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anisotropy, while the relaxation time ! increases with
decreasing !. Logarithmic divergence of the relaxation
time in the limit ! ! 0 is suggested by the fit shown in
Fig. 4(a). The picture is less clear closer to the isotropic
point. For the range 0:5 ! !< 1, there appears to be an
additional time scale after which the oscillations start to
decay even faster than exponentially; simultaneously, the
period of the oscillations is reduced. Therefore, the relaxa-
tion times plotted in Fig. 4(a) are valid only within an
intermediate time window, whose width shrinks upon ap-
proaching the critical point.

For intermediate easy-axis anisotropies 1 ! ! ! 3, the
magnetization does not reach a stable regime within the
numerically accessible time window [Fig. 3(a)]. The com-
plicated behavior of msðtÞ in this parameter range can be
ascribed to the interplay of processes at all energy scales.
Nevertheless, the numerical data suggest that the relaxation
is fastest close to the isotropic point, in the range between
! ¼ 1 and ! ¼ 1:6. A simple generic type of behavior is
recovered for large anisotropies ! * 3. The numerical
data in Fig. 3(b) indicate exponential relaxation of the
staggered magnetization

msðtÞ / e%t=!: (4)

The relaxation time scales roughly quadratically with !
[Fig. 4(a)]. Oscillations do persist on top of the exponential
decay, but they fade out quickly.

XZ model.—We now turn to the study of the XZ
Hamiltonian

HXZ ¼ J
X

j

f2SxjSxjþ1 þ!SzjS
z
jþ1g: (5)

In this model, a quantum phase transition separates two
gapped phases at !c ¼ 2, with antiferromagnetic order in
the z direction for !>!c and in the x direction for !<
!c. Unlike the XXZ model, it can be easily diagonalized
analytically. In order to study the staggered magnetization
of the XZ model, we have to calculate the two-spin corre-
lation function Cðn; tÞ ¼ ð%1Þnhc 0jSz0ðtÞSznðtÞjc 0i in the
infinite-range limit, since m2

sðtÞ ¼ limn!1Cðn; tÞ. Using

standard techniques (see [4] and references therein), we
express this two-spin correlator as a Pfaffian, with coeffi-
cients calculated in a similar manner as for the Ising model
in a transverse field [12]. Exploiting the light-cone effect
[17,20], we are able to evaluate numerically the order
parameter dynamics up to times of the order of Jt ' 100.
The results are displayed in Fig. 1(b). An analytic expres-
sion can be derived for ! ¼ 0, which is given by msðtÞ ¼
0:5cos2ðJtÞ. For !< !c, exponentially decaying oscilla-
tions

msðtÞ / e%t=!½cos2ð!tÞ % const) (6)

reproduce the numerical results at large times very well.
For ! * !c, the staggered magnetization decays exponen-
tially with no oscillations at large times [Eq. (4)]. In con-
trast to the XXZ model, the oscillation period in the XZ
model diverges at the isotropic point! ¼ !c, and the latter
exactly marks the crossover between oscillatory and non-
oscillatory behavior of msðtÞ. We have extracted the re-
laxation times from exponential fits to the numerical data,
showing a clearly pronounced minimum right at the iso-
tropic point [see Fig. 4(b)]. The relaxation time scales as
! / !%1 for ! ! !c and as ! / !2 for ! + !c.
Apart from the numerical evaluation of the Pfaffian, we

can prove rigorously that in the infinite-time limit the
staggered magnetization vanishes for all anisotropies in
the range !c < !<1. Indeed, since the Pfaffian reduces
to a Toeplitz determinant at t!1 [12], we can use Szegö’s
lemma to calculate the large-distance asymptotics of the
two-spin correlator in the above-mentioned regime, obtain-

ing, for n + 1, limt!1Cðn; tÞ , 1
4 ½ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% 4=!2

p
Þ=2)n,

which immediately implies that msðt ! 1Þ ¼ 0.
Discussion.—We have analyzed the dynamics of the

staggered magnetization in the XXZ and XZ models fol-
lowing a quantum quench. Our main result is that in both
models there is a dynamically generated relaxation rate
which is fastest close to the critical point. This point also
marks a crossover between oscillatory and nonoscillatory
dynamics of the order parameter. The dynamics of the
magnetic order parameter turns out to be a good observable
for the quantitative extraction of nontrivial time scales. In
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FIG. 4 (color online). Relaxation time ! and oscillation period
T ¼ 2"

