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Shannon entropy
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Chaotic regime: thermodynamic relations

In the chaotic domain:;

» Diagonal entropy is a thermodynamic entropy,
it is determined by
the energy of the system only;

S; =Sy = Sy o Inn(E)

» Quantum chaos community.

S, = Sy, o< Inn(E)

Zelevinsky et al, Phys. Rep. 276, 85 (1996)
Flambaum & lzrailev, PRE 56, 5144 (1997)
(occupation number of single particle
states: FD, BE distributions)

» Entropy from a microscopic theory leads to thermodynamic relations.

x external parameter

dE =TdS — Fdx

F:generalized force describing the adiabatic response of the system
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Diagonal ensemble and diagonal entropy

Isolated system out of equilibrium
The von Neumann entropy is conserved for any process in an isolated system

Initial state: | ¥©O) = >.C, [v,) Quantum system H |y )=E,|y,)
Time evolution of a generic observable:

(O(2)) = (¥(x) | O | ¥(r)) = 2 .C,C.e"™" ™0,  Op=w, 101w,

Infinite time average: (generic system with nondegenerate and incommensurate spectrum)

<O(T)> — Odiag = Zl Cn |2 Onn

| Cn |2 are the diagonal elements of ,O(Z') =| W(T))(W(T) | in the energy representation

Sd = P In L — Shannon = _Zl Cn |2 In | Cn |2

Entropy of the A. Polkovnikov
- : _ Ann. Phys.326, 486 (2011)
diagonal ensemble: S, = _Z p..Inp
“
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Diagonal entropy: thermodynamic entropy

The diagonal entropy is a proper definition of thermodynamic entropy for
guantum systems out of equilibrium

It satisfies the properties of a thermodynamic entropy:
it is uniquely related to the energy distribution
it is additive
it is conserved for adiabatic processes,

The diagonal entropy is consistent with the second law of thermodynamics:
it increases when is taken out of equilibrium,

| Ca |2 are the diagonal elements of ,O(Z') =| W(T))(W(T) | in the energy representation

Entropy of the A. Polkovnikov
diagonal ensemble: Sy = _Z Phnn In Phnn Ann. Phys.326, 486 (2011)
n

Lea F. Santos, Yeshiva University KITP 2012, Santa Barbara




Smooth part of the diagonal entropy

n :l Cn |2 Sm
— _ann In Phn i smooth Z pnnln[n(E )ﬁ]
S, = =S, . +5S —_—
e+ Swsans s, LS ) ol n(E,)E)

n(E) = Z5(E — E,) is the density of states

n
OE? = ann(En — E,.)° is the energy variance
n

> When the distribution of £,, =| C, | in energy becomes smooth,|  haotic
Stluct becomes negligible and — systems
Ssmooth coincides with the thermodynamic entropy Sth

N/
Ssmooth ~ Sth
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Smooth part of the diagonal entropy

smooth
- energy dispersion
Sd R Ssmooth +S [

fluctuatiry ] Sfluctuatirg — —J- deEW (E) In[\N (E) ]

Sy = _Zn:Pnn In o, i _ jdEW(E)Sth(E)

W(E) = anné(E — E,) is the energy distribution

» When W(E) is narrow on the scale of changes of the equilibrium
entropy: S S, = In[n(E)dE] (OE is subextensive)|_ chaotic
systems

"~/
smooth =~

> If W(E) is a smooth function of E: S is subextensive  _

fluctuatirg

A. Polkovnikov
Ann. Phys.326, 486 (2011)
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System Model

Hardcore bosons in 1D: h=1

1 1 1 1

H=> —t(bfbi+1 + h.c.)+v n—=[n,-= —t'(bfbi+2 + h.c.)+V' N’ —=[n’,—=

i—1 2 2 2 2

nib = bi+bi+1 1
o Wigner-Dyson distribution
t''WVW'=0 system is integrable (time reversal symmetry)

2 osf s { #zs°

PWD(S) = %exp - 7[4 j

t','V'>0  system may become chaotic

Periodic: conservation of total momentum k

(diagonalization for each k-sector)




t',V'=0 system is integrable

Fixed: t’)V
Quench:t,,V,, =>t=V =1 t',V'> 0 system may be chaotic

g OBl
e t(bb,,, + h.c.)+v-( o _ —j(n.b ) _] |

1 ~i1+2

H; = Z
io1| t'(bi+bi+2 + h.c.)+V'(nib — %)(nibﬂ o %j
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Distribution Function of Energy: Gaussian
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‘ PRL 107, 040601 (2011) \ - Bosons, T=4 Zn: nn\™=n ini
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Diagonal Entropy and Chaos

Bosons

Fermions
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Strength Function and Energy Shell

Hy H=Hg+ AV
Model 1: integrable Model 2: chaotic |f—’*> D ce |'_ _’>
T T T T GOFT T T T T3 :E
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spread of energy, lifetime of @,

Chaotic domain:

1 —(E-¢&)
P.(E) = ——=ex ad
2no 20,
_ 2 H 2
9 . Energy shell: 0, = Z| .
o o Gaussian with variance m=n

