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Why speeding up things? 
  
 • Quantum quenches 

        Probing correlations in many-body systems  
     
    E. Cornell’09 finite time-of-flight in ultracold gases  
 
 •  Quantum thermodynamics  
     Adiabatic expansions are the bottleneck  
 
    in quantum refrigerators & engines  
 •  Quantum simulation 

 Preparation of novel-quantum phases       
      Crossing critical points 
  

•  Quantum Information Processing & Quantum Optics  
  Faster Quantum gates, STIRAP, RAP, ion-transport   
   
  •  Prevent decoherence and role of perturbations 
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Fast expansions 

A. del Campo & M. G. Boshier, Sci. Rep. 2, 648 (2012) 
A. del Campo, Phys. Rev. A 84, 031606(R) (2011)  
A. del Campo, EPL 96, 60005 (2011)  
X. Chen, A. Ruschhaupt, Schmidt, A. del Campo, D. Guery-Odelin, J. G. Muga, PRL104, 063002 (2010)  



Example: Standard Quench 

 Excitation: breathing mode in the time-evolution of the width of the cloud 

    Opening the trap 

    from sudden to adiabatic 



 Fast expansion without 
vibrational heating  



 
1. Take a somewhat general many-body time-dependent Hamiltonian 
 
 
 
 
   With a potential satisfying 
 
2. Impose a self-similar dynamical ansatz 
 
 
 
3. Get the consistency equations, i.e. 
 
 
 
 
 
 
 
 
 
 
 
 

Self-similar dynamics 

V. Gritsev, P. Barmettler, E. Demler, New J.Phys.12, 113005 (2010)  
A. del Campo, Phys. Rev. A 84, 031606(R) (2011)  



Exact dynamics of correlations 

Under self-similar dynamics 
 
 
 
 
 
 
 
 
 
 
Adiabatic limit: 
 
 
 
 
 

 
Slow, unstable against losses, decoherence, perturbations 

One-body reduced 
density matrix 
 
 
Momentum 
distribution 
 



Exact dynamics of correlations 

Under self-similar dynamics 
 
 
 
 
 
 
 
 
 
 
Sudden quench: 
 
 
 
 
 

 
Loss of off-diagonal elements, distortion of correlations 

(dynamical fermionization) 



 
 
1. Force the scaling ansatz to reduce to the initial and final states considered                                    
     Boundary conditions: 
 
 
 
 
2. Determine an ansatz for the scaling factor (e.g. a polynomial) 
 
 
 
 
 
3. Find the driving time-dependent frequency and coupling strength from the 

consistency equations 
 
 
 
 
 
 
 

Design of a shortcut to adiabaticity 



Time Evolution: 

Hzf πω 25.2 ×=

Hzπω 22500 ×=

mst f 2=

2Ψ(t,x)

2V(t,x)

Example 



Shortcut in a Tonks-Girardeau gas 

Preserves correlations 
 

Robust against perturbations 
 

A quantum dynamical microscope! 
AdC, PRA 84, 031606(R) (2011)  



Experiment with a thermal cloud 
Labeyrie’s group: Phys. Rev. A 82, 033430 (2010)  
87 Rb in Ioffe-Pritchard trap 



Experiment with an interacting BEC 
Labeyrie’s group: EPL 93, 23001 (2011)  



 
Easy and very general applicability to classical and quantum fluids  
In other traps: AdC & Boshier, Sci. Rep 2, 648 (2012)   
 
It does not require diagonalization of the Hamiltonian 
 
Limited to processes associated with self-similar dynamics 
 

 Expansions 
 

 Transport  
 Theory  @ Muga’s group: Torrontegui et al. PRA ’11  
 Exp @ Wineland’s group: Bowler et al. PRL ‘12 

 
 Interaction tuning in BEC: AdC EPL ‘11  

 
 Splitting, Interferometry, .... 

 
 
 
 
 
 
 
 

Self-similar dynamics: applicability 



 
 2nd recipe: 

Inhomogeneous  
phase transitions 

 
 

 
 
 
 
 
 
Classical phase transitions: 
T. W. B. Kibble, G. E. Volovik, JETP 1997 
W. H. Zurek, PRL102,105702 (2009)  
A. del Campo et al. PRL105, 075701 (2010) 
A. del Campo et al. NJP 13, 083022 (2011)  

 

Idea: 
 
When a inhomogeneous system faces a symmetry 
breaking scenario, let different parts of the 
system talk to each other,  so that the same 
ground state in the low symmetry phase is chosen 
everywhere (no vortices, kinks, solitons, etc.). 
 
Theory: Inhomogeneous Kibble-Zurek mechanism. 
 

Quantum phase transitions: 
W. H. Zurek, U. Dorner, PTRSA 2008  
J. Dziarmaga, M. M. Rams,  NJP 2010 
B. Damski, W. H. Zurek, NJP 2009 
 



Cosmology in the lab 

    
•  Cosmology : symmetry breaking during expansion  

and cooling of the early universe  

•  Condensed matter: 

•  Vortices in Helium 

•  Liquid crystals 

•  Superconductors 

•  Superfluids 

Similar free-energy landscape  

near a critical point  

T. W. B. Kibble, JPA  9, 1387 (1976); Phys. Rep. 67, 183 (1980)  
W. H. Zurek, Nature (London) 317, 505 (1985); Acta Phys. Pol. B. 1301 (1993)   



Second order phase transitions     
Landau theory: Free energy landscape, changes across a 2PT from single to 

double well potential, parameterized by a relative temperature 

 

 

 

 

 

  



Second order phase transitions     
Universal behaviour of the order parameter:  divergence of   

