—

Quantum Flelds

beyond Perturbation Tbeory
KITP, January 27 — 31, 4

R. Myers



Zamolodchikov c-theorem (1986):

 renormalization-group (RG) flows can seen as one-parameter
motion d D
=0 g
in the space of (renormalized) coupling constants{g’, i =1,2,3,---}
with beta-functions as “velocities”

e for unitary, Lorentz-inv. QFT’s in two dimensions, there exists
a positive-definite real function of the coupling constantsC(g):.

. . d
1. monotonically decreasing along flows: EC(Q) <0

2. “stationary” at fixed points ¢' = (¢%)" :

3. at fixed points, it equals central charge of corresponding CFT
C(g*) = c



Zamolodchikov's C-function adds a dimension to RG flows:

BECOMES



Zamolodchikov's C-function adds a dimension to RG flows:

Simple consequence for any RG flow in d=2: Cyy > Cinp



(Casini & Huerta ‘04)
Entanglement and c-theorem: Part 1

* c-theorem for d=2 RG flows can be established using unitarity,
Lorentz invariance and strong subadditivity inequality:

S(XUYUZ)-SXUY)—-SYUzZ)+SY)<0

« for d=2 CFT: S(¢) = ° log(£/6) + ag (Holzhey, Larsen & Wilczek)
3 (Calabrese & Cardy)

- define: C(0) = 30 0pS({) —— Cepr(f) =c

e with SSA and limit 6t — 0
—> 0,C(¢) <0

» hence C'(£) decreases monotonically and Cyv > Cig
* note: no simple map between Zamo. and entropic C-functions



Entanglement and c-theorem: Part 2 (RM & Sinha “10)

* next connection to entanglement emerged for c-theorems In
higher dimensions using holography

* first recall standard (Girardello, Petrini, Porrati and Zaffaroni, “98)
holographic RG flows (Freedman, Gubser, Pilch & Warner, "99)
1 d+1 — . } 2
it [ 4 =g | R 500 - V(o)
* Imagine potential has stationary points giving negative A\
: d(d—1
V(@i,cr) - (L2 )05?

* hRG flow: solution starts at one stationary point at large radius
and ends at another at small radius — connects CFT,,, to CFT

>
¢1,c7' q5

I =




: _ (Girardello, Petrini, Porrati and Zaffaroni, "98)
Holographlc c-theorems: (Freedman, Gubser, Pilch & Warner, "99)

. consider metric: ds? = e2A (—dt? + da? + -+ da?_ ) + dr?

+ at stationary points, AdS; vacuum: A(r) =r/L with L= L/a;

d/2
« for hRG flow solutions, define: ay(r) = " "
I'(d/2) (tpA'(r))
_ d/2 d/2
() = e ) = T (T - T7) 20
T (d/2) (5 Ar(r)d T (d/2) 65 Al (r)d
Einstein equations J null energy conditionJ

 at stationary points, a(r) — a* = 792 /T'(d/2) (L/¢p)*~' and so
[a?ﬂ/ > G?R]

» using holographic trace anomaly: a™ o< central charges
(e.g., Henningson & Skenderis)

 above for even d; what about odd d?
« all central charges equal for Einstein gravity



“Improved” Holographic RG Flows: (RM & Sinha "10)

 add higher curvature interactions to bulk gravity action

— provides holographic field theories with, eg, a # ¢
so that we can clearly distinguish evidence of a-theorem

(Nojiri & Odintsov; Blau, Narain & Gava)

* construct “toy models” with fixed set of higher curvature terms
(where we can maintain control of calculations)

What about the swampland?

* constrain gravitational couplings with consistency tests
(positive fluxes; causality; unitarity) and use best judgement

e ultimately one needs to fully develop string theory for
Interesting holographic backgrounds!

* “If certain general characteristics are true for all CFT’s, then
holographic CFT’s will exhibit the same features”



_ (RM & Robinsion; RM, Paulos & Sinha)
Toy model:

2

D O
I = d*z /=g —(( :} X
2£d1/ ' [ ST R M
OL curvature
B 8(2d — 1 . Ziin squared
(d—5)(d 2)(3d? — 21d + 4)

curvature
cubed

- three dimensionless couplings: L/lp, A\, u

» for holographic RG flows with general d, gravitational eom
and null energy condition yield

(GZ)UV > (a’::ki)IR

/2 1 d _
where a); = ati 2Ld : (1 _20d- ))\foo _3(d 1)Mffo>
D(d/2) fo7 05 -3

With a? — foo + Af2 + uf3 =0



What is a; ?27?
d/2Ld—1 (1 2(d )
(d/2) i Ed 1 d— 3

B(dd_—51) , f&)

with a? — foo + Af2 + uf3 =0

foo_

a; =

ag is NOT Cr, coefficient of leading singularity in

(Tup(@) Tea0)) = 55 Top )

. ay; is NOT Cs, coefficient in entropy density: s = Cg 7%



What is a; ??

d/2Ld—1 2(d — ) 3(d—1)
(d/2)f =h Ed 1 (1_ d—3 Afoo = d—>5 ”foo>

a; =

with o2 — foo + Af2 4 uf3 =0
* trace anomaly for CFT's with even d: (Deser & Schwimmer)

(T,1) = Z B;(Weyl invariant); — 2(—)% @Euler density)q

« can verify that above precisely reproduces central charge
[ai=4 |

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava,;
Imbimbo, Schwimmer, Theisen & Yankielowicz)

» holographic c-theorem: (ay);v > (ag);p

> agrees with Cardy’s conjecture (1988)
What about odd d?



(Casini, Huerta & RM; RM & Sinha)
Holographic Entanglement Entropy:

« S for CFT in d-dim. flat space and choose S92 with radius R

- conformal mapping relate to thermal entropy on H = R x H%™!
with = ~ 1/R? and T=1/21TR

 holographic dictionary: thermal bath in CFT = black hole in AdS

SEE — Sthe?“mal — Shorizon

» desired “black hole” is a hyperbolic foliation of AdS

* bulk coordinate transformation implements
desired conformal transformation on boundary

sl

 apply Wald’s formula (for any gravity theory) for horizon entropy

universal contributions:
d_ *
S = ...+ (=)2"'4a} log(2R/5) + --- forevend

d—1

ce 4 (_)7271'@2 + ... forodd d



Entropic C-theorem conjecture: (RM & Sinha)

* identify central charge with universal contribution in entanglement
entropy of ground state of CFT across sphere S92 of radius R:

i (—)%_1 4a} log(2R/J) for even d

S’u,nifu —

=g

d—1

(_)T 2 afz for odd d

—

« for RG flows connecting two fixed points

(ag)vy = (ag)rr

—> unified framework to consider c-theorem for odd or even d

—> connect to Cardy’s conjecture: a;; = A for any CFT in even d



F-th eorem: (Jafferis, Klebanov, Pufu & Safdi)

« examine partition function for broad classes of 3-dimensional
guantum field theories on three-sphere (SUSY gauge theories,
perturbed CFT's & O(N) models)

* in all examples, F=—log Z(S®)>0 and decreases along RG flows
—> conjecture: Fyy > Frp

« also naturally generalizes to higher odd d

» coincides with entropic c-theorem (Casini, Huerta & RM)

» focusing on renormalized or universal contributions, eg,

 generalizes to general odd d:
d+1

Fy = —log Z‘finite = —Suniv = (—) 2 2may.



Casini & Huerta ‘12

Entanglement proof of F-theorem: (Casini & Huerta 12)

* F-theorem for d=3 RG flows established using unitarity, Lorentz
Invariance and strong subadditivity

38X 2 S(UX,) + S(Upgy (X3 N X)) + S(Upig (X3 N X 0 X)) + .+ S(0:X)

« geometry more complex than d=2: consider many circles
Intersecting on null cone *

- define: C(R) = RS’(R) — S(R)
« ford=3 CFT:S(R) = co R — 2ma3 —— Cyupr(R) = 27as
» with SSA and “continuum” limit —— 9zrC(R) < 0

- hence C'(R) decreases monotonically and [a3]uv > [a3]ir



Why is constant term in Sg¢ universal? (Schwimmer & Theisen)
(—)%_1 4ay log(2R/§) foreven d

Su'n,iv — P

(=) 2 2ma for odd d

—




Why is constant term in S universal? (Schwimmer & Theisen)

i (—)%_1 4ay log(2R/§) foreven d
Suniv — = a1 )
8 (=) % 2maj for odd d
“Renormalized” Entanglement Entropy: (Liu & Mezei)

* divergences determined by local geometry of entangling surface

with covariant regulator, eqg,
Rd—Q Rd—4 g1
S = CO(MZ6) §d—2 T CQ(N’Z(S) §d—4 T+ ot (_)T 2m ad(ul5) + O(d/R)

e can isolate finite term with appropriate manipulations, eg,
d=3: S3(R) = RS'(R) — S(R) <«—— c-function of

Casini & Huert
d=4: S4(R) — RZS”(R) _ RS’(R) asini uerta

- unfortunately, holographic experiments indicate S4(R) are not
good C-functions for d>3

