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References

Several hundreds of very recent works directly or indirectly related
to the subjects of this overview. I therefore apologize that the
references given here do not do justice to many interesting works.
Self references are omitted. Apologies to my collaborators in the
audience!!
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Introduction

The idea that one can be forgetful about heavy degrees of freedom
is very old. It is directly applicable in many realistic physical
problems and it is extremely powerful.
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Introduction

Example: Quantum Mechanics with V = 1
2x

2y2, i.e.
2H = ẋ2 + ẏ2 + x2y2. Is the spectrum continuous or discrete?
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Introduction

Solution: There are flat directions at y = 0, x = 0 so the naive
answer is that we have a continuous spectrum (like a free particle).
However, consider large x . Then, y is a very heavy degree of
freedom. It sits at the ground state with energy E = 1

2x . So we
can integrate out y and find the effective theory 2H = ẋ2 + |x |.
This is a confining potential−→ discrete spectrum.
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Introduction

In the context of QFT, we put the system in a large box L with
some cutoff l . Then we have ∼ (L/l)d degrees of freedom.

L

l

We package them into functions defined in the box and we provide
a Hamiltonian H[fi ]. Very roughly speaking, denoting the number
of functions we need by K , the total number of degrees of freedom
is K (L/l)d .
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Introduction

We can then ask many questions, such as

Characterize situations when we have self similarity (i.e. we
integrate out heavy degrees of freedom and end up with the
same Hamiltonian, either after every step, or after finitely
many steps).

The overall number of degrees of freedom is reduced in the
process of decreasing the cutoff l−1, but what about K? Can
we make this a well-posed problem in the continuum?

These questions appear to be very closely related.
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General Comments on Theories without a Mass Scale

If we have a fixed point, it must not have a mass scale, for
otherwise, sufficiently many re-scalings of l would change the
Hamiltonian.
Suppose we have such a theory without a mass scale. In the
simplest case this means that all the correlation functions are
power laws. The naive symmetry group:

ISO(d) oR .

Surprisingly, we often discover that the symmetry group is actually

SO(d + 1, 1)

So we have d unexpected conserved charges.
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General Comments on Theories without a Mass Scale

The idea that this symmetry enhancement is a general
phenomenon in QFT has been around for many decades (Migdal,
Polyakov, Wilson, and others wrote about this already in the 70s).

It has been realized fairly early (although I am not sure when and
by whom) that unitarity is a key ingredient in having these d extra
generators.
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General Comments on Theories without a Mass Scale

The additional d generators are the special conformal
transformations.

They are extremely important. They allow to fix three-point
functions in terms of finitely many coefficients and they lead to
many other constraints, such as inequalities among anomalous
dimensions.

There is experimental, numerical (bootstrap, Monte Carlo), and
theoretical evidence that we have the SO(d , 2) enhanced symmetry
in unitary theories.
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General Comments on Theories without a Mass Scale
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Monotonicity and Asymptotics in d = 2

One can define the number of degrees of freedom, c , as the
coefficient of the two-point function 〈TµνTρσ〉 at the conformal
fixed point. Zamolodchikov showed that for any flow
CFTuv → CFTir we have cuv > cir .

Polchinski has shown that, under favorable assumptions, scale
invariance implies conformal invariance. The two results use rather
similar techniques and appear to be closely related.
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Monotonicity and Asymptotics in d = 3

We can compute ZS3 :

− logZS3 = Λ3
UV + ΛUV + f

The cubic divergence is associated to
∫
d3x
√
g and the linear one

to
∫
d3xR. The only conceivable counter-term for f is∫

d3x
(
ω ∧ dω + ω3

)
but this actually vanishes on the sphere.

Hence, f is a physical observable.
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Monotonicity and Asymptotics in d = 3

This computation makes sense because there is a canonical way to
place a CFT3 on S3, via the stereographic mapping.
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Monotonicity and Asymptotics in d = 3

Recent work has shown that it is an extremely interesting
observable!

f is nonzero even in topological field theories, like in CS,
where for U(1)k we have f = log k.