 Correlation/healing length 

 Dynamical relaxation time 

  



The Kibble-Zurek mechanism   
 
 
 
 
 
 
 
 
 
 
 

 

adiabatic adiabatic 

Non-adiabatic    freezing 

Freeze-out time 

Linear quench 



The Kibble-Zurek mechanism 

adiabatic adiabatic 

Non-adiabatic    freezing 

The average domain  size is given by the equilibrium correlation length  

at the freeze-out time   

Linear quench 



The Kibble-Zurek mechanism 

adiabatic adiabatic 

Non-adiabatic    freezing 

Linear quench 

The average domain  size is given by the equilibrium correlation length  

at the freeze-out time   



Structural phases in trapped ions 
 N ions on a ring trap with harmonic transverse confinement 
  
 
  
       Critical transverse frequency 

         Linear chain                 Degenerated zig-zag chains 

 
  
 
  
 
   
 
  
 
  
 
  
 

Excitations 
(kinks) 

Domain of size 

Fishman PRB ‘08 



 Testing KZM in the lab 
     Axial and transverse harmonic potential (instead of a ring trap) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.995 

MD numerics: Langevin dynamics including laser cooling 
N=50, 2000 realizations, quench of the transverse trapping frequency 



 Testing KZM in the lab 
     Axial and transverse harmonic potential (instead of a ring trap) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.995 



 Inhomogeneous KZM 
 
    Axial and transverse harmonic potential (instead of a ring trap) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Spatially dependent critical frequency   
(within LDA) 



 Inhomogeneous KZM 
 Inhomogeneous density,  spatially dependent critical frequency  

Linear quench:  
  
  
 Causality restricts the effective size of the chain 
 Front  satisfying                             moves at velocity 
  
Sound velocity  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IKZM for solitons in BEC: Zurek PRL 102, 105702 (2009)  
AdC et al. PRL105, 075701 (2010)  



 Inhomogeneous KZM 
 Inhomogeneous density,  spatially dependent critical frequency  

Linear quench:  
  
  
 Causality restricts the effective size of the chain 
 Front  satisfying                             moves at velocity 
  
Sound velocity 
 
 
 
Adiabatic dynamics is possible even in the thermodynamic limit  when 
  
  
  
in contrast  with the (homogeneous) KZM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Inhomogeneous KZM 
 Inhomogeneous density,  spatially dependent critical frequency  

Linear quench:  
  
  
 Causality restricts the effective size of the chain 
 Front  satisfying                             moves at velocity 
  
Sound velocity  
  
Defects appear if                                     effective size of the chain 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Inhomogeneous KZM 
 Inhomogeneous density,  spatially dependent critical frequency  

Linear quench:  
  
  
 Causality restricts the effective size of the chain 
 Front  satisfying                             moves at velocity 
  
Sound velocity  
  
Defects appear if                                     effective size of the chain 
  
where homogeneous KZM theory applies  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NEW 
SCALING 

LAW 



 Theory vs “experiment”! 

 Nice agreement! 
 
 

0.995 

NEW 
SCALING 

LAW 



 
Any second-order phase transition or classical/quantum quench  in the presence of 
critical slowing down 
 
No experiments yet (ongoing) 
Inhomogeneous ion chains (Mehlstäubler’s group @ PTB) 
 
It does NOT require diagonalization of the Hamiltonian 
 
Partial applicability to adiabatic quantum computation 
 
 
 
 
 
 
 
 
 

Inhomogeneous KZM: applicability 



 
 3rd part:  

 
Transitionless 

quantum driving 
& QPT 

 
 

Single discrete-level system: Demirplak & Rice ‘03, 2005; M. V. Berry ’09 
Experiment for TLS:  Bason et al. Nature Phys. ‘12  
 
Many-body:  A. del Campo, M. M. Rams, W. H. Zurek, PRL 109, 115703 (2012)  



 
Take a time-dependent Hamiltonian with instantaneous eigenstates: 
 
 
Write the adiabatic approximation including the geometric phase 
 
 
 
Look for the Hamiltonian for which these are the exact evolving states 
 
 
It follows that 
 
 
 
 
 
 
 
 
 
 
 

Transitionless quantum driving 

Single discrete-level system: Demirplak & Rice 2003, 2005; M. V. Berry 2009 
Experiment for TLS:  Bason et al. Nature Phys. (2012)  



Quantum critical systems 

Family of quasi-free fermion models 
 
 
 
                                      
 
 
 
Model dependent vector 
 
Examples: Ising, XY in 1D, Kitaev model in 1D, 2D 
 
 
General Auxiliary Hamiltonian in Fourier space 
 
 
 



Quantum Ising Chain 

Ising chain hamiltonian 
 
 
Critical point 
 
 
 
 
 
Excitations:  
 
Jordan Wigner transformation+Fourier transform 
 
 
 
 
                                      
 
 
 
 



Auxiliary Hamiltonian in real space 

Auxiliary Hamiltonian 
 
 
 
 
 
 
 
 
 
 
 

A time dependent long-range interaction! 
In spin representation 
 
 
 
 
 



Truncated Auxiliary Hamiltonian 

Transverse field: linear quench of through critical point 
 
Truncated Auxiliary Hamiltonian 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

KZM 

Range 
M 



Summary 
 
Recipes for “Fast-good” dynamics 
 
I- Self-similar scaling laws 
II- Inhomogeneous KZM 
III-Transitionless quantum driving & QPT 
 
 
New techniques 
Design of experiments    
Quantum speed limits? 

1945 Mandelstam and Tamm: isolated systems 
2012 AdC et al. arXiv:1209.1737  
all systems, also coupled to an environment 

STA and thermodynamics, work statistics 
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