Spinor hydrodynamics of polaritons in semiconductor microcavities

Kavli Institute for Theoretical Physics, Santa Barbara, October 2012

Laboratoire Kastler Brossel (Paris, FR)

R. Hivet, C. Adrados F. Pisanello, G. Lemenager, E. Giacobino, A. Bramati

NNL, Instituto Nanoscienze (Lecce, IT) D. Sanvitto

EPFL (Lausanne, CH) R. Houdré

Special thanks to: M.M. Glazov, A. Kamchatnov, N. Pavloff, P. Voisin Laboratoire de Photonique et Nanostructure (Marcoussis, FR)

D. Tanese, V. G. Sala, E. Galopin, A. Lemaître, J. Bloch

Laboratoire MPQ (Paris, FR) S. Pigeon, C. Ciuti

> INO-CNR BEC (Trento, IT) I. Carusotto

LASMEA (Clermont-Ferrand, FR) H. Flayac, D. Solnyshkov, G. Malpuech

Microcavity polaritons

Microcavity polaritons: condensation

Polaritons: non-linear properties

Optical Parametric Oscillation

Diederichs *et al.*, *Nature* **440**, 904 (2006) Savvids *et al.*, PRL **84**, 1547 (2000) Stevenson *et al.*, PRL **85**, 3680 (2000)

Long-range order phases

Lai *et al.,* Nature **450**, 529 (2007) Kim et al. Nature Phys. (2011)

Quantised vortices

Lagoudakis *et al.*, Nature Phys. **4**, 706 (2008), and Science **326**, 974 (2009) Sanvitto *et al.*, Nature Phys. **6**, 527 (2010) Krizhanovskii *et al.*, PRL **104**, 126402 (2010) Roumpos *et al.*, Nature Phys. **7**, 129 (2010)

Coherent propagation

AA, Sanvitto et al., Nature 457, 295 (2009)

Bright solitons

Sich et al., Nature Phot. 6, 50 (2012)

Harmonic oscillators

Tosi *et al*., Nature Phys. **8**, 190 (2012)

Cerda-Méndez et al., PRL 105, 116402 (2010)

Polariton spin phenomena

Spin-dependent parametric oscillation

Lagoudakis *et al.*, PRB **65**, 161310 (2002) Shelykh *et al.*, PRB **70**, 035320 (2004) Krizhanovskii *et al.*, PRB **73**, 073303 (2006) Romanelli *et al.*, PRL **98**, 106401 (2007)

Lagoudakis *et al.,* Science **326**, 974 (2009) Rubo, PRL **99**, 106401 (2007)

Polarisation multi-stability

Paraïso *et al.,* Nature Mat. **9**, 655 (2010) Gippius *et al.*, PRL **98**, 236401 (2007)

Polarisation conversion

Manni *et al.,* PRB. **83**, 241307 (2011)

Sarkar *et al.*, PRL **105**, 216402 (2010) Adrados *et al.*, PRL **105**, 216403 (2010) Shelykh *et al.*, PRL **100**, 116401 (2008)

Optical Spin Hall Effect

Leyder *et al.*, Nature Phys. **3**, 628 (2007) AA, Liew *et al.*, PRB **80**, 165325 (2009) Maragkou *et al.*, Optics Lett. **36**, 1095 (2011) Kavokin *et al.*, PRL **95**, 136601 (2005)

Spin precession

Kammann al., PRL 109, 036404 (2012)

Spin-switches

AA, Liew *et al.*, Nature Phot. **4**, 361 (2010) Adrados *et al.*, PRL **107**, 146402 (2011)

Outline

Scalar hydrodynamics of polariton condensates

- Dark solitons
- Vortex streets

Spinor hydrodynamics

- Spin-helix propagation
- Half-solitons: magnetic monopoles

Resonantly driven polariton gas

Transmission experiment in a InGaAs/GaAs/AIAs microcavity

- Controlled energy (~chemical potential)
- Controlled momentum (excitation angle)
- Controlled density
- Steady state: interplay between pumping and decay

Probing Microcavity Polariton Superfluidity through Resonant Rayleigh Scattering

Iacopo Carusotto^{1,2,*} and Cristiano Ciuti³

 ¹Laboratoire Kastler Brossel, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
 ²CRS BEC-INFM and Dipartimento di Fisica, Università di Trento, I-38050 Povo, Italy
 ³Laboratoire Pierre Aigrain, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France (Received 23 April 2004; published 13 October 2004)