! as a function of anisotropy in the XXZ and XZ models.
Logarithmic or algebraic laws are emphasized by solid lines. In
the region close to the critical point of the XXZmodel (indicated
by the question mark), it becomes impossible to extract a
relaxation time from the numerical results.
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FIG. 3 (color online). (a) Focus on the XXZ chain close to the
critical point ! ¼ 1. (b) Comparison of the XXZ chain (sym-
bols) and the XZ chain (dashed lines) for strong anisotropies;
solid lines correspond to an exponential fit. The dynamics of the
staggered magnetization of the XXZ and XZ chains converge
towards each other in the large-! limit.
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relaxation time of the order parameter is expected to
diverge as the system approaches the critical point [14].
We find an opposite trend in the dynamics of the prepared
Néel state. In the long-time limit, our results suggest that
local magnetic order vanishes for all values !<1.

The solution of the quench dynamics in the XXZ chain
involves, in principle, all energy scales of the Hamiltonian,
and approximative methods become essentially inaccurate
in many cases. The mean field approximation, for example,
leads to contradictions with our results—an algebraic de-
cay for ! ! 1 and a nonvanishing asymptotic value of the
staggered moment for !> 1 [13]. Renormalization group
based approaches [5] are restricted to low-lying modes,
which is not sufficient in the present case. The exact
numerical results presented in this study go further than
the predictions of low-energy theories [5].

Before delving into a more detailed study, it is instruc-
tive to consider the so-called XX limit (! ¼ 0) of the
Heisenberg chain (1), which can be mapped onto the
problem of free fermions. In this case, one easily obtains
an analytic expression for the time evolution of the stag-
gered magnetization: msðtÞ ¼ J0ð2JtÞ=2 (Fig. 1). Here J0
denotes the zeroth-order Bessel function of the first kind.
Thus, after a short transient time t% J&1, the staggered
magnetization displays algebraically decaying oscillations
originating from the finite bandwidth of the free-fermionic
model:

msðtÞ %
1ffiffiffiffiffiffiffiffi
4!t

p cos
"
2Jt& !

4

#
: (2)

In general, we are interested in generic behavior of the
relaxation dynamics on large time scales. We adopt a
definition of relaxation which does not rely on time-
averaged equilibration of the observable but instead re-

quires exact convergence to the asymptotic value, as de-
fined in Ref. [15]. From this point of view, the oscillations
in the XX limit are characterized by an infinite relaxation
time.
XXZ model.—In the general case of ! ! 0, the problem

is no longer analytically treatable, and we have to resort to
numerical techniques. We use the infinite-size time-
evolving block decimation (iTEBD) algorithm [3], which
implements the ideas of the density matrix renormalization
group (DMRG) method [16] for an infinite system. The
algorithm uses an optimal matrix-product representation of
the infinitely extended chain, keeping only the dominant
eigenstates of the density matrix of a semi-infinite subsys-
tem, in combination with a Suzuki-Trotter decomposition
of the evolution operator. This method is very efficient for
small t; however, the increasing entanglement under time
evolution [17] requires one to retain an exponentially
growing number of eigenstates. We find that the error of
our calculations behaves in a similar way to that of the
finite-size DMRG algorithm, and the methodology devel-
oped in Ref. [18] can be applied in order to control the
accuracy [19]. By carefully estimating the runaway time
via comparing results with different control parameters
[18], the absolute error in the plotted data is kept below
10&6. Using 2000 states and a second-order Suzuki-Trotter
decomposition with a time step "% 10&3J&1 for large !
and up to 7000 states with "% 10&2J&1 for small !, an
intermediate time regime Jt & 16 can be reached, which,
in general, far exceeds the short transient time.
An overview of the results is presented in Fig. 1(a). For

small anisotropies we find oscillations of the order parame-
ter similar to those in the XX limit but with a decay time
decreasing upon approaching the isotropic point ! ¼ 1. In
the easy-axis regime !> 1 of the XXZ model, the relaxa-
tion slows down again for increasing !, and we observe
nonoscillatory behavior for ! ' 1.
Figure 2 focuses on easy-plane anisotropy 0<!< 1.