Energy shell is the density of states obtained from a matrix filled only with the off-
diagonal elements of the perturbation (= maximal strength function)

Average over 5 EFs in the LFS, Borgonovi, lzrailev

Lea F. Santos, Yeshiva University middle of the spectrum; PRL 108, 094102 (2012) KITP 2012, Santa Barbara

L=15; 5 spins up PRE 85, 036209 (2012)




Chaos and Random Matrix Theory

» Realistic systems are not described by random matrices;
» they have with few- (two)-body interactions; the density of states is Gaussian;

» only states in the middle of the spectrum may become chaotic; _
. o Model 2: chaotic
» therefore, in the chaotic limit 0 r——T"T1T"T"T1
thermalization can occur only far from edges |

» Chaotic states = states that fill the energy shell

Shannon entropy coincides with thermodynamic entropy
if the state considered fills the energy shell EN

LFS, Borgonovi, Izrailev

PRL 108, 094102 (2012)




Integrable regime

. . 2 gri
1D HCB model with NN hopping , Ho= —t Zfb b, +He) + Aqu ;.'Tf)b-]-b_
an external potential, and OPEN BOUNDARIES S k= U = p)l

» Sd is not equivalent to the thermodynamic entropy,
Sfluct/Sd does not decrease with system size (L)
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PART Il

TRACE OUT
PART OF THE SYSTEM

LFS, A. Polkovnikov, M. Rigol,
PRE 86 010102(R) (2012)
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Typicality

Tasaki, PRL 80, 1373 (1998),
Popescu et al, Nature Phys. 2, 754 (2006);

Reduced density matrix of a subsystem of most pure states of many-particle systems is canonical.

1
> How much do we need to trace out in a finite system? Pe == exp(—BHY)

» Which quantities are more or less affected?
What we see...

» Grand-canonical entropy and diagonal entropy are close after the removal of few sites.
WEAK TYPICALITY

» The von Neumann entropy should approach the other two after tracing out many sites.
STRONG TYPICALITY
additional information

» Observables: reduced density matrix, diagonal ensemble, and grand-canonical
ensemble give similar results which improve with system size.

PRE 86 010102(R) (2012)




Entropies: what to expect?

Composite system S + & in a pure state p = P)(¥ |

Grand-partition function

» Grand-canonical entropy: = Z a(iNy—Ey) Toc
S —In=+ Es — 4N 7 chen:ical potential
cgc — "=
GC Es,Ns: average energy and

number of particles in the
remaining system

» Reduced von Neumann entropy . _
Minimum SvN=0

Maximum Svn=In D

ps =Tr.[p] P, =Trlpl (D: dimension of

smallest subsystem)

» Diagonal entropy
Sy = —Z o np. Sd counts logarithmically the

n number of energy eigenstates
which are occupied.

KITP 2012, Santa Barbara
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Entropies vs Number of Sites Traced out

t',V'=0.00 t',\V'=0.32
integrable chaotic

R = number of
sites traced out

L=18; 6 particles; T=4

Sonw = —Trs[psInps] = —Tre [pe In pe]

Chaotic region: diagonal part of the
density matrix of the reduced system S, =— Z O IN( 0,

in the energy eigenbasis exhibits a

thermal structure Soc = InE 4+ Es — pNs

Tae

KITP 2012, Santa Barbara

= = ZH g HNa—Ep ) T
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Entropies vs system size

t',V'=0.00 t'\V'=0.32
integrable chaotic
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R =number of sites
Chaotic region: the results indicate that traced out
in thermodynamic limit SGc and Sd
coincide even when just one site is cut

L/3 particles; T=4

LFS, M. Rigol, A. Polkovnikov
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Observables Iin the chaotic domain

0.03p= ° 1 ' I q9F ° 1 b I 9 7 I v I = 0 5
— 1t w 1t % Tracing out and cutting
5 tvi 5 1F ] off and waiting for
=003 0,32 107 v=048 10 . v'=0.64 - equilibrium lead to the

-0.06 et e : : same results.

3-0.15_- 1 qrF - -
< 02 JF dF - Is there any physical
2 E il JE z

> : | T | observable that could

0.6} ! qF T T T F 'k\"/“_ detect this extra
S osf -k a, AF .v'—' information?

Il . 4k 4
% o b l-&_ o 'v_ o -

03 | s | T T T | T T Momentum distribution function:

0.5 ' 4 P g _i —K(i- )+
Il B ' 9 b 1]
= 04 - - - = % -

03' 1 | L | ] L | 1 | 1LC L | L 1 i GC

0 0.05 01 0 0.05 0.1 0 0.05 0.1 o I

/L /L /L o\

Lea F. Santos, Yeshiva University T=5; R=L/3 KITP 2012, Santa Barbara




Conclusion

» From a pure state, traced out some sites of the lattice:

Few sites removed: diagonal entropy = canonical entropy
(weak typicality)

Many sites removed: von Neumann = diagonal = canonical entropy
(strong typicality)

Observables coincide for the three cases, irrespective of how many
sites are traced out.
(reduced density matrix contains irrelevant information)

Diagonal ensemble describes physical observables.
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