Dynamical Quantum Phase Transitions in the Transverse Field Ising Model

Stefan Kehrein (Universität Göttingen) Markus Heyl (Technische Universität Dresden) Anatoli Polkovnikov (Boston University)

arXiv:1206.2505

Dynamical Phase Transitions

Quantum Quench: Initial Hamiltonian H_i : defines state $|\Psi_i>$

Final Hamiltonian H_f: defines time evolution $|\Psi(t)\rangle = \exp(-iH_f t) |\Psi_i\rangle$

Dynamical phase transition = "Sudden" change in the dynamical behavior of observables as function of quench parameter and/or real time

Sine-Gordon model A. Mitra, arXiv:1207.3777

Transverse field Ising model (d=1)

Interaction quench (instantaneous): Magnetic field $g_0 \rightarrow g_1$

- Quenches within same phase: $g_0, g_1 < 1 \text{ or } g_0, g_1 > 1$
- Quenches across quantum critical point: $g_0 < 1$, $g_1 > 1$ or $g_0 > 1$, $g_1 < 1$

Initial state: Ground state of $H(g_0)$

 \rightarrow

First: Interpretation of quench dynamics in fermionic model

Lee-Yang theory and Fisher zeroes

Observation: Non-analyticities in real time evolution in thermodynamic limit

$$|\Psi(t)\rangle = \sum_{j} e^{-iE_{j}^{f}t} |E_{j}^{f}\rangle \langle E_{j}^{f}|\Psi_{i}\rangle$$

Rotating phases: How can this become non-analytic?

Analogous to Lee-Yang theory of thermodynamic phase transitions:

Grand canonical partition function $Z^{gc}(T,z) = \sum_{m=0}^{M} Z^{can}_{m}(T) z^{m}$ canonical partition function
Fugacity
of m particles $z = \exp(\mu/k_{B}T)$

 \Rightarrow Polynomial of degree M in fugacity: Zeroes $z_i(T)$ away from positive real axis

$$\Rightarrow \text{Pressure is analytic} \qquad p(T,z) = \frac{k_B T}{V} \ln Z^{gc} = k_B T \frac{1}{V} \sum_{j=1}^M \ln \left(1 - \frac{z}{z_j(T)} \right)$$

Unless one takes the thermodynamic limit V $\rightarrow \infty$:

Zeroes can converge to a branch cut on positive real axis indicating a phase transition

Likewise for zeroes in the complex temperature plane:

Fisher zeroes

Thermodynamic phase transition

= free energy/particle is nonanalytic in thermodynamic limit

Boundary partition function: $Z(z) = \langle \Psi_0 | e^{-z H(g_1)} | \Psi_0
angle$

- for real z: partition function of equilibrium system with boundaries separated by z [Le Clair et al., Nucl. Phys. B (1995)]
- ullet for z = it and $|\Psi_0
 angle = |\Psi_{gs}(g_0)
 angle$

Amplitude of quench dynamics $G(t) = \langle \Psi_{gs}(g_0) | e^{-i H(g_1) t} | \Psi_{gs}(g_0)
angle$

Thermodynamic limit:

$$f(z) = \lim_{N \to \infty} \frac{1}{N} \ln Z(z)$$
$$= \int_0^{\pi} \frac{dk}{2\pi} \ln \left(\frac{1 + |B(k)|^2 e^{-2\varepsilon_k z}}{1 + |B(k)|^2} \right)$$

Lines of Fisher zeroes in complex plane

For quench across quantum critical point:

Fisher zeroes on time axis at $t_n = \frac{\pi}{2\epsilon_{k*}}n$, $n = \pm 1, \pm 3, \ldots$

with new non-equilibrium energy scale

$$\cos k^* = \frac{1 + g_0 g_1}{g_0 + g_1}$$

Work distribution functions

Work performed during quench: Talkner et al., Phys. Rev. E (2007)

Two energy measurements

$$P(W) = \sum_{j} \delta(W - (E_j - E_0(g_0)) |\langle E_j | \psi_0(g_0) \rangle|^2$$

eigenstates of H(g₁)

- P(W) becomes δ -function in thermodynamic limit [Silva, PRL (2008)]
- Fluctuations?
- Large deviation form $P(W) = e^{-N r(w)}$

with rate function $r(w) \ge 0$ and work density w=W/N

[Expectation value $w_{ex} = \langle w \rangle$ corresponds to zero of rate function: $r(w_{ex})=0$]

- Rate functions asymmetric: Gaussian only around $w = w_{ex}$
- For w \rightarrow 0: universal behavior \propto w ln w

Rate function r(w;t) for work distribution of double quench

"Critical" mode k*

• Non-analytic behavior of
$$f(it)=rac{1}{N}\,\ln\prod_k \langle u_k(t=0)\,|\,u_k(t)
angle$$

→ related to mode k* with (see also Pollmann et al., PRE (2010)) $0 = \langle u_{k*}(t=0) | u_{k*}(t) \rangle = \frac{1 + 2n(k^*) e^{-2i\epsilon(k^*)t}}{1 + 2n(k^*)}$

→ $n(k^*) = 1/2$ ("infinite temperature")

• Existence of k^* guaranteed for quench across QCP since

n(k=0) = 1, n(UV) = 0

also for:

- non-instantaneous ramping
- other dispersion relations with same IR, UV-behavior

Equilibrium vs. Dynamics

Quench within same phase

Quench across QCP

"Naive" Wick rotation not possible

Non-equilibrium time evolution is not described by equilibrium properties

Subtleties (?)

