Entanglement Negativity in Quantum Field Theory

John Cardy

University of Oxford

KITP, January 2014

Outline

- Bipartite entanglement in pure states
- Path integral approach and correlators of twist operators in QFT
- Entanglement in mixed states and negativity
- Results in 1+1-dimensional CFT
- Higher dimensions

Work largely carried out with Pasquale Calabrese (Pisa) and Erik Tonni (Trieste)

Bipartite Entanglement in Pure States

Quantum system in a pure state $|\Psi\rangle$, density matrix $\rho=|\Psi\rangle\langle\Psi|$
$\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
Schmidt decomposition:

$$
|\Psi\rangle=\sum_{j} c_{j}\left|\psi_{j}\right\rangle_{A} \otimes\left|\psi_{j}\right\rangle_{B}
$$

with $c_{j} \geq 0, \sum_{j} c_{j}^{2}=1$, and $\left|\psi_{j}\right\rangle_{A},\left|\psi_{j}\right\rangle_{B}$ orthonormal.
One quantifier of the amount of entanglement is the entropy

$$
S_{A} \equiv-\sum_{j}\left|c_{j}\right|^{2} \log \left|c_{j}\right|^{2}=S_{B}
$$

Equivalently, in terms of A's reduced density matrix $\rho_{A} \equiv \operatorname{Tr}_{B}|\Psi\rangle\langle\Psi|$

$$
S_{A}=-\operatorname{Tr}_{A} \rho_{A} \log \rho_{A}=S_{B}
$$

Similar information is contained in the Rényi entropies

$$
S_{A}^{(n)}=(1-n)^{-1} \log \operatorname{Tr}_{A} \rho_{A}^{n}
$$

$$
S_{A}=\lim _{n \rightarrow 1} S_{A}^{(n)}
$$

Other measures of bipartite entanglement exist, but entropy has several nice properties: additivity, convexity, ...

It is monotonic under Local Operations and Classical Communication (LOCC)

It gives the amount of classical information required to specify ρ_{A} (important for numerical computations)

It gives a basis-independent way of identifying and characterising quantum phase transitions

In a relativistic QFT the entanglement in the vacuum encodes all the data of the theory (spectrum, anomalous dimensions, ...)

Rényi entropies from the path integral

$\Psi(\{a\},\{b\})=Z_{1}^{-1 / 2} \int_{a(0)=a, b(0)=b}[d a(\tau)][d b(\tau)] e^{-(1 / \hbar) S[\{a(\tau)\},\{b(\tau)\}]}$
where $S=\int_{-\infty}^{0} L(a(\tau), b(\tau)) d \tau$

Similarly $\Psi^{*}(\{a\},\{b\})$ is given by the path integral from $\tau=0$ to $+\infty$

$$
\rho_{A}\left(a_{1}, a_{2}\right)=\int d b \Psi\left(a_{1}, b\right) \Psi^{*}\left(a_{2}, b\right)
$$

This is given by the path integral over \mathbb{R}^{2} cut open along $A \cap\{\tau=0\}$, divided by Z_{1} :

Rényi entropies

$\operatorname{Tr}_{A} \rho_{A}^{n}$ is given by the partition function on n sheets sewn together cyclically along $A \cap\{\tau=0\}$, forming a conifold \mathcal{R}_{n}, with opening angles $2 \pi n$ at each conical singularity.

$$
\operatorname{Tr}_{A} \rho_{A}{ }^{n}=Z\left(\mathcal{R}_{n}\right) / Z_{1}^{n}
$$

- equivalently, n copies of the CFT within the fields cyclically identified across $A \cap\{\tau=0\}$:

$$
a_{j}(0-)=a_{j+1}(0+) \quad \bmod n
$$

If space is 1 d and A is an interval $\left(r_{1}, r_{2}\right)$ (and B is the complement) then $\boldsymbol{Z}\left(\mathcal{R}_{n}\right)$ can be thought of as the insertion of twist operators into n copies of the CFT:

$$
Z\left(\mathcal{R}_{n}\right) / Z_{1}^{n}=\left\langle\mathcal{P}_{n}^{-1}\left(r_{1}\right) \mathcal{P}_{n}\left(r_{2}\right)\right\rangle_{(C F T)^{n}}
$$

These have similar properties to other local operators e.g. in a massless QFT (a CFT)

$$
\left\langle\mathcal{P}_{n}^{-1}\left(r_{1}\right) \mathcal{P}_{n}\left(r_{2}\right)\right\rangle \sim\left|r_{1}-r_{2}\right|^{-2 \Delta_{n}}
$$

Main result for $d=1$ [Holzhey et al., CC]:

$$
\Delta_{n}=(c / 12)(n-1 / n)
$$

where c is the central charge of the UV CFT

Two intervals

$$
A_{1} \quad A_{2}
$$

$$
Z\left(\mathcal{R}_{n}\right) / Z^{n}=\left\langle\mathcal{P}_{n}^{-1}\left(r_{1}\right) \mathcal{P}_{n}\left(r_{2}\right) \mathcal{P}_{n}^{-1}\left(r_{3}\right) \mathcal{P}_{n}\left(r_{4}\right)\right\rangle
$$

In general there is no simple result but for $r_{12}, r_{34} \ll r_{23}, r_{14}$ we can use an operator product expansion [Headrick, CCT]

$$
\mathcal{P}_{n}^{-1}\left(r_{1}\right) \cdot \mathcal{P}_{n}\left(r_{2}\right)=\sum_{\left\{k_{j}\right\}} C_{\left\{k_{j}\right\}}\left(r_{1}-r_{2}\right) \prod_{j=1}^{n} \Phi_{k_{j}}\left(\frac{1}{2}\left(r_{1}+r_{2}\right)_{j}\right)
$$

in terms of a complete set of local operators $\Phi_{k_{j}}$.
This shows that the mutual information $S_{A_{1} \cup A_{2}}-S_{A_{1}}-S_{A_{1}}$ is more related to correlations between A_{1} and A_{2} and not their quantum entanglement.

