Composite object dynamics in interacting 1D lattice systems

"Quantum Bowling"

Masud Haque

Max-Planck Institute for Physics of Complex Systems (MPI-PKS)

Dresden, Germany

Edge-localization in 1D lattice models

Bose-Hubbard chain

spinless fermion model

XXZ chain

PHYSICS:

Far-from-equilibrium dynamics

Eigenstates far from ground state

Intricate structures in spectrum (FRACTAL)

QUANTUM CONTROL:

Locking and release of magnetization/state

Designing a quantum switch

TEASER ON SCATTERING ('QUANTUM BOWLING')

Spinless fermions with nearest-neighbor interactions:

$$H = -t \sum \left(c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j \right) + V \sum n_j n_{j+1}$$

Strong coupling: $V \gg t$

'Same' results for spin chain

(Heisenberg or XXZ chain; large anisotropy)

TEASER ON SCATTERING ('QUANTUM BOWLING')

Conjecture: Integrability suppresses reflection.

NICE PEOPLE THANK THEIR COLLABORATORS

Dresden

ex - MPI-PKS

Martin Ganahl T.U. Graz

Motivated by edge phenomena in:

Discrete nonlinear Schrodinger equation (DNLS)

Related issues:

propagation in 1D models

(particles, clusters, magnons, multi-magnons)

FOR DETAILS

R. A. Pinto, M. Haque, and S. Flach; Phys. Rev. A **79**, 052118 (2009). *Edge-localized states in quantum one-dimensional lattices*.

M. Haque; Phys. Rev. A 82, 012108 (2010).

Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains.

M. Ganahl, M. Haque, and H.-G. Evertz; in preparation.

Quantum bowling: particle-hole transmutation in 1D strongly correlated lattice models.

HAMILTONIANS & SMALL PARAMETERS

Hamiltonians:

Small Parameters:

$$H_{\text{Bose.Hubbard}} = -t \sum \left(a_{j}^{\dagger} a_{j+1} + a_{j+1}^{\dagger} a_{j} \right) + \frac{U}{2} \sum a_{j}^{\dagger} a_{j}^{\dagger} a_{j} a_{j}$$

$$H_{\text{sp.ferm.}} = -t \sum \left(c_{j}^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_{j} \right) + V \sum c_{j}^{\dagger} c_{j+1}^{\dagger} c_{j+1} c_{j}$$

$$t/V$$

$$H_{XXZ} = J_{x} \sum \left[S_{j}^{x} S_{j+1}^{x} + S_{j}^{y} S_{j+1}^{y} + \Delta S_{j}^{z} S_{j+1}^{z} \right]$$

$$1/\Delta$$

I take these Hamiltonians seriously!

- not only low-energy sector
- no dissipation mechanism

START WITH SOME GUESSING GAMES

1D Bose-Hubbard model in an OPEN chain (has edges)

$$\hat{H} = -t \sum_{j=1}^{L-1} \left(a_j^{\dagger} a_{j+1} + a_{j+1}^{\dagger} a_j \right) + \frac{U}{2} \sum_{j=1}^{L} a_j^{\dagger} a_j^{\dagger} a_j a_j$$

I'm interested in large U/t. Data shown for U = 10 or U = -10

ONE BOSON STARTING AT SITE 1

1 BOSON STARTING AT SITE 2 (NEXT-TO-EDGE)

NEXT: TWO BOSONS

How does this evolve?

At timescales $\sim 1/t \sim 1$

At timescales $\sim 1/(t^2/U) \sim U$

2 BOSONS AT EDGE: TIMESCALES $\sim 1/(t^2/U) \sim U$

LARGE U ENCOURAGES CORRELATED PAIR MOTION

Single particle hopping timescale $\sim 1/t \sim 1$

Pair hopping time scale

$$\sim 1/\left(rac{t^2}{U}
ight) ~\sim ~U$$

"Repulsively bound pairs"

Triplet hopping time scale

$$\sim 1/\left(rac{t^3}{U^2}
ight) \ \sim \ U^2$$

REPULSIVELY BOUND PAIRS

1.0

"BANDS" IN ENERGY SPECTRUM, 2 BOSONS

Pairs cannot break without losing energy,

 \implies without energy relaxation mechanism.

2 Bosons in 10-site open chain. Negative $U \parallel U = -10$

2-boson spectrum, BANDS, positive U

2 Bosons in 10-site open chain. U = +10

Long time-scale \rightarrow hopping mostly within bound-pair band.