It seems that we always have f > 0, even in dynamical
theories. Proof?

f can be computed by localization of N = 2 theories on S3
[Kapustin-Willet-Yaakov, Jafferis]. This leads to a lot of
“data” about f and its behavior in different RG flows.

If we have CFTuv → CFTir we have fuv > fir , as was first
conjectured by [Myers-Sinha, Jafferis-Klebanov-Pufu-Safdi] based
on Holography and N = 2 SUSY theories.
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Monotonicity and Asymptotics in d = 3

fuv > fir includes topological degrees of freedom, not just
dynamical ones! this is different from d = 2 (and d = 4). Are
there examples where topological dofs morph into dynamical
ones?! An exponentially large CS term could morph into O(1)
propagating dofs.

A pure U(1) gauge theory has “infinitely many” degrees of
freedom in the UV. Proof: it can flow to the topological
theory U(1)k for all k ∈ Z, and the latter have f = log k .

Localizing on a squashed sphere, S3b, one can extract exact
information about correlation functions like 〈TµνTρσ〉 in
N = 2 SCFTs on R4. Can we re-derive these results directly
by some clever analysis in flat space (maybe along the lines of
[Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees]....)?
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Monotonicity and Asymptotics in d = 3

Not all unitarity scale-invariant theories are conformal. An R gauge
theory is a counter-example. The infinitely many degrees of
freedom we associated to a free photon are related to its
nonconformality in the UV.

This counter-example to scale→conformal is special for two reasons

It is free.

On R3 it is physically indistinguishable from a free scalar in
3d. The latter is conformal. Hence, the non-conformality of a
free photon is only a “formality.”

Zohar Komargodski Overview of Recent Progress on Renormalization Group Flows



Monotonicity and Asymptotics in d = 4

The number of degrees of freedom of a CFT is defined by the Weyl
anomaly a, Tµ

µ = aE4 + ..., and for CFTuv → CFTir it satisfies
auv > air . It does not count topological dofs.

There has been a lot of recent work on the problem of
scale/conformal invariance. Let us note that, as in d = 3, there is
a simple free counter-example: the two-form gauge potential with
a noncompact gauge group.

In d = 4 concrete results about the problem of scale/conformal
invariance exist, and they explain why this counter-example has to
be regarded as a “formality.”

We will delve more deeply into the problem of scale vs conformal
invariance, especially in d = 4.

Zohar Komargodski Overview of Recent Progress on Renormalization Group Flows



Monotonicity and Asymptotics in d > 4

For d = 5 the natural conjecture is again that the finite constant
in ZS5 behaves monotonically under RG flows.

For d = 6 the natural conjecture is that the a-anomaly is
monotonic.

In both cases there is no proof, although nice progress in d = 6
was done by [Elvang-Freedman-Hung-Kiermaier-Myers-Theisen].

Not much is known about the asymptotics of RG flows, although it
is worth mentioning that some believe no nontrivial local CFTs
exist for d > 6.
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A Question

In d = 2, the free energy density, energy-momentum two-point
function, sphere partition function, all coincide and behave
monotonically.

In higher dimensions, very intuitive measures of the number of
degrees of freedom such as the free energy density (which is often
used in cosmology) are not generally monotonic. One can even
find perturbative counter-examples.

Instead, one finds unconventional quantities like f , a etc. Why do
they have to exist?
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Monotonicity & Entanglement

Consider Sd−2, and compute the EE associated to it, SEE . Then
for even d it contains the Weyl a-anomaly and for odd d it
contains the finite piece in the partition function over Sd .

It is therefore an exciting idea that perhaps EE can provide an
overarching principle that would explain monotonicity in general
QFTd .

We don’t know whether that’s going to be the case.
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Monotonicity & Entanglement

Positive

Monotonicity does remind of the second law, which is all
about entropy.

An argument for the c-theorem in d = 2 and an argument for
the f -theorem in d = 3 was given by Casini-Huerta. This is
related to the so-called strong subadditivity inequality.