See also: Bolda, et al., PRL **86**, 416 (2001), Chiao, et al., PRA **60**, 4114 (1999)

Polariton interactions: superfluidity

Polariton interactions: superfluidity

Beyond superfluidity: hydrodynamic excitations

Resonant excitation

Pigeon et al., PRB 83, 144513 (2011)

Soliton and vortex streets

Science 332, 1167 (2011)

Vortex streets

ANOSTRUCTURES

Soliton and vortex streets

Science **332**, 1167 (2011)

Vortex streets

Soliton and vortex streets

Science 332, 1167 (2011)

Vortex streets

F PHOTONIQUE ANOSTRUCTURES

GPE simulations

$$i\partial_t \psi(x,t) = \left[D - \frac{i\gamma}{2} + V(x) + g \left| \psi(x,t) \right|^2 \right] \psi(x,t) + F_P(x) e^{i(k_P x - \omega_P t)}$$

Pigeon et al., PRB 83, 144513 (2011)

Soliton nucleation

Characteristic phase jump

Science **332**, 1167 (2011)

Soliton nucleation

Soliton nucleation

-20 -20 20 0 20 0 $v_f = 1.7 \, \mu m/ps$ 0 $k=0.73 \,\mu m^{-1}$ (มา) 20 -High speed 20 Δy 40 40 -No obstacle Dark solitons 1.0 1.0 Momentum space 0.5 0.5 0.0 () -0.5 () -0.5 new components -1.0 -1.0 0.5 -0.5 0.0 0.5 -0.5 0.0 1.0 -1.0 1.0 -1.0 $k_x (\mu m^{-1})$ $k_x (\mu m^{-1})$ Cn ABORATOIRE DE PHOTONIQUE DE PHOTONIQUE NANOSTRUCTURES

Science 332, 1167 (2011)

Hydrodynamic soliton multiplets

 $k = 0.2 \ \mu m^{-1}$

Subsonic

 $k = 1.1 \ \mu m^{-1}$

Supersonic

Science **332**, 1167 (2011)

Hydrodynamic soliton multiplets

 $k = 0.2 \ \mu m^{-1}$

 $k = 1.1 \ \mu m^{-1}$

Soliton stability

Solitons in a 2D fluid at rest are unstable: snake unstability

Kamchatnov & Korneev, Phys. Lett. A **375**, 2577 (2011) Ginsberg *et al.*, PRL **94**, 040403 (2005) Anderson *et al.*, PRL **86**, 2926 (2001)

$$E_{s} \sim c_{s} n \left(1 - \frac{v_{s}^{2}}{c_{s}^{2}} \right)^{3/2}$$

$$v_{s} \uparrow \implies E_{s} \downarrow \quad depth_{s} \downarrow$$

• Polariton decay stabilises the soliton further downflow

A. Kamchatnov & N. Pavloff (private communication)

In a flowing atomic condensate: instability is drifted away (stable solitons)

Kamchatnov & Korneev, Phys. Lett. A **375**, 2577 (2011) El *et al.*, PRL **97**, 180405 (2006) Kamchatnov & Pitaevskii, PRL **100**, 160402 (2008)

Polaritons

$$v_f \sim 0.6c_s$$

١

Related experiments: Grosso, et al., PRL **107**, 245301 (2011)

Polariton spin

Photons have an angular momentum : ±1

Polariton spin

 \Rightarrow Photons have an angular momentum : ± 1

One-to-one relationship between pseudospin state and polarisation degree

One-to-one relationship between pseudospin state and polarisation degree

(Strongly) spin-dependent polariton-polariton interactions non-linear spin phenomena

• Exciton-exciton interaction dominated by exchange interaction

Parallel spins (resonant):

$$e \uparrow h e \uparrow h \longrightarrow e \uparrow h e \uparrow h$$

 $J=1_{initial} J=1 \qquad J=1_{final} J=1$

One-to-one relationship between pseudospin state and polarisation degree

(Strongly) spin-dependent polariton-polariton interactions non-linear spin phenomena

• Exciton-exciton interaction dominated by exchange interaction

Polaritons have two spin projections: $s_z = +1$ $\sigma + \frac{\sigma}{s_z} = -1$ $\sigma - \frac{1}{2}$ pseudospin

One-to-one relationship between pseudospin state and polarisation degree

(Strongly) spin-dependent polariton-polariton interactions non-linear spin phenomena

• Exciton-exciton interaction dominated by exchange interaction

Wouters, PRB **76**, 045319 (2007) Schumacher *et al.*, PRB **76**, 245324 (2007)