Ground state of fermionic model for $g_0 < 1$ is not thermodynamic pure ground state of the spin model.

Thermodynamic pure ground state (obeys cluster decomposition)

$$|\pm(g_0)\rangle = \frac{1}{\sqrt{2}} \left(|\mathrm{GS}(g_0)\rangle_{\mathrm{NS}} \pm |\mathrm{GS}(g_0)\rangle_{\mathrm{R}} \right)$$

Neveu-Schwarz sector (even) Ramond sector (odd)

Well-known (see e.g. Calabrese et al., arXiv:1204.3911):

- Even operators
$$O_e$$
 $\left(\prod_{j=1}^N \sigma_j^x\right) O_e \left(\prod_{j=1}^N \sigma_j^x\right) = O_e$

can be evaluated only in NS-sector

➔ fermionic model from before

- Odd operators O_o involve R-sector \rightarrow difficult

Example: Calculate longitudinal magnetization m = < σ_z > via $\lim_{r \to \infty} \langle \sigma_i^z \, \sigma_{i+r}^z \rangle = m^2$ even operator in fermionic model

BUT: (not fully appreciated in previous literature on quench dynamics)

Hamiltonian $H = H_e + H_o$

→ Return amplitude (Loschmidt echo)

 $\left\langle \mathrm{GS}(g_0) \left| e^{-iH_f(g_1)t} \left| \mathrm{GS}(g_0) \right\rangle \right\rangle \stackrel{\text{in general}}{\neq} \begin{cases} \left\langle +(g_0) \left| e^{-iH(g_1)t} \right| + (g_0) \right\rangle \\ \left\langle -(g_0) \left| e^{-iH(g_1)t} \right| - (g_0) \right\rangle \end{cases}$

fermionic model

spin model

Careful reinterpretation

Quench from paramagnetic phase:

Unique ground state in spin model = $|GS(g_0)\rangle_{NS}$

 $\sum_{NS} \langle GS(g_0) | e^{-i(H_e + H_o)t} | GS(g_0) \rangle_{NS} = \sum_{NS} \langle GS(g_0) | e^{-iH_et} | GS(g_0) \rangle_{NS}$ = previous result from fermionic model

→ everything unchanged (incl. Fisher zeroes, nonanalytic behavior in time, etc.) Quench from ferromagnetic phase:

Return amplitude/Loschmidt matrix

$$\lim_{N \to \infty} \frac{1}{N} \ln \langle \pm(g_0) | e^{-iH(g_1)t} | \pm (g_0) \rangle = \begin{pmatrix} f_{++}(it) & f_{+-}(it) \\ f_{-+}(it) & f_{--}(it) \end{pmatrix}$$
$$[f_{++}(z) = f_{--}(z) , \quad f_{+-}^*(z) = f_{-+}(z^*)]$$

Based on numerical evaluation for finite systems (up to N=200):

- $f_{++}(z)$ and $f_{+-}(z)$ are analytic

Larger overlap between same or other thermodynamic pure ground states alternates at Fisher times.

Work distribution function for double quench:

w=0 corresponds to return $|+\rangle -\rangle |+\rangle$ and $|+\rangle -\rangle |-\rangle$

 $|f_{++}(it)| < |f_{+-}(it)| |f_{++}(it)| > |f_{+-}(it)| |f_{++}(it)| < |f_{+-}(it)|$

Entries in Loschmidt matrix are analytic, but work distribution function shows non-analytic behavior.

Longitudinal Magnetization

Quenches within ferromagnetic phase: Exponential decay $\rho_z(t) \stackrel{t \to \infty}{\sim} e^{-\Gamma t}$ [Calabrese et al., PRL (2011)]

Quenches across the QCP:

Longitudinal magnetization has

- analytical time evolution
- shows oscillatory decay with zeroes with period
 Fisher time
 (see also Calabrese et al., arXiv:1204.3911)
- consistent with behavior of rate functions in Loschmidt matrix

Summary

- I. Existence of dynamical quantum phase transitions in close analogy to equilibrium phase transitions
- II. Breakdown of short-time expansion in thermodynamic limit \Rightarrow rate functions non-analytic in real time
- III. Existence of new non-equilibrium energy scale $\varepsilon(k^*)$
- IV. Dynamical quantum phase transition is protected
- V. Signatures in other observables (longitudinal magnetization)
- VI. Main question: Universality away from quadratic/integrable Hamiltonian