Twist operators correspond to a cyclic permutation P_{n} of the replicas as we go around the conical singularity.

More generally we could consider

$$
\left\langle\mathcal{P}_{n}^{(1)}\left(r_{1}\right) \mathcal{P}_{n}^{(2)}\left(r_{2}\right) \mathcal{P}_{n}^{(3)}\left(r_{3}\right) \mathcal{P}_{n}^{(4)}\left(r_{4}\right)\right\rangle
$$

where the $\mathcal{P}_{n}^{(k)}$ are more general permutations of n objects (with $\prod_{k} \mathcal{P}_{n}^{(k)}=1$.)

These are related to new measures of the mixed state entanglement between A_{1} and A_{2}.

In particular

$$
\left\langle\mathcal{P}_{n}^{-1}\left(r_{1}\right) \mathcal{P}_{n}\left(r_{2}\right) \mathcal{P}_{n}\left(r_{3}\right) \mathcal{P}_{n}^{-1}\left(r_{4}\right)\right\rangle
$$

gives

$$
\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}\right)^{n}
$$

where $\rho_{A_{1} \cup A_{2}}^{T_{2}}$ is the partial transpose

$$
\rho_{A_{1} \cup A_{2}}^{T_{2}}\left(a_{1}, a_{2} ; a_{1}^{\prime}, a_{2}^{\prime}\right)=\rho_{A_{1} \cup A_{2}}\left(a_{1}, a_{2}^{\prime} ; a_{1}^{\prime}, a_{2}\right)
$$

This is related to negativity [Vidal-Werner 2002].
Although $\operatorname{Tr} \rho^{T_{2}}=1$, it may have negative eigenvalues λ_{j}, and this will happen if

$$
\mathcal{E} \equiv \log \operatorname{Tr}\left|\rho^{T_{2}}\right|=\log \sum_{j}\left|\lambda_{j}\right|>0
$$

\mathcal{E} has nice quantum information properties, e.g. monotonicity under LOCC.

Negativity in 1+1 dimensional CFT
Note that

$$
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}=\sum_{j} \lambda_{j}^{n}=\sum_{j}\left|\lambda_{j}\right|^{n} \quad \text { for } n \text { even }
$$

so if the continuations to $n=1$ from even and odd n are different, we can have negativity.

$$
\left\langle\mathcal{P}_{n}^{-1}\left(r_{1}\right) \mathcal{P}_{n}\left(r_{2}\right) \mathcal{P}_{n}\left(r_{3}\right) \mathcal{P}_{n}^{-1}\left(r_{4}\right)\right\rangle
$$

This can happen if $r_{23} \ll r_{12}, r_{34}$, because of the OPE

$$
\begin{aligned}
\mathcal{P}_{n} \cdot \mathcal{P}_{n} & \cong \mathcal{P}_{n} \quad n \text { odd } \\
& \cong \mathcal{P}_{n / 2} \otimes \mathcal{P}_{n / 2} \quad n \text { even }
\end{aligned}
$$

This has scaling dimension $2(c / 12)(n / 2-2 / n) \rightarrow-c / 4$ as $n \rightarrow 1$.

In this limit we get

$$
\mathcal{E} \sim(c / 4) \log \left(r_{12} r_{34} / r_{23} r_{14}\right)
$$

This has been confirmed numerically for uncompactified free boson and for the Ising model.

$$
\left\langle\mathcal{P}_{n}^{-1}\left(r_{1}\right) \mathcal{P}_{n}\left(r_{2}\right) \mathcal{P}_{n}\left(r_{3}\right) \mathcal{P}_{n}^{-1}\left(r_{4}\right)\right\rangle
$$

In the opposite limit $r_{12}, r_{34} \ll r_{23}, r_{14}$ we can use the short interval expansion, analytically continued from the usual ordering of the arguments: as $n \rightarrow 1$ every term in the OPE vanishes!

But numerically we find [Markovitch et al., CCT]

$$
\mathcal{E} \propto \exp \left(-C r_{23} r_{14} / r_{12} r_{34}\right)
$$

Non-perturbative terms in the OPE!

$$
y=r_{12} r_{34} / r_{13} r_{24}
$$

Other results

In general $\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$ is given by the partition function on a surface of the same genus as that for $\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}\right)^{n}$, but on a different section of the moduli space.

However for $n=2$

$$
\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{2}=\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}\right)^{2} \propto Z_{\text {torus }}
$$

but

$$
\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}} \cdot \rho_{A_{1} \cup A_{2}}\right) \propto Z_{\text {Klein bottle }}
$$

Correlators of products of twist operators corresponding to general permutations are given by CFT partition functions on non-orientable surfaces.

Higher dimensions

For $d>1$ for 2 large regions a finite distance apart
$\mathcal{N}\left(A_{1}, A_{2}\right) \propto$ Area of common boundary between A_{1} and A_{2}

- universal corrections to this 'area law'?
- if A_{1} and A_{2} are far apart, a generalisation of small interval expansion again gives vanishing negativity to all order vanishes to all orders - non-perturbative corrections??

Summary

Negativity as a measure of entanglement in mixed states (= tripartite entanglement) is computable in some QFTs, but remains somewhat mysterious.

It does not so far appear to have simple holographic interpretation.

Summary

Negativity as a measure of entanglement in mixed states (= tripartite entanglement) is computable in some QFTs, but remains somewhat mysterious.

> It does not so far appear to have simple holographic interpretation.

...when gravity fails and negativity won't pull you through...

