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Bipartite Entanglement in Pure States

Quantum system in a pure state |Ψ〉, density matrix ρ = |Ψ〉〈Ψ|

H = HA ⊗HB

Schmidt decomposition:

|Ψ〉 =
∑

j

cj |ψj〉A ⊗ |ψj〉B

with cj ≥ 0,
∑

j c2
j = 1, and |ψj〉A, |ψj〉B orthonormal.

One quantifier of the amount of entanglement is the entropy

SA ≡ −
∑

j

|cj |2 log |cj |2 = SB



Equivalently, in terms of A’s reduced density matrix
ρA ≡ TrB |Ψ〉〈Ψ|

SA = −TrA ρA log ρA = SB

Similar information is contained in the Rényi entropies

SA
(n) = (1− n)−1 log TrA ρA

n

SA = lim
n→1

SA
(n)



Other measures of bipartite entanglement exist, but entropy
has several nice properties: additivity, convexity, . . .

It is monotonic under Local Operations and Classical
Communication (LOCC)

It gives the amount of classical information required to specify
ρA (important for numerical computations)

It gives a basis-independent way of identifying and
characterising quantum phase transitions

In a relativistic QFT the entanglement in the vacuum encodes
all the data of the theory (spectrum, anomalous dimensions,
. . .)



Rényi entropies from the path integral
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8
_

Ψ({a}, {b}) = Z−1/2
1

∫
a(0)=a,b(0)=b

[da(τ)][db(τ)] e−(1/~)S[{a(τ)},{b(τ)}]

where S =
∫ 0
−∞ L

(
a(τ),b(τ)

)
dτ

Similarly Ψ∗({a}, {b}) is given by the path integral from τ = 0 to
+∞



ρA(a1,a2) =

∫
db Ψ(a1,b)Ψ∗(a2,b)

This is given by the path integral over R2 cut open along
A ∩ {τ = 0}, divided by Z1:

2

ba

a

1



Rényi entropies

TrA ρ
n
A is given by the partition function on n sheets sewn

together cyclically along A ∩ {τ = 0}, forming a conifold Rn,
with opening angles 2πn at each conical singularity.

TrA ρA
n = Z (Rn)/Z n

1

– equivalently, n copies of the CFT within the fields cyclically
identified across A ∩ {τ = 0}:

aj(0−) = aj+1(0+) mod n



2

BB A
r r1

If space is 1d and A is an interval (r1, r2) (and B is the
complement) then Z (Rn) can be thought of as the insertion of
twist operators into n copies of the CFT:

Z (Rn)/Z n
1 = 〈P−1

n (r1)Pn(r2)〉(CFT )n

These have similar properties to other local operators e.g. in a
massless QFT (a CFT)

〈P−1
n (r1)Pn(r2)〉 ∼ |r1 − r2|−2∆n

Main result for d = 1 [Holzhey et al., CC]:

∆n = (c/12)(n − 1/n)

where c is the central charge of the UV CFT



Two intervals

2AA1

Z (Rn)/Z n = 〈P−1
n (r1)Pn(r2)P−1

n (r3)Pn(r4)〉

In general there is no simple result but for r12, r34 � r23, r14 we
can use an operator product expansion [Headrick, CCT]

P−1
n (r1) · Pn(r2) =

∑
{kj}

C{kj}(r1 − r2)
n∏

j=1

Φkj

(1
2(r1 + r2)j

)
in terms of a complete set of local operators Φkj .

This shows that the mutual information SA1∪A2 − SA1 − SA1 is
more related to correlations between A1 and A2 and not their
quantum entanglement.



Twist operators correspond to a cyclic permutation Pn of the
replicas as we go around the conical singularity.

More generally we could consider

〈P(1)
n (r1)P(2)

n (r2)P(3)
n (r3)P(4)

n (r4)〉

where the P(k)
n are more general permutations of n objects

(with
∏

k P
(k)
n = 1.)

These are related to new measures of the mixed state
entanglement between A1 and A2.



In particular
〈P−1

n (r1)Pn(r2)Pn(r3)P−1
n (r4)〉

gives

Tr
(
ρT2

A1∪A2

)n

where ρT2
A1∪A2

is the partial transpose

ρT2
A1∪A2

(a1,a2; a′1,a
′
2) = ρA1∪A2(a1,a′2; a′1,a2)



This is related to negativity [Vidal-Werner 2002].

Although Tr ρT2 = 1, it may have negative eigenvalues λj , and
this will happen if

E ≡ log Tr |ρT2 | = log
∑

j

|λj | > 0

E has nice quantum information properties, e.g. monotonicity
under LOCC.



Negativity in 1+1 dimensional CFT

Note that

Tr
(
ρT2
)n

=
∑

j

λn
j =

∑
j

|λj |n for n even

so if the continuations to n = 1 from even and odd n are
different, we can have negativity.

〈P−1
n (r1)Pn(r2)Pn(r3)P−1

n (r4)〉

This can happen if r23 � r12, r34, because of the OPE

Pn · Pn ∼= Pn n odd
∼= Pn/2 ⊗ Pn/2 n even

This has scaling dimension 2(c/12)(n/2− 2/n)→ −c/4 as
n→ 1.



In this limit we get

E ∼ (c/4) log(r12r34/r23r14)

This has been confirmed numerically for uncompactified free
boson and for the Ising model.

〈P−1
n (r1)Pn(r2)Pn(r3)P−1

n (r4)〉

In the opposite limit r12, r34 � r23, r14 we can use the short
interval expansion, analytically continued from the usual
ordering of the arguments: as n→ 1 every term in the OPE
vanishes!

But numerically we find [Markovitch et al., CCT]

E ∝ exp
(
− C r23r14/r12r34

)
Non-perturbative terms in the OPE!



y = r12r34/r13r24



Other results

In general Tr
(
ρT2

A1∪A2

)n
is given by the partition function on a

surface of the same genus as that for Tr
(
ρA1∪A2

)n, but on a
different section of the moduli space.

However for n = 2

Tr
(
ρT2

A1∪A2

)2
= Tr

(
ρA1∪A2

)2 ∝ Ztorus

but
Tr
(
ρT2

A1∪A2
· ρA1∪A2

)
∝ ZKlein bottle

Correlators of products of twist operators corresponding to
general permutations are given by CFT partition functions on
non-orientable surfaces.



Higher dimensions

2AA1

For d > 1 for 2 large regions a finite distance apart

N (A1,A2) ∝ Area of common boundary between A1 and A2

I universal corrections to this ’area law’?
I if A1 and A2 are far apart, a generalisation of small interval

expansion again gives vanishing negativity to all order
vanishes to all orders – non-perturbative corrections??



Summary

Negativity as a measure of entanglement in mixed states
(= tripartite entanglement) is computable in some QFTs, but
remains somewhat mysterious.

It does not so far appear to have simple holographic
interpretation.

...when gravity fails and negativity won’t pull you through...
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