The results for 0<! ! 0:4 are well described, for acces-
sible time scales, by exponentially decaying oscillations

msðtÞ / e&t=# cosð!tþ$Þ: (3)

The oscillation frequency is almost independent of the
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FIG. 1 (color online). Dynamics of the staggered magnetiza-
tion msðtÞ in (a) the XXZ chain and (b) the XZ chain. Symbols
correspond to numerical results, and lines represent analytical
results or fits by corresponding laws (see text). For ! ¼ 0 the
typical behavior of the error is illustrated by comparing the
numerical iTEBD result with 2400 retained states to the exact
curve: The absolute deviation from the exact curve is less than
10&6 for t < trunaway. For ! ! 0 data beyond trunaway is omitted.
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FIG. 2 (color online). Absolute value of the staggered magne-
tization in the XXZ model. Symbols represent numerical results,
solid curves correspond to fits by the exponential law (3), and
straight lines point out the exponential decay.
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Barmettler et al., PRL ’09Spin chains:

Hubbard model: Eckstein et al., PRL ’09

damped to a nonthermal quasistationary value on the time
scale 1=V, while full thermalization can only happen on
much longer time scales.

We now show that this prethermalization regime is a
general feature of fermionic Hubbard-type models at
strong coupling and calculate the double occupation in
the quasistationary state. We use the standard unitary
transformation !A ¼ e"SAeS [30] for which the double
occupation !D ¼ P

i !ni" !ni# of the dressed fermions !ci! is
conserved, ½H; !D$ ¼ 0. After decomposing the hopping
term [31], K ¼ P

ij!ðVij!=VÞcþi!cj!, into parts Kp that

change the double occupation by p, i.e., Kþ ¼P
ij!ðVij!=VÞcþi!cj!ð1" nj !!Þni !! ¼ ðK"Þþ and K0 ¼ K "

Kþ " K", the leading order transformation is S ¼
ðV=UÞ !Kþ þ ðV=UÞ2½ !Kþ; !K0$ " H:c:þOðV3=U3Þ. For
the double occupation, dðtÞ ¼ heiHtDe"iHti0=L, we obtain

dðtÞ ¼ dstat "
2V

U
Re½eitURðtVÞ$ þO

!
V2

U2 ;
tV3

U2

"
; (4)

where RðtVÞ ¼ heitVK0Kþe
"itVK0i0=L and dstat ¼

dð0Þ þ ð2V=UÞRehKþ=Li0. The error OðtV3=U2Þ, which
is due to omitted terms in the exponentials e(iHt, is ir-
relevant in comparison to the leading terms if t ) U=V2.
Here we do not consider the dynamics for t * U=V2. In
fact, dðtÞ remains close to h !Di, which is constant on ex-

ponentially long time scales [18]. It remains to show that
(i) the envelope function RðtVÞ of the oscillating term
decays to zero for t * 1=V, and (ii) the quasistationary
value dstat differs from the thermal value dth. (i) Insert-
ing an eigenbasis K0jmi ¼ kmjmi yields RðtVÞ ¼P

m;nhjnihmji0eitVðkm"knÞhnjKþjmi. In this expression all
oscillating terms dephase in the long-time average
[13,15], so that only energy-diagonal terms contribute to
the sum. But from ½K0; D$ ¼ 0 it follows that D is a good
quantum number of jni so that hnjKþjni ¼ 0, and thus
RðtVÞ vanishes in the long time limit (if it exists and if
accidental degeneracies between sectors of different D are
irrelevant). From Eq. (4) we therefore conclude that dðtÞ
equals dstat for times 1=V ) t ) U=V2, up to corrections
of order OðV2=U2Þ. (ii) For the quasistationary value we
obtain dstat ¼ dð0Þ ""d,

"d ¼ "
X

ij!

Vij!