High-frequency oscillations \rightarrow inter-band processes.

PROPAGATION OF BOUND CLUSTERS: BLOCH OSCILLATIONS

Phys. Rev. A (2010)

LET'S MOVE ON: THREE BOSONS

THREE BOSONS AT EDGE: TIMESCALES $\sim 1/t$

No big surprise.

Three bosons at edge: timescales $\sim U^2$

Trying timescales $\gg \sim U^2$

? ? ? ? ? ? ? ? ? ?

You should be surprised

WE'VE FOUND A **STABLE** STATE

300000.....

For $n \ge 3$ bosons, edge states are stable.

Stable should mean "close" to an eigenstate?

HIERARCHY OF EDGE-LOCKED STATES

BACKGROUND CONTEXT \longrightarrow

NON-EQUILIBRIUM DYNAMICS IN ISOLATED QUANTUM SYSTEMS

Advertisement \longrightarrow

NEAR-ADIABATIC RAMPS IN MANY-BODY SYSTEMS

Non-equilibrium dynamics in isolated quantum systems

Isolated Quantum many-body systems (Cold atoms, some nano-devices):

No external bath

No dissipation!

Unitary quantum dynamics

No tendency toward ground state

NEW QUESTIONS & PHENOMENA

[a] thermalization in isolated systems Generalized Gibbs Ensemble Eigenstate Thermalization Hypothesis role of Integrability

[b] repulsively bound pairs & clusters

NON-EQUILIBRIUM DYNAMICS IN ISOLATED QUANTUM SYSTEMS: NEW QUESTIONS & PHENOMENA

[C] (Deviation from) adiabaticity in finite-time ramps

Quantify non-adiabatic through

excess excitation energy over final g.s. energy.

DEVIATIONS FROM ADIABATICITY: $Q(\tau)$

Adiabatic theorem: $Q(\infty) = 0$	Dóra, Haque, Zaránd; P.R.L. 2011 Pollmann, Haque, Dóra; in prep.	Luttinger Liquid
Asymptotic decay of $Q(\tau)$	Venumadhav, Haque, Moessner;	
\rightarrow first correction to adiabaticity	P.R.B 2010	Bose-Hubbard
$Q(\tau)$ can decay:	Tschischik, Haque, Moessner; arXiv:1209.5534	
		Generic interacting
Exponentially, as power-law;	Haque & Zimmer, arXiv:1110.0840	trapped
With/without oscillations or logarithms	Zimmer & Haque, arXiv:1012.4492	systems

Adiabaticity question $[Q(\tau)]$:

meaningful due to lack of dissipation

DEVIATIONS FROM ADIABATICITY: RECENT EXPERIMENTS

Munich (Bloch) group Nat. Phys. (2011)

Bose-Hubard in ladder ramp of bias between legs

Decay of Q(au) :

UNIVERSALITY IN TRAPPED SYSTEMS

Haque & Zimmer, arXiv:1110.0840

Zimmer & Haque, arXiv:1012.4492

HARMONIC CONFINEMENT $H = H_{\text{system}} + V_{\text{trap}}$ INTERACTION RAMPS Asymptotic decay of $Q(\tau) \rightarrow$ UNIVERSAL FEATURES Near-adiabatic ramps $[Q(\tau)]$: Take-home message

Asymptotic decay of $Q(\tau) \quad \longleftrightarrow$ first correction to adiabaticity

Many-particle systems in harmonic trap:

Universal deviations from adiabaticity due to size dynamics

Very different systems, same behavior of $Q(\tau)$

Consequence:

homogeneous-system predictions (Kibble-Zurek scaling etc) will be hidden or absent in trap experiments

HIERARCHY OF EDGE-LOCKED STATES

SPECTRAL EXPLANATION

To explain geometric locking, examine spectrum

- Focus on "bound" band.
- Compare n = 2 and n = 3

STRUCTURE OF 'BOUND' BAND: TWO BOSONS

Linear combinations of

|20000....000> |02000....000> |00200....000>

|0000.....002>

... plus tiny non-bound contributions

'BOUND' BAND: THREE BOSONS

Separated out from the rest: $|30000....000\rangle$ and $|0000....003\rangle$.