It comes out naturally from holography when one studies
simple toy models for holographic RG flows [Myers-Sinha].
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Monotonicity & Entanglement

Negative

It is not clear how the EE is defined non-perturbatively (the
analytic continuation to n→ 1 may or may not exist...). One
can argue that there are no continuum counter-terms for the
finite/log piece, but it is not clear how the continuum
quantity is defined in the first place.

There are some arguments that the current line of attack
initiated by Casini-Huerta would not work for d > 3
[Liu-Mezei].
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Monotonicity & Entanglement

The c-functions constructed in d = 2,d = 3 via the EE are
non-stationary and therefore “unphysical”
[e.g. Klebanov-Nishioka-Pufu-Safdi]. To understand the
evolution at very short distances, one first needs to choose a
vacuum! By contrast, in the field-theoretic derivations of the
c ,a-theorems, one gets perfectly stationary interpolating
functions, and one can compute them in perturbation theory
around the UV.
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Asymptotics

Let us now discuss recent progress regarding the asymptotics of
QFT.
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General Comments on Theories without a Mass Scale

Suppose that
Tµ
µ = ∂νVν

for some local operator Vν . Then the theory is scale invariant and
we have the conserved current

Sµ = xνTµν − Vµ .

To prove that a unitary scale invariant theory is conformal, one
needs to show that

Tµ
µ = �L

for some local L. (Then we can improve to Tµ
µ = 0.)
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Solution for d = 2

There is a nice argument solving the problem in d = 2 [Polchinski,
1988].

d = 2 is exceptionally simple because the scaling dimension of L is
zero. So we just need to prove that in unitary scale invariant
theories

Tµ
µ = 0 .

Strategy: Show that the two-point function 〈Tµ
µ (x)Tµ

µ (0)〉 = 0 at
x 6= 0.
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Solution for d = 2

〈Tµν(q)Tρσ(−q)〉 = B(q2)q̃µq̃ν q̃ρq̃σ ,

with q̃µ = εµνq
ν . This is the most general decomposition

satisfying conservation and permutation symmetry. In a scale
invariant theory we must take by dimensional analysis

B(q2) =
1

q2
.

Then,
〈Tµ

µ (q)T ρ
ρ (−q)〉 ∼ q2 .

This is a contact term, thus, Tµ
µ = 0.
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The Difficulty of the Problem for d > 2

There is no hope to repeat an argument of this kind in d > 2
because it is not true that unitarity and scale invariance imply that
Tµ
µ = 0. Indeed, in many examples one finds a nontrivial L:

Tµν = ∂µφ∂νφ−
1

2
ηµν(∂φ)2

leads to Tµ
µ = 2−d

4 �(φ2), i.e. L = 2−d
4 φ2. This is of course a

conformal theory and Tµ
µ = 0 after an improvement.
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The Difficulty of the Problem for d > 2

Take
φ ' φ+ c , for all c

This is consistent because the set of operators where φ appears
only with derivatives is closed under the OPE. It is local because
we have the EM tensor

Tµν = ∂µφ∂νφ−
1

2
ηµν(∂φ)2 .

It is not conformal because the improvement ∼
(
∂µ∂ν − ∂2ηµν

)
φ2

is not an allowed operator.

In flat space this theory is indistinguishable from the ordinary
scalar, it has consistent separated points correlation functions,
OPE, consistent anomalies etc.
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The Difficulty of the Problem for d > 2

So this theory is not conformal, but there is no local measurement
on Rd that can distinguish it from a conformal theory.

There are no known scale invariant unitary theories which are
distinguishable on Rd from conformal theories.

Zohar Komargodski Overview of Recent Progress on Renormalization Group Flows



Perturbation theory at d = 4

In perturbation theory we have a clear list of candidates for L and
Vµ and we need to check if the equations Tµ

µ = ∂µVµ, Tµ
µ = �L

are satisfied. This has been checked very explicitly in many 4d
models [Grinstein-Fortin-Stergiou] and a beautiful general
argument (again in 4d) was offered by [Luty-Polchinski-Rattazzi]
as well as [Osborn] and [Grinstein-Fortin-Stergiou].
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Holography and SUSY

The problem also simplifies when there is a weakly-coupled
holographic dual [Nakayama]. There is some evidence that all
unitary solutions to 10d/11d Einstein equations with fluxes that
are scale invariant are also conformal invariant. If that can be
shown in some generality for d > 2 that would be fantastic.

