λ = 8 → 2

10-2 10-1 100 101 102 103 104

(e)

10-2 10-1 100 101 102 103 104

(f)

2*10-1

10-3

10-2

10-1

10-2 10-1 100 101 102 103 104 105 106

δO
(τ

)

τ

(j)

λ = 8 → 4 0.04

10-2 10-1 100 101 102 103 104

τ

(k)

10-2 10-1 100 101 102 103 104

τ

(l)

Marcos Rigol (Georgetown University) Quenches in disordered quantum systems August 21, 2012 25 / 31



Scaling of δO(τ) after relaxation

3*10-3

10-2

10-1

δO
(∞

)

(a)

λ = 0 → 1
10-2

10-1
(c)

λ = 0 → 2

10-3

10-2

10-1

10 100 1000

δO
(∞

)

L

(e)

λ = 0 → 3

δn(∞)
δm(∞)
δη(∞)

10-3

10-2

10-1

10 100 1000

L

(g)

λ = 0 → 4

(b)

λ = 8 → 1

(d)

λ = 8 → 2

10 100 1000

L

(f)

λ = 8 → 3

10 100 1000

L

(h)

λ = 8 → 4

Delocalized phase (λF < 2): δn(∞) ∼ δm(∞) ∼ δη(∞) ∝ 1/
√

L.

Localized phase (λF > 2): δm(∞) ∼ δη(∞) ∝ 1/
√

L, δn(∞) = const.

Critical point (λF = 2): δn(∞) ∝ 1/L1/4

Marcos Rigol (Georgetown University) Quenches in disordered quantum systems August 21, 2012 26 / 31



Results after relaxation vs statistical mechanics
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GE fails.

Localized phase (λF > 2): GGE describes ni but fails for mk and ηα,
GE fails.
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Scaling of ∆m and ∆η with L
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GE fails.

Localized phase (λF > 2): GGE describes ni but fails for mk and ηα,
GE fails.
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Summary

Nonintegrable case

Localized regime: No eigenstate thermalization and the system
does not thermalize

Delocalized regime: Eigenstate thermalization and the system
thermalizes. Power law relaxation?

Integrable case

Localized regime: mk and ηα equilibrate but GGE fails to describe
them after relaxation

Delocalized regime: ni, mk, and ηα equilibrate and they are
described by GGE (despite the lack of translational invariance!).
Power law relaxation?

Critical point: Slower relaxation dynamics. GGE describes
observables after relaxation
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Scaling of ∆n with L
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In all regimes: the differences go to zero as the accuracy in the
calculation of the time average is increased.
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