KITP Program on Dynamics in Closed Thermally Isolated Systems, S. Barbara October 2012

Non-Equilibrium Dynamics across Impurity Quantum Critical Points

Marco Schiro'

Princeton Center For Theoretical Science

M. Schiro', Phys. Rev. B 86 161101(R) (2012)

Monday, October 29, 2012

Motivations (Theory): Local Quenches in Impurity Models

Motivations (Theory): Local Quenches in Impurity Models

Motivations (Experiment): Kondo Effect in the Optical Spectrum of Quantum Dots

Motivations (Theory): Local Quenches in Impurity Models

Motivations (Experiment): Kondo Effect in the Optical Spectrum of Quantum Dots

Masic Questions, Quick Answers and Few Examples

Motivations (Theory): Local Quenches in Impurity Models

Motivations (Experiment): Kondo Effect in the Optical Spectrum of Quantum Dots

Basic Questions, Quick Answers and Few Examples

Example: Anderson Impurity Model

$$H = \frac{U}{2} \left(n - 1 \right)^2 + \sum_{k\sigma} \epsilon_k f_{k\sigma}^{\dagger} f_{k\sigma} + \sum_{k\sigma} V_k \left(c_{\sigma}^{\dagger} f_{k\sigma} + h.c. \right)$$

Dynamics after Local Quenches

Long time dynamics after a local perturbation: does the system thermalize?

 $\langle O \rangle_t = Tr[\rho_0 e^{iHt} O e^{-iHt}] \qquad t \to \infty \qquad \langle O \rangle_t = \langle O \rangle_{eq} ???$

Model of the second systems through DMFT mapping and the second systems through the second systems the second systems thr

See <u>recent</u> works:

Ratiani & Mitra, PRB 81 125110(2010), Vinkler, Schiller & Andrei PRB 85 035411 (2012), ...

Monday, October 29, 2012

Experimental Motivations

Diluted Magnetic Impurities in Metals ~ 1960

Quantum Dots and Single Molecule Devices ~1998

quantum dots

Optically controlled Self-Assembled Quantum Dots ~ 2005

Vg

2DEG

Experimental Motivations

Diluted Magnetic Impurities in Metals ~ 1960

Quantum Dots and Single Molecule Devices ~1998

Optically controlled Self-Assembled Quantum Dots ~ 2005

S laser InAs/GaAs self-organised guantum dots

New All Optical <u>Set-up</u>: Self Assembled QuantumDots

Evidence of Strong Hybridization to the Fermi Sea

Karrai et al, Nature (2004), Dalgarno et al, PRL (2008)

Absorption/Emission spectrum of a single Quantum Dot!

Warburton et *al.*, Nature **405**, 926 (2000)

Light-Induced Local "Quantum Quench"

Helmes et al, PRB **72** 125301 (2005) Tureci et al, PRL **106** 107402 (2011) Munder et al, PRB **85** 235104 (2012)

Optical Absorption Spectrum

 $A_{\sigma}(\omega_L) = 2\pi \sum_{nm} \rho_m^i |\langle n; f | e_{\sigma}^{\dagger} | m; i \rangle|^2 \,\delta(\omega_L - E_n^f + E_m^i)$

Pump-Probe Dynamics (soon??)

Work Statistics! Silva, PRL **101** 120603 (2008) Heyl&Kehrein, PRL **108** 190601 (2012)

Connection with Work Statistics

Heyl&Kehrein, PRL **108** 190601 (2012)

Sudden Local Quench: $H_i \to H_f$ $\delta H \sim U_{eh}$ $\sum_{\sigma} n_{e\sigma}$ $H_i \leftarrow H_f$ σ

 $\overrightarrow{P}_{F}(W) = \int \frac{dt}{2\pi} e^{iWt} \langle e^{iH_{i}t}e^{-iH_{f}t} \rangle_{i} \sim A(\nu = W)$ $P_{B}(W) = \int \frac{dt}{2\pi} e^{iWt} \langle e^{iH_{f}t}e^{-iH_{i}t} \rangle_{f} \sim E(\nu = W)$ $\underbrace{Emission!}{Emission!}$