Polaritons have two spin projections: s = +1 $\sigma + \frac{1}{2}$

$$\mathbf{s}_{z} = +\mathbf{I}$$
 $\mathbf{o} + \frac{1}{2}$ pseudospin
 $\mathbf{s}_{z} = -\mathbf{1}$ $\mathbf{o} - \frac{1}{2}$

One-to-one relationship between pseudospin state and polarisation degree

(Strongly) spin-dependent polariton-polariton interactions non-linear spin phenomena

• Exciton-exciton interaction dominated by exchange interaction

Parallel spin $(g_{11} = g_{22})$: resonant process

Anti-parallel (g_{12}) : via dark exciton intermediate states

$$g_{11} = g_{22} >> |g_{12}|$$

In contrast to ⁸⁷Rb: $g_{11} \approx g_{22} \approx g_{12}$

Wouters, PRB **76**, 045319 (2007) Schumacher *et al.*, PRB **76**, 245324 (2007)

Polaritons have two spin projections:

$$\mathbf{s}_{z} = +1$$
 $\sigma + \frac{1}{2}$ pseudospin
 $\mathbf{s}_{z} = -1$ $\sigma - \frac{1}{2}$

One-to-one relationship between pseudospin state and polarisation degree

(Strongly) spin-dependent polariton-polariton interactions non-linear spin phenomena

Intrinsic effective magnetic field

cavity TE-TM splitting

Effective magnetic field

TE-TM splitting characteristic of dielectric cavities

Hydrodynamic scalar solitons

Resonant excitation: supersonic flow

 $\Rightarrow \sigma$ + fluid : scalar dark solitons

Spinor polariton fluid: half solitons

 \Rightarrow Linearly polarised injection (50% s_z =+1, 50% s_z =-1)

$$\begin{split} i\hbar \frac{\partial \Psi_{\pm}^{ph}}{\partial t} &= -\frac{\hbar^2}{2m_{ph}^*} \Delta \Psi_{\pm}^{ph} + D_{\pm} \Psi_{\pm}^{ph} + \frac{\Omega_R}{2} \Psi_{\pm}^{ex} \\ &- \frac{i\hbar}{2\tau_{ph}} \Psi_{\pm}^{ph} + P_{\pm} + \beta \left(\frac{\partial}{\partial x} \mp i\frac{\partial}{\partial y}\right)^2 \Psi_{\mp}^{ph} \\ i\hbar \frac{\partial \Psi_{\pm}^{ex}}{\partial t} &= -\frac{\hbar^2}{2m_{ex}^*} \Delta \Psi_{\pm}^{ex} + \frac{\Omega_R}{2} \Psi_{\pm}^{ph} \\ &- \frac{i\hbar}{2\tau_{ex}} \Psi_{\pm}^{ex} + \left(\alpha_1 |\Psi_{\pm}^{ex}|^2 + \alpha_2 |\Psi_{\mp}^{ex}|^2\right) \Psi_{\pm}^{ex} \end{split}$$

Half-Solitons

Mixed spin-phase topological solitons

Half-solitons: tomography

Linearly polarised injection

Circular polarisation: two fluids

Soliton present in one σ component only (for example σ +)

Half-solitons: tomography

Linearly polarised injection

Circular polarisation: two fluids

Soliton present in one σ component only (for example σ +)

Half-solitons: experiment

Half-solitons: experiment

Half-solitons: 1D monopoles

Half-solitons: 1D monopoles

Diagonal polarisation

Hivet et al., Nature Physics 8, 724 (2012)

Half-solitons: 1D monopoles

➡ Simulation

Coulomb-like interaction

Arises from the spin-dependent interactions

 $g_{11} = g_{22} >> |g_{12}|$

Minimise energy: in-plane pseudospin

Opposite effective charges REPEL

Same effective charges ATRACT

COT-

D

TM

Summary

Scalar solitons and vortices: hydrodynamics

Superflow Nature Physics 5, 805 (2009)

Oblique dark solitons Science 332, 1167 (2011)

Hydrodynamic vortices Nature Phot. 5, 610 (2011)

Half-solitons: magnetic-monopole analogues

Hivet et al., Nature Phys. 8, 724 (2012)

Flayac *et al.*, PRB **83**, 193305 (2011)

Solnyshkov *et al.*, PRB **85**, 073105 (2012)

Half-solitons in 1D: Coulomb like interactions

Wertz et al., Nature Phys. 6, 860 (2010)