« approach demands special class of regulators: “covariant”



* if a3 Is physical, we should be able to use any regularization
which defines the continuum QFT

d=3: S(R):%OR—ZWCL;),

* lattice regulator?circumference
always uncertain to O(9)

—> a3 always polluted by UV

™




« if as is physical, we should be able to use any regularization
which defines the continuum QFT

d=3: S(R):%OR—ZWCLQ,

« lattice regulator: circumference
always uncertain to O(9)

—> a3 always polluted by UV
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(Casini, Huerta, RM & Yale)
“Renormalized” Entanglement Entropy 2:

* Sge IS UV divergent, so must take care in defining universal term

« mutual information is intrinsically finite and so offers “universal’

regulator for Sg¢ or alternative definition of az / /////////////

I(A, B) = S(A)+ S(B) — S(AU B)

s with Ry o :Ri% and R>¢> 6,

I(A,B) =2 (g—l—b)R—éhmg—i—O(s)

| \\\\\\\\\\\\\
\

{).EZI;II.I.IIIIII

* choice ensures that ag Is not
polluted by UV fixed point

- IHJR/éE:_‘i



(Casini, Huerta, RM & Yale)
“Renormalized” Entanglement Entropy 2:

* Sge IS UV divergent, so must take care in defining universal term

« mutual information is intrinsically finite and so offers alternative

regulator for Sg¢ or alternative definition of az / /////////////

I(A,B) =S5(A)+ S(B) - S(AuUB)
* with RLQ:R:IZE and R>¢e>9,
4

\\\\

2
I(A,B):2(§+b)R—47ra3—|—O(€) / //////// /

» choice ensures that ag is not polluted by UV fixed point

\\\\\\\\

* naturally extends to defining a4 in higher odd dimensions

» for d=3, entropic proof of F-theorem can be written in terms
of mutual information



Counting degrees of freedom?:

« Susskind & Witten: density of degrees of freedom in N=4 SYM
connected to area of holographic screen at large R in AdS.

V3 Nz N A(R) cut-off scale defined

— 2 ¥ R
3 c 3 e Lo v
) QP by regulator radius: 5= 12

e given higher curvature bulk action, natural extension is to
evaluate Wald entropy on holographic screen at large R

OLyulk
aRabcd

S = —27Tj£dd_133 h e

« straightforward evaluate “entropy” density

for any covariant action: Loy = Louk (9°° B cay Ve R ey -+ -



(Komargodski & Schwimmer; see also: Luty, Polchinski & Rattazzi)

a-theorem and Dilaton Effective Action

. , (Schwimmer
» analyze RG flow as “broken conformal symmetry & Theisen)

* couple theory to “dilaton” (conformal compensator) and organize

—27

effective action interms of g,, = ¢ “" g,

diffeo X Weyl invariant: g, — €*°g., T—T+o0o
* follow effective dilaton action to IR fixed point, eg,
Sanomaly = —0a / d'z\/=g <7—E1 + 4(R" — %g“"’]?_)(’),,;”&ﬁ" —4(0r)’ 07+ 2(07)‘)
* with g — m, only contribution to 4pt amplitude with null dilatons:
Sanomaly = 20a / d*x (87')4

» dispersion relation plus optical theorem demand: da > 0

oa = aAyyv — arRr:ensures UV & IR anomalies match




Conclusions and Questions:

* Is there entropic proof of c-theorem in higher dimensions?

—> need a new idea? \
)
higher dim. intersections Iead/
to subleading divergences .
which trivialize SSA inequality N

* hybrid approach? (Solodukhin): needs work

 can c-theorems be proved for higher dimensions? eg, d=5 or 6

—> again, entropic approach needs a new idea

—> dilaton-effective-action approach requires refinement for d=6
(Elvang, Freedman, Hung, Kiermaier, RM & Theisen; Elvang & Olson)



Conclusions and Questions:

 how much of Zamolodchikov’s structure for d=2 RG flows
extends higher dimensions?

—— d=3 entropic C-function not always stationary at fixed points
(Klebanov, Nishioka, Pufu & Safdi)

—> same already observed for d=2; special case or generic?
need a better C-function?

* does scale invariance imply conformal invariance beyond d=27?

> “more or less” in d=4 (Luty, Polchinski & Rattazzi,
Dymarsky, Komargodski, Schwimmer & Theisen)

» further lessons for RG flows and entanglement from holography?
—> translation of “null energy condition” to boundary theory?

« what can entanglement entropy/quantum information really say
about RG flows, holography or nonperturbative QFT?