Crooks Relation

$$\frac{A(\nu)}{E(\nu)} \sim e^{\beta \left(\nu - \Delta F\right)}$$

NB: Also in a single shot, for weak perturbation

Kondo Effect in the Optical **Absorption Spectrum**

C. Latta et al., Nature 474, 627 (2011)

Edge Singularity in the Optical **Absorption Spectrum!**

 $A(\nu) \sim \nu^{-\eta}$

Exponent tunable by magnetic field/gate voltage

Monday, October 29, 2012

Toward Hybrid Light-Matter Quantum Impurity Systems

Delbecq et al, PRL (2011) ENS-LPA (Kontos Lab)

Coupling Electrons with quantum light (Photons)
 Response of Kondo State to microwave signals

Theoretical Question & Quick Answers

Long time dynamics after a local perturbation: does the system thermalize? How?

 $\langle O \rangle_t = Tr[\rho_0 e^{iHt} O e^{-iHt}] \qquad t \to \infty \qquad \langle O \rangle_t = \langle O \rangle_{eq} ???$

Theoretical Question & Quick Answers

Icong time dynamics after a local perturbation: does the system thermalize? How?

$$\langle O \rangle_t = Tr[\rho_0 e^{iHt} O e^{-iHt}] \qquad t \to \infty \qquad \langle O \rangle_t = \langle O \rangle_{eq} ???$$

YES!

- Conserved quantities (energy, particle number, spin,..) flow across the system due to V_k
- Reservoir is infinite and gapless
 (and if proper order of limit is taken)

Theoretical Question & Quick Answers

Icong time dynamics after a local perturbation: does the system thermalize? How?

$$\langle O \rangle_t = Tr[\rho_0 e^{iHt} O e^{-iHt}] \qquad t \to \infty \qquad \langle O \rangle_t = \langle O \rangle_{eq} ???$$

YES!

- Conserved quantities (energy, particle number, spin,..) flow across the system due to V_k
- Reservoir is infinite and gapless
 (and if proper order of limit is taken)

 Anderson Impurity Model (or similar)
 is integrable -- Bethe Ansatz Solvable

Monday, October 29, 2012

End of the story??

End of the story??

Not Yet ..!!

Monday, October 29, 2012

End of the story??

Not Yet ..!!

•We are assuming system+bath always 'effectively' coupled

•Local Many Body Interactions can change this picture?

... and its out of equilibrium dynamics

TD-NRG: Anders & Schiller PRL (2005)

... and its out of equilibrium dynamics

TD-NRG: Anders & Schiller PRL (2005)

Take-home message: Kondo Effect, always thermal, but RG flow matters!

Ferromagnetic Kondo Model

Quench Dynamics from a decoupled initial state

Hackl et al, PRL **102** 196101 (2009) Flow-Equation, tdNRG

Relevant Examples:

Markov Pseudo-Gap Anderson Model

Markov Pseudo-Gap Anderson Model

Fradkin, Ingersent, Vojta, ...

Anderson Impurity in a power-law bath

Out of Equilibrium Dynamics

$$H = \frac{U}{2} (n-1)^{2} + \sum_{k\sigma} \epsilon_{k} f_{k\sigma}^{\dagger} f_{k\sigma} + \sum_{k\sigma} V_{k} \left(c_{\sigma}^{\dagger} f_{k\sigma} + h.c. \right)$$

Initial Condition

\bigstarNo Coupling with Bath $V_k = 0$

• No Local Interaction U=0

<u>Real-Time Dynamics</u>: how to solve?

J time-dep NRG —

diagrammatic MC

 $\Gamma(\epsilon) \sim |\epsilon|^r$

Finite Size Effects due to Wilson Chain cfr A. Rosch, Eur. Phys. J. B **85** 6 (2012)

$$\frac{dN}{d\mu} \sim N \qquad \frac{dE}{dT} \sim \frac{1}{\log\Lambda}$$

Dynamics with Real-Time QMC MS, PRB 81, 103232 (2010)

- Seemingly slow dynamics for large r > 1/2 but...
- Short time dynamics <u>only</u>, due to "sign" problem
- Finite Temperature in the bath, no QCP!

A Time Dependent Variational Approach

$$\delta \int dt \left\langle \Psi(t) \right| i \partial_t - \mathcal{H} |\Psi(t)\rangle = 0$$

Ansatz on the time dep Many Body Wave Function

$$|\Psi(t)\rangle = e^{iHt} |\Psi(0)\rangle \stackrel{\checkmark}{\simeq} P(t) |\Phi(t)\rangle$$

Variational parameters:

 $a = |0\rangle, ..., |\uparrow\downarrow\rangle$

Gutzwiller WF: $P(t) = \sum \lambda_a(t) e^{i\phi_a(t)} |a\rangle \langle a|$ change weight of atomic configurations

 $i\partial_t |\Phi(t)\rangle = \mathcal{H}_{\star}(t) |\Phi(t)\rangle$ Non interacting model with $V_k(t)$ $\mathcal{H}_{\star}(t) = \sum \epsilon_k f_{k\sigma}^{\dagger} f_{k\sigma} + \sqrt{Z(t)} \sum V_k \left(c_{\sigma}^{\dagger} f_{k\sigma} + h.c. \right)$ $k\sigma$

Monday, October 29, 2012

A Time Dependent Variational Approach

Dynamics of non-equilibrium bath

$$i\partial_t |\Phi(t)\rangle = \mathcal{H}_{\star}(t) |\Phi(t)\rangle$$
$$\mathcal{H}_{\star}(t) = \sum_{k\sigma} \epsilon_k f_{k\sigma}^{\dagger} f_{k\sigma} + \sqrt{Z(t)} \sum_{k\sigma} V_k \left(c_{\sigma}^{\dagger} f_{k\sigma} + h.c. \right)$$

Monday, October 29, 2012

Variational Ground State $|\Psi\rangle = \left(\sum_{a=|0\rangle,..,|\uparrow\downarrow\rangle} \lambda_a |a\rangle\langle a|\right) (\Phi)$ Ground-State of \mathcal{H}_{\star} $\mathcal{H}_{\star} = \sum_{k\sigma} \epsilon_k f_{k\sigma}^{\dagger} f_{k\sigma} + \sqrt{Z} \sum_{k\sigma} V_k (c_{\sigma}^{\dagger} f_{k\sigma} + h.c.)$ Variational Energy

 $E[\lambda_a, \sqrt{Z}] = \langle \Psi | \mathcal{H} | \Psi \rangle$

A QCP between Kondo and Local moment regime

$$U_c/\Gamma = \frac{16(1+r)}{\pi r}$$

NB:
$$U_c \to \infty$$
 for $r \to 0$

Dynamics in the Kondo Screened Phase r = 0.4 $U < U_c(r)$

Relaxation to the thermal steady state

Dynamics in the Local Moment Phase $U > U_c(r)$

Mo Damping, No Relaxation, No Steady State

How these regimes are connected?

In the Kondo Phase, linearize dynamics around steady state

$$\delta \ddot{O} = \alpha \delta O + \eta \delta E_{hyb}$$

 $\delta O = O(t) - O_{\star}$

Equilibrium Properties:

$$\eta \sim E_{hyb}^{\star} \qquad \alpha \sim -E_{hyb}^{\star 2}/Z_{\star} \qquad E_{hyb}^{\star} \sim \sqrt{Z_{\star}}$$

Relaxation time diverges at the quantum critical point!

$$\tau_{rel} \sim 1/\sqrt{Z_{\star}} \sim |U - U_c(r)|^{-1/2}$$

Oynamical transition between thermal and non thermal regime

Conclusions

- Thermalization in Quantum Impurity Models after local perturbations
- Long-Time physics is sensitive to Low-Energy features, i.e.
 RG Fixed Points, Kondo Effect
- Non trivial Dynamics across a Kondo-to-Local Moment QCP
 - **Open Questions:**

Thanks!

Experimental Setup

Helmes et al, PRB **72** 125301 (2005) Latta et al, Nature **474** 627 (2011)

InAs/GaAs Tunnel Barriers result into dips in conduction/valence band gap: quantum dots!

Ight excites e-h pairs that recombine emitting photons

Mumber of electrons tunable by Vg

Monday, October 29, 2012

Excitonic Anderson Model