TUNNEL TO OTHER EDGE?

$$|L\rangle = |3000....00\rangle$$
 and $|R\rangle = |00....0003\rangle$

Question: Why doesn't $|L\rangle$ tunnel to $|R\rangle$?

Answer: It will. After some astronomically long time.

 $|L\rangle \leftrightarrow |R\rangle$ tunneling exponentially suppressed.

Splitting between $|L\rangle + |R\rangle$ and $|L\rangle - |R\rangle$ exponentially small.

SPECTRAL SEPARATION EXPLAINS

STABILITY OF EDGE STATES

Who ordered the spectral separations?

Degenerate perturbation theory.

Competition between energy shifts at $\mathcal{O}(t^2)$ and manifold mixing at $\mathcal{O}(t^n)$.

DEGENERATE PERTURBATION THEORY

Degenerate manifold at t/U = 0. States $|j\rangle$ and $|j+1\rangle$ connect at $\mathcal{O}(t^n)$. \implies mixing / dispersion at $\mathcal{O}(t^n)$. State $|1\rangle$ acquires different shift at $\mathcal{O}(t^2)$. \downarrow Spectral separation if $\mathcal{O}(t^2)$ beats $\mathcal{O}(t^n)$. (1st level of hierarchy)

State $|2\rangle$ acquires different shift at $\mathcal{O}(t^4)$. (2nd level)

THREE BOSONS: $\mathcal{O}(t^2)$ VERSUS $\mathcal{O}(t^3)$

Separated out from the rest: $|30000....000\rangle$ and $|0000....003\rangle$.

WHAT I'M MISSING....

There should be a

sum over histories

interpretation

Spinless fermion (t-V) model: similar hierarchy

$$\hat{H} = -t \sum_{j=1}^{L-1} \left(c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j \right) + V \sum_{j=1}^{L-1} c_j^{\dagger} c_{j+1}^{\dagger} c_{j+1} c_j$$

Edge-locked configurations	Not locked
1 1 1 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0	1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0	0 1 1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0 0	0 1 1 1 1 0 0 0 0 0 0

0.2

t

0.0

0.4

0.2

t

0.0

0.4

SPINLESS FERMIONS: DYNAMICS

DIGRESSION # 2

'Workshop & Seminar' at MPI-PKS Dresden:

Quantum many body systems out of equilibrium

August 12 - 30, 2013

Organized by:

J.S. Caux, Tilman Esslinger, Masud Haque, Corinna Kollath

ANISOTROPIC HEISENBERG (XXZ) CHAIN

$$H = J_x \sum_{j=1}^{L-1} \left[S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + \Delta S_j^z S_{j+1}^z \right]$$

Edge-locking hierarchy \rightarrow surprisingly different from t-V model.

Physical *t*-*V* model has Vn_in_{i+1} , not $V(n_i - \frac{1}{2})(n_{i+1} - \frac{1}{2})$.

Physical *t*-*V* model does not have empty-empty or empty-occupied energy. (Only occupied-occupied energy.)

Spectrum: periodic XXZ chain:

XXZ CHAIN: PERIODIC VERSUS OPEN SPECTRA

'TRIVIALLY' LOCKED SPIN CONFIGURATIONS

AFM (good) bonds \rightarrow 1 FM (bad) bonds \rightarrow (*L*-2) AFM (good) bonds \rightarrow 2 FM (bad) bonds \rightarrow (*L*-3)

XXZ CHAIN: PERIODIC VERSUS OPEN SPECTRA

XXZ CHAIN: PERIODIC VERSUS OPEN SPECTRA

XXZ CHAIN: HIERARCHY OF LOCKING EFFECTS

not locked

XXZ CHAIN: HIERARCHY

 $N_{\uparrow} = 8;$ 20 sites. $\delta_1 \sim \Delta^0$ $\delta_2 \sim \Delta^{-2}$ $\delta_3 \sim \Delta^{-4}$

HIERARCHY OF EDGE-LOCALIZATION

Energy spectrum contains structures at many different scales.

FRACTAL structure in spectrum

"QUANTUM CONTROL" OF MAGNETIZATION TRANSPORT

Many other control protocols....

Edge-localization in 1D lattice models

Bose-Hubbard chain

spinless fermion model

XXZ chain

PHYSICS:

Far-from-equilibrium dynamics

Eigenstates far from ground state

Intricate structures in spectrum (FRACTAL)

QUANTUM CONTROL:

Locking and release of magnetization/state

Designing a quantum switch