Some simplification also takes place in SUSY theories, see for
example [Antoniadis-Buican, Zheng, Nakayama,
Fortin-Grinstein-Stergiou]
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Outline of the Argument

Idea: since we need to prove that T = �L, let us try to establish
the following necessary condition

〈VAC |Tµ
µ (p1)....Tµ

µ (pn)|Anything〉connected = 0 , p2i = 0 ,

and see where this takes us. Let us call this the “vanishing
theorem.” Of course, we assume unitarity – otherwise there are
many counter-examples, which do not obey the vanishing theorem.
Hence, the vanishing theorem is a nontrivial necessary condition.
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Outline of the Argument

Note: [Luty, Polchinski, Rattazzi] estabslihed the case of n = 2, i.e.

〈VAC |Tµ
µ (p1)Tµ

µ (p2)|Anything〉connected = 0 , p21 = p22 = 0 .
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A Proof of the Vanishing Theorem

We couple any SFT to a background metric. Then we can consider
the generating functional W [gµν ]. The UV divergences are
characterized by∫

d4x
√
g
(
Λ + aR + bR2 + cW 2

)
,

Consider metrics of the type

gµν = (1 + Ψ)2ηµν

with ∂2Ψ = 0 then neither of a, b, c contribute.
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A Proof of the Vanishing Theorem

Thus W [Ψ] is well defined up to a momentum-independent piece.

We define

An(p1, ..., p2n) =
δnW [Ψ]

δΨ(p1)δΨ(p2)...δΨ(p2n)

and we will choose all the momenta to be null, p2i = 0.
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A Proof of the Vanishing Theorem

Let us start from n = 2. We can prepare forward kinematics
p3 = −p1 and p4 = −p2. We have the dispersion relation

A4(s) =
1

π

∫
ds ′

ImA4(s ′)

s − s ′
+ subtractions , s = (p1 + p2)2 .

By dimensional analysis, ImA4 = κs2. We immediately see that
ImA4 = 0. Had it not been zero, we would have needed a
subtraction which goes like s2.

A similar argument proceeds for all the amplitudes A2n, in other
words, in forward kinematics

ImA2n = 0

.
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A Proof of the Vanishing Theorem

Now we use unitarity, more precisely, the optical theorem.

All the contributions to ImA4 are positive definite since there is
just one cut (s-channel and t-channel, depending on whether s > 0
or s < 0).
Hence,

〈Tµ
µ (p1)Tµ

µ (p2)|Anything〉 = 0 , p21 = p22 = 0
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A Proof of the Vanishing Theorem

Starting from n = 3, the situation is tougher.

There are many cuts.

Many of them are generally non-positive.
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A Proof of the Vanishing Theorem

Im =
X

p
1

p
2

p
3

X

−p
3

−p
2

−p
1

−p
3

−p
2

−p
1

+
X

X

p
1

p
2

p
3

p
1

−p
3

−p
2

−p
1

p
2

p
3

+ ....
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A Proof of the Vanishing Theorem

However, after some work one can show inductively that the
non-positive cuts are absent. Thus,

〈Tµ
µ (p1)Tµ

µ (p2)...Tµ
µ (pn)|Anything〉 = 0 , p21 = p22 = .. = p2n = 0

We have thus proved our nontrivial necessary condition.
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A Proof of the Vanishing Theorem

The fact that Tµ
µ (p1)Tµ

µ (p2)...Tµ
µ (pn) = 0 for all n on the light

cone is very suggestive. Indeed, if one could say that this product
is analytic in momentum, the vanishing on the light cone would
imply the existence of some local L such that Tµ

µ = �L, simply by
Taylor expanding around the light cone.

Let us see how to say this precisely:

Zohar Komargodski Overview of Recent Progress on Renormalization Group Flows



A Proof of the Vanishing Theorem

Consider the effective field theory coupling Ψ (the conformal factor
of the metric) to the SFT

S =

∫
d4x(∂Ψ)2 + SSFT +

1

M

∫
d4xΨTµ

µ + · · ·

where the · · · are determined by diff invariance.

To leading order in energy/M, the S-matrix for Ψ scattering into
SFT states is governed by our vanishing correlation functions
〈Tµ

µ (p1)Tµ
µ (p2)...Tµ

µ (pn)|Anything〉 = 0.
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A sufficient condition

Clearly, if the SFT is a CFT and Tµ
µ = �L, then the coupling

1
M

∫
d4xΨTµ

µ = 1
M

∫
d4x�ΨL vanishes on-shell and can be

removed by a local change of variables, consistent with the trivial
S-matrix.

But we can also argue for the converse: a trivial S-matrix means
the theories are decoupled. Hence, there is a local L such that
Tµ
µ = �L.
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An S-matrix Digression

Let us take two theories A and B. Suppose there is a local change
of variables connecting A and B. Then SA = SB .

Does it follow from HA ' HB and SA ' SB that there is a local
change of variables connecting A and B? The answer is negative.
For example, the kink-field duality, electric-magnetic duality...

However, here we just have a small perturbation of an existing
model with trivial S-matrix. If such a small perturbation does not
affect the S-matrix, then the perturbation must vanish on-shell and
the change of variables needs to be local.

It is like saying that the S-matrix characterizes the physical theory
modulo topological degrees of freedom that don’t play any role in
R4.
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A sufficient condition

Let us explain how the 2-form fits into this. We cannot solve
Tµ
µ = �L. However, since the theory is physically indistinguishable

in R4 from a conformal theory, the S-matrix is insensitive to this
subtle zero mode that is absent. So the vanishing theorem is
obeyed.
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Conclusion

Our precise conclusion is that unitary scale invariant theories are
either conformal or indistinguishable from conformal theories on
R4. This means that, for all practical purposes, scale invariance
and unitarity imply conformality.

So when Rob said that scale invariance “more or less” implies
conformal invariance in four dimensions, this is presumably what
he meant.
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A List of a Few Tangible Challenges

Perturbative proof that in d = 3 scale invariance implies
conformal invariance in CS+matter theories.

f > 0 (or “Z” < 1). If this is to measure dofs, better be true.

Explore 3d RG flows and check whether we really need to
assign nonzero number of dofs to topological sectors.

In N = 2 SUSY theories various quantities other than a seem
always monotonic (e.g. c). Why?

Hofman-Maldacena showed that 1
3 ≤

a
c ≤

31
18 . Examples show

that all interacting theories sit in a strictly smaller window.
Why?

A connection between scale/conformal invariance and EE?

A holographic understanding why scale invariance implies
conformal invariance.
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Discussion: Renormalization Group For non-Equilibrium
Systems?

In thermal equilibrium one pumps energy and energy gets
dissipated via the fluctuation-dissipation theorem. There is
equilibrium at any given frequency ω. The RG formalism applies
and leads to many celebrated results.

Imagine: we pump energy at some scale ωpump but we arrange the
system to dissipate the energy only at some ωdiss .

In 2d turbulence we have ωpump � ωdiss . The energy is
inserted by some small scale stirring and it is dissipated by
very large eddies. This is commonplace in the atmosphere.

In 3d turbulence we have ωpump � ωdiss . We stir on a very
large scale and the eddies become smaller and smaller until
they are tiny and dissipate.

This is extreme non-equilibrium.
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Discussion: Renormalization Group For non-Equilibrium
Systems?
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Discussion: Renormalization Group For non-Equilibrium
Systems?

In both cases we have a small number, either ωpump/ωdiss or its
inverse, such that one can hope for universality.The energy scales
in between ωpump and ωdiss are called the “inertial range.”

The inertial range displays scale invariance of a sort (perhaps
spontaneously broken) and great degree of universality.

For example, in 2d, one finds critical exponents that are completely
independent of the details of the stirring force at short distance –
i.e. one forgets about the UV!!

In 3d there is apparently a slightly lesser degree of universality, and
also the flow of information is from the IR to the UV...
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