UL
hcþi!cj!ðni !! " nj !!Þ2i0; (5)

which applies to arbitrary initial states. For noninteracting
initial states the expectation value in this expression fac-
torizes; in DMFT Eq. (5) then evaluates to "d ¼ nð1"
n=2ÞðV=UÞhK=Li0; i.e., it is proportional to the kinetic
energy in the initial state. For the thermal value dth we
expand the free energy in V=T+, because the effective
temperature T+ is much larger than V after a quench to
U * V. At half-filling we obtain dth ¼ dð0Þ þ ðV=UÞ,
hK=Li0; for noninteracting initial states in DMFT we thus
find that "d ¼ dð0Þ " dstat ¼ ½dð0Þ " dth$=2, i.e., at times
1=V ) t ) U=V2 the double occupation has relaxed only
halfway towards dth.
The strong-coupling predictions for the prethermaliza-

tion regime agree with our numerical results, for which the
center of the first oscillation in dðtÞ approaches dstat for
large U [inset in Fig. 2(b)]. The scenario also applies to
interaction quenches in the half-filled Falicov-Kimball
model in DMFT [12] and the 1=r Hubbard chain [15],
although thermalization is inhibited in these models: in
both models the long-time limit of dðt ! 1Þ can be ob-
tained exactly and indeed agrees with dstat for U * V. For
quenches to large U in the free 1=r chain (with bandwidth
2"V) Eq. (5) yields "d ¼ ðV=UÞð1" 2n=3Þ". For the
Falicov-Kimball model in DMFT "d is half as big as for
the Hubbard model because only one spin species contrib-
utes to the kinetic energy in the initial state.
Fast thermalization, U - Udyn

c ¼ 3:2V.—The charac-
teristic collapse-and-revival oscillations of the strong-
coupling regime disappear for quenches to U between
3:3V and 3V, as is apparent from the Fermi surface dis-
continuity"n1 at its first revival maximum [Fig. 3(a)]. This
change in the short-time dynamics reflects a change in the
nature of single-particle excitations [Eq. (3)]. It occurs also
in equilibrium even at very high temperatures, because
jGret

#!ðt" t0Þj2 becomes oscillatory as a result of the transfer
of spectral weight to the Hubbard subbands at (U.
Additionally the prethermalization plateau at "nstat disap-
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FIG. 2 (color online). Fermi surface discontinuity "n and
double occupation dðtÞ after quenches to U . 3 (left panels)
and U / 3:3 (right panels). Horizontal dashed lines in the lower
left panel are at the quasistationary value "nstat ¼ 2Z" 1 pre-
dicted in Ref. [14], with the T ¼ 0 quasiparticle weight Z taken
from equilibrium DMFT data [33]. Horizontal arrows indicate
corresponding thermal values dth of the double occupation,
obtained from equilibrium DMFT. Inset: thermal value dth and
dmed, the average of the first maximum and the second minimum
of dðtÞ, which provides an estimate of the stationary value dstat;
black dashed lines are the respective results from the strong-
coupling expansion (see text).
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2D Bose gas:  “ Dynamical Kosterlitz-Thouless transition”

Infinite-dimensional Bose-Hubbard model Sciolla and Biroli, PRL ’10

Mathey et al., arXiv:1112.1204

Schiro and Fabrizio, PRL ’10

Dynamical Phase Transitions�

Dynamical phase transition = “Sudden” change in the dynamical behavior �
        of observables as function of quench parameter and/or real time�

Initial Hamiltonian Hi: defines state |Ψi>�
�
Final Hamiltonian Hf: defines time evolution |Ψ(t)> = exp(-iHft) |Ψi> 

Quantum�
Quench: �

Sine-Gordon model    A. Mitra, arXiv:1207.3777 



Transverse field Ising model (d=1)�

S. Sachdev, Quantum Phase Transitions�

•  Quantum phase transition at gc = 1 �

Hamiltonian: �

•  Exactly solvable via Jordan-Wigner�
  mapping and Bogoliubov transformation  �



Interaction quench (instantaneous):  Magnetic field g0 → g1 �
�
•  Quenches within same phase:               g0, g1 < 1 or g0, g1 > 1 �
�
•  Quenches across quantum critical point:  g0 < 1, g1 > 1 or g0 > 1 , g1 < 1 �

Initial state: Ground state of H(g0)�

Eigenoperators   Ground state �
              of H(g1)�

determined by�
quench (g0, g1)�

→  Mode occupation numbers                are time invariant �

First: Interpretation of quench dynamics in fermionic model�



Lee-Yang theory and Fisher zeroes�

Observation: Non-analyticities in real time evolution in thermodynamic limit �

Rotating phases:  How can this become non-analytic?�

Analogous to Lee-Yang theory of thermodynamic phase transitions: �

Grand canonical partition function �

Fugacity�canonical partition function 
of m particles�

⇒ Polynomial of degree M in fugacity: Zeroes zi(T) away from positive real axis�

⇒ Pressure is analytic�



Unless one takes the thermodynamic limit V → ∞ : �
�
�

  Zeroes can converge to a branch cut �
  on positive real axis indicating �
  a phase transition �

M. E. Fisher, The nature �
of critical points�

Likewise for zeroes in the �
complex temperature plane: �
 �

   Fisher zeroes �
�
   Thermodynamic phase transition �
   = free energy/particle is nonanalytic�
      in thermodynamic limit �

W. van Saarloos, D. A. Kurtze; �
J. Phys. A (1984)�



Boundary partition function: �

•  for real z: partition function of equilibrium system with boundaries �
                separated by z  [ Le Clair et al., Nucl. Phys. B (1995) ] �
�
•  for z = it and �

Amplitude of quench dynamics�

Thermodynamic limit: �

Lines of Fisher zeroes�
in complex plane�



For quench across quantum critical point: �
�
   Fisher zeroes on time axis at �
�
   with new non-equilibrium energy scale �



β�

Breakdown of high-temperature�
expansion in thermodynamic limit: �
equilibrium phase transition at βc�

βc�

t �

Breakdown of short-time exp.�
in thermodynamic limit: �
Dynamical Quantum �
Phase Transition at tc�

tc�

Our definition �



Work distribution functions�

Work performed during quench:  Talkner et al., Phys. Rev. E (2007)�
�

                                       Two energy measurements�

eigenstates of H(g1)�

•  P(W) becomes δ-function in thermodynamic limit [ Silva, PRL (2008) ] �

•  Fluctuations?�

•  Large deviation form �
�
   with rate function r(w) ≥ 0 and work density w=W/N �
�
   [ Expectation value wex = <w> corresponds to zero of rate function: r(wex)=0 ] �

P (W ) = e�N r(w)



g0 = 0, g1 = 0.5� g0 = 0, g1 = 1.5�
-  Rate functions asymmetric: Gaussian only around w = wex �
                                  (central limit theorem)�
- For w → 0: universal behavior ∝ w ln w �

g0 = 0, g1 = 0.5� g0 = 0, g1 = 1.5�

Work density w � Work density w �

Ra
te

 f
un

ct
io
n 

r(
w
)�



Rate function r(w;t) for work distribution of double quench�

is non-analytic at Fisher zeroes:   r(w=0,t) = | f(it) |2   �

g0 = 0.5�
g1 = 2.0�

Influence of�
non-analytic�
behavior extends�
to w>0 �
(dynamical quantum�
phase transition)�



“Critical” mode k* �

•  Non-analytic behavior of �
    �

   �
 è related to mode k* with (see also Pollmann et al., PRE (2010)) �
�
�
   �
 è n(k*) = 1/2   (“infinite temperature”)�

•  Existence of k* guaranteed for quench across QCP since�
   �
        n(k=0) = 1 ,    n(UV) = 0�
�
   also for: �
�

   - non-instantaneous ramping �
   - other dispersion relations with same IR, UV-behavior�

1

0 = huk⇤(t = 0) |uk⇤(t)i = 1 + 2n(k⇤) e�2i✏(k⇤)t

1 + 2n(k⇤)
(1)

f(it) =
1

N
ln

Y

k

huk(t = 0) |uk(t)i (2)1

0 = huk⇤(t = 0) |uk⇤(t)i = 1 + 2n(k⇤) e�2i✏(k⇤)t

1 + 2n(k⇤)
(1)

f(it) =
1

N
ln

Y

k

huk(t = 0) |uk(t)i (2)



Equilibrium vs. Dynamics�
Quench within same phase�

f(r)                 equilibrium�
�
      Wick rotation �
�
f(it)                  dynamics�

Quench across QCP�

“Naive” Wick rotation not possible�

Non-equilibrium time evolution is not �
described by equilibrium properties�

r�

r�



Subtleties (?)�

Ground state of fermionic model for g0 < 1 is not thermodynamic�
pure ground state of the spin model.�
�
Thermodynamic pure ground state (obeys cluster decomposition)�

| ± (g0) >=
1p
2
( |GS(g0) >NS ±|GS(g0) >R )

Neveu-Schwarz sector (even)      Ramond sector (odd)�

Well-known (see e.g. Calabrese et al., arXiv:1204.3911): �
�

- Even operators Oe�
�
�
  can be evaluated only in NS-sector �
  è fermionic model from before�
�

- Odd operators Oo involve R-sector è difficult �

0
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Example: Calculate longitudinal magnetization m = < σz > via�
lim
r!1

h�z
i �

z
i+ri = m2

even operator�

BUT:  (not fully appreciated in previous literature on quench dynamics)�
�
  Hamiltonian  H = He + Ho �
�
  è Return amplitude (Loschmidt echo)�

in fermionic model�

hGS(g0) | e�iHf (g1)t |GS(g0)i
in general

6=
⇢

h+(g0) | e�iH(g1)t | + (g0)i
h�(g0) | e�iH(g1)t | � (g0)i

fermionic model                               spin model�



Careful reinterpretation �

Quench from paramagnetic phase: �
  �
   Unique ground state in spin model  = |GS(g0)>NS�

NShGS(g0) | e�i(H
e

+H
o

)t |GS(g0)iNS = NShGS(g0) | e�iH
e

t |GS(g0)iNS

= previous result from fermionic model�

è everything unchanged (incl. Fisher zeroes, nonanalytic behavior�
                                in time, etc.) �



Quench from ferromagnetic phase: �
�

   Return amplitude/Loschmidt matrix�

lim
N!1

1

N
ln h±(g0) | e�iH(g1)t | ± (g0)i =

✓
f++(it) f+�(it)
f�+(it) f��(it)

◆

[ f++(z) = f��(z) , f⇤
+�(z) = f�+(z

⇤) ]

Based on numerical evaluation for finite systems (up to N=200): �
�
•  f++(z) and f+-(z) are analytic�
�

•                            t < first Fisher time:     |f++(it)| < |f+-(it)| �
    first Fisher time    < t < second Fisher time:  |f++(it)| > |f+-(it)| �
    second Fisher time < t < third Fisher time:    |f++(it)| < |f+-(it)|�
�
    Larger overlap between same or other thermodynamic�
    pure ground states alternates at Fisher times.  �



Work distribution function for double quench: �
�
  w=0 corresponds to return |+> -> |+> and |+> -> |->�
�

  è same result as in fermionic �
      model, r(w=0,it) non-analytic �
      at Fisher times �

|f++(it)| < |f+-(it)| � |f++(it)| < |f+-(it)| �|f++(it)| > |f+-(it)| �

Entries in Loschmidt matrix are analytic, �
but work distribution function shows non-analytic behavior.�



Longitudinal Magnetization �

Quenches within ferromagnetic phase: Exponential decay�
                                               [ Calabrese et al., PRL (2011) ] �
�
�
�
Quenches across the QCP: �
�
Longitudinal magnetization has�
�

- analytical time evolution �
�

- shows oscillatory decay with�
  zeroes with period�
  = Fisher time�
  (see also Calabrese et al., �
   arXiv:1204.3911)�
�

- consistent with behavior of �
  rate functions in Loschmidt matrix� 10−6
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Equilibrium order parameter: longitudinal magnetization

Quenches within the ferromagnetic phase: exponential relaxation

Calabrese et al., PRL ’11

oscillatory decay with frequency

�� =
�

2t�

Spin precession in yz-plane

�z(t)
t��� e��t

�z = ��z�

DQPT
Sharp changes of dynamical behavior as a function of control parameter

Rigidity of ferromagnetic order: spins are pinned in the yz-plane

Note: very similar to XZ model
Barmettler et al., PRL ’09

t�



Summary�

I.  Existence of dynamical quantum phase transitions �
#in close analogy to equilibrium phase transitions�

�
II.  Breakdown of short-time expansion in thermodynamic limit �

#⇒ rate functions non-analytic in real time�
�
III. #Existence of new non-equilibrium energy scale ε(k*)�
�
IV.    Dynamical quantum phase transition is protected�

V.     Signatures in other observables (longitudinal magnetization)�

VI.    Main question: Universality away from quadratic/integrable Hamiltonian �




