The local RG

\&
 the Structure of 4 D RG Flows

Riccardo Rattazzi

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

conceivable RG flows

but all known examples asymptote a CFT

How do we understand that?

Two approaches

- Local RG: Wess-Zumino consistency conditions for Weyl anomaly off-criticality

Jack, Osborn 1990 Osborn 1991

- Dispersion relations for $\langle T \ldots T\rangle$

Optical theorem for scattering amplitudes of background dilaton

Komargodski and Schwimmer 201 II

Two approaches

- Local RG: Wess-Zumino consistency conditions for Weyl anomaly off-criticality

Jack, Osborn 1990 Osborn 1991

- Dispersion relations for $\langle T \ldots T\rangle$

Optical theorem for scattering amplitudes of background dilaton

Komargodski and Schwimmer 2011

Anomalous flows are ruled out in perturbation theory
Luty, Polchinski, RR 2012
Fortin, Grinstein, Stergiou, 2012

Two approaches

- Local RG: Wess-Zumino consistency conditions for Weyl anomaly off-criticality

Jack, Osborn 1990 Osborn 1991

- Dispersion relations for $\langle T \ldots T\rangle$

Optical theorem for scattering amplitudes of background dilaton

Komargodski and Schwimmer 2011

Anomalous flows are ruled out in perturbation theory
Luty, Polchinski, RR 20 I2
Fortin, Grinstein, Stergiou, 2012

Goal: study RG flow in a domain around a fixed point

- $\mathcal{L}=\mathcal{L}_{C F T}+\sum_{I} \lambda^{I} \mathcal{O}_{I}$
- CFT, not necessarily free

β-function and anomalous dimensions are 'small'

RG flow

$$
T \equiv T_{\mu}^{\mu}
$$

Goal: systematically study $\left\langle T\left(x_{1}\right) \ldots T\left(x_{n}\right)\right\rangle$ including contact terms
Ex.:

$$
T\left(x_{1}\right) T\left(x_{n}\right)=\beta^{I} \mathcal{O}_{I}\left(x_{1}\right) \beta^{J} \mathcal{O}_{J}\left(x_{2}\right)+\delta\left(x_{1}-x_{2}\right)
$$

Effective action for the sources of composite operators

$$
\left.\begin{array}{rl}
T_{\mu \nu} & \leftrightarrow g_{\mu \nu}(x) \\
\mathcal{O}_{I} & \leftrightarrow \lambda_{I}(x) \\
J_{\mu}^{A} & \leftrightarrow A_{\mu}^{A}(x) \\
\mathcal{O}_{a} & \leftrightarrow m_{a}(x)
\end{array}\right\} \quad \equiv \mathcal{J}
$$

$$
W \equiv W\left[g_{\mu \nu}, \lambda^{I}, A_{\mu}^{A}, m_{a}, \ldots\right]
$$

$$
T_{\mu \nu}=\frac{2}{\sqrt{g}} \frac{\delta}{\delta g^{\mu \nu}} W \quad \mathcal{O}_{I}(x)=\frac{1}{\sqrt{g}} \frac{\delta}{\delta \lambda_{I}(x)} W
$$

etc ...

Ward identity for Weyl symmetry: local RG equation

Osborn 1991

$$
\begin{aligned}
\int d^{4} x\left\{\sigma (x) \left[2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}-\beta^{I} \frac{\delta}{\delta \lambda^{I}(x)}-\rho_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}(x)}\right.\right. & \left.+\tilde{m}^{a} \frac{\delta}{\delta m^{a}(x)}\right]+ \\
\left.+\nabla_{\mu} \sigma(x)\left[\theta_{I}^{a} \nabla^{\mu} \lambda^{I} \frac{\delta}{\delta m^{a}(x)}-S^{A} \frac{\delta}{\delta A_{\mu}^{A}(x)}\right]-\square \sigma(x) t^{a} \frac{\delta}{\delta m^{a}(x)}\right\} W & = \\
& =\int d^{4} x \mathcal{A}_{\sigma}(x)
\end{aligned}
$$

- $\quad 2 \tilde{m}^{a}=2 m^{b}\left(\delta_{b}^{a}+\gamma_{b}^{a}\right)+\frac{1}{3} \eta^{a} R+d_{I}^{a} \square \lambda^{I}+\frac{1}{2} \epsilon_{I J}^{a} \nabla_{\mu} \lambda^{I} \nabla^{\mu} \lambda^{J}$
- $\mathcal{A}_{\sigma}(x)=$ all possible dim 4 covariant terms

Redundancies and scheme choices

- source reparametrization $\mathcal{J} \rightarrow f(\mathcal{J}) \quad$ Ex.: $m^{a} \rightarrow m^{a}+f_{I}^{a} \square \lambda^{I}$

$$
\mathcal{O}_{I} \rightarrow \mathcal{O}_{I}-f_{I}^{a} \square \mathcal{O}_{G}
$$

\star combine global symmetry $\Delta_{\sigma} \rightarrow \Delta_{\sigma}+\Delta^{\text {Flavor }}$
\star add finite local functional $W[\mathcal{J}] \rightarrow W[\mathcal{J}]+F_{\text {loc }}[\mathcal{J}]$

Redundancies and scheme choices

\downarrow source reparametrization $\quad \mathcal{J} \rightarrow f(\mathcal{J}) \quad$ Ex.: $m^{a} \rightarrow m^{a}+f_{I}^{a} \square \lambda^{I}$

$$
\mathcal{O}_{I} \rightarrow \mathcal{O}_{I}-f_{I}^{a} \square \mathcal{O}_{G}
$$

\star combine global symmetry $\Delta_{\sigma} \rightarrow \Delta_{\sigma}+\Delta^{\text {Flavor }}$
\star add finite local functional $W[\mathcal{J}] \rightarrow W[\mathcal{J}]+F_{\text {loc }}[\mathcal{J}]$

$$
\begin{aligned}
\Delta_{\sigma} \equiv & \sigma(x)\left[2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}-\beta^{I} \frac{\delta}{\delta \lambda^{I}(x)}-\rho_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}(x)}+\tilde{m}^{a} \frac{\delta}{\delta m^{a}(x)}\right]+ \\
& +\nabla_{\mu} \sigma(x)\left[\theta_{I}^{a} \nabla^{\mu} \lambda^{I} \frac{\delta}{\delta m^{a}(x)}-S^{A} \frac{\delta}{\delta A_{\mu}^{A}(x)}\right]-\square \sigma(x) t^{a} \frac{\delta}{\delta m^{a}(x)}
\end{aligned}
$$

Redundancies and scheme choices

\downarrow source reparametrization $\quad \mathcal{J} \rightarrow f(\mathcal{J}) \quad$ Ex.: $m^{a} \rightarrow m^{a}+f_{I}^{a} \square \lambda^{I}$

$$
\mathcal{O}_{I} \rightarrow \mathcal{O}_{I}-f_{I}^{a} \square \mathcal{O}_{G}
$$

\star combine global symmetry $\Delta_{\sigma} \rightarrow \Delta_{\sigma}+\Delta^{\text {Flavor }}$
\star add finite local functional $W[\mathcal{J}] \rightarrow W[\mathcal{J}]+F_{\text {loc }}[\mathcal{J}]$

$$
\begin{aligned}
\Delta_{\sigma} \equiv & \sigma(x)\left[2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}-\beta^{I} \frac{\delta}{\delta \lambda^{I}(x)}-\rho_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}(x)}+\tilde{m}^{a} \frac{\delta}{\delta m^{a}(x)}\right]+ \\
& +\nabla_{\mu} \sigma(x)\left[\theta_{I}^{a} \nabla^{\mu} \lambda \frac{\delta}{\delta m^{a}(x)}-S^{A} \frac{\delta}{\delta A_{\mu}^{A}(x)}\right]-\square \sigma(x) t^{a} \frac{\delta}{\delta m^{a}(x)}
\end{aligned}
$$

Redundancies and scheme choices

\downarrow source reparametrization $\quad \mathcal{J} \rightarrow f(\mathcal{J}) \quad$ Ex.: $m^{a} \rightarrow m^{a}+f_{I}^{a} \square \lambda^{I}$

$$
\mathcal{O}_{I} \rightarrow \mathcal{O}_{I}-f_{I}^{a} \square \mathcal{O}_{G}
$$

\star combine global symmetry $\Delta_{\sigma} \rightarrow \Delta_{\sigma}+\Delta^{\text {Flavor }}$
\star add finite local functional $W[\mathcal{J}] \rightarrow W[\mathcal{J}]+F_{\text {loc }}[\mathcal{J}]$

$$
\begin{aligned}
\Delta_{\sigma} \equiv & \sigma(x)\left[2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}-B^{I} \frac{\delta}{\delta \lambda^{I}(x)}-P_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}(x)}+\tilde{M}^{a} \frac{\delta}{\delta m^{a}(x)}\right]+ \\
& +\nabla_{\mu} \sigma(x)\left[\theta_{I}^{a} \nabla^{\mu} \lambda \frac{\delta}{\delta m^{a}(x)}-S^{A} \frac{\delta}{\delta A_{\mu}^{A}(x)}\right]-\square \sigma(x) t^{a} \frac{\delta}{\delta m^{a}(x)}
\end{aligned}
$$

Consistency conditions

$$
\left[\Delta_{\sigma_{1}}, \Delta_{\sigma_{2}}\right]=0
$$

I. On coefficients in Δ_{σ}

$$
\Delta_{\sigma}=\sigma(x)\left[2 g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}(x)}-B^{I} \frac{\delta}{\delta \lambda^{I}(x)}-P_{I}^{A} \nabla_{\mu} \lambda^{I} \frac{\delta}{\delta A_{\mu}^{A}(x)}+\tilde{M}^{a} \frac{\delta}{\delta m^{a}(x)}\right]
$$

- $\frac{\delta}{\delta A_{\mu}^{A}}$

$$
B^{I} P_{I}^{A}=0
$$

$$
T(x) T(y)=\cdots+\delta^{4}(x-y) B^{I} P_{I}^{A} \partial^{\mu} J_{A \mu}
$$

- $\frac{\delta}{\delta m^{a}}$
similar story
II. genuine WZ condition: $\quad \Delta_{\sigma_{2}} \int \mathcal{A}_{\sigma_{1}}-\Delta_{\sigma_{1}} \int \mathcal{A}_{\sigma_{2}}=0$
II. genuine WZ condition: $\quad \Delta_{\sigma_{2}} \int \mathcal{A}_{\sigma_{1}}-\Delta_{\sigma_{1}} \int \mathcal{A}_{\sigma_{2}}=0$

$$
\begin{align*}
\frac{1}{\sqrt{-g}} \sigma \mathcal{A}= & \sigma\left(\beta_{a} W^{2}+\beta_{b} E_{4}+\frac{1}{9} \beta_{c} R^{2}\right)-\nabla^{2} \sigma\left(\frac{1}{3} d R\right) \\
& +\sigma\left(\frac{1}{3} \chi_{I}^{e} \nabla_{\mu} \lambda^{I} \nabla^{\mu} R+\frac{1}{6} \chi_{I J}^{f} \nabla_{\mu} \lambda^{I} \nabla^{\mu} \lambda^{J} R+\frac{1}{2} \chi_{I J}^{g} G^{\mu \nu} \nabla_{\mu} \lambda^{I} \nabla_{\nu} \lambda^{J}\right. \\
& +\frac{1}{2} \chi_{I J}^{a} \nabla^{2} \lambda^{I} \nabla^{2} \lambda^{J}+\frac{1}{2} \chi_{I J K}^{b} \nabla_{\mu} \lambda^{I} \nabla^{\mu} \lambda^{J} \nabla^{2} \lambda^{K}+\frac{1}{4} \chi_{I J K L}^{c} \nabla_{\mu} \lambda^{I} \nabla^{\mu} \lambda^{J} \nabla_{\nu} \lambda^{K} \nabla^{\nu} \lambda^{L} \\
& +\nabla^{\mu} \sigma\left(G_{\mu \nu} w_{I} \nabla^{\nu} \lambda^{I}+\frac{1}{3} R Y_{I} \nabla_{\mu} \lambda^{I}+S_{I J} \nabla_{\mu} \lambda^{I} \nabla^{2} \lambda^{J}+\frac{1}{2} T_{I J K} \nabla_{\nu} \lambda^{I} \nabla^{\nu} \lambda^{J} \nabla_{\mu} \lambda^{K}\right) \\
& -\nabla^{2} \sigma\left(U_{I} \nabla^{2} \lambda^{I}+\frac{1}{2} V_{I J} \nabla_{\nu} \lambda^{I} \nabla^{\nu} \lambda^{J}\right) \\
+ & \sigma\left(\frac{1}{2} p_{a b} \hat{m}^{a} \hat{m}^{b}+\hat{m}^{a}\left(\frac{1}{3} q_{a} R+r_{a I} \nabla^{2} \lambda^{I}+\frac{1}{2} s_{a I J} \nabla_{\mu} \lambda^{I} \nabla^{\mu} \lambda^{J}\right)\right) \\
& +\nabla_{\mu} \sigma\left(\hat{m}^{a} j_{a I} \nabla^{\mu} \lambda^{I}\right)-\nabla^{2} \sigma\left(\hat{m}^{a} k_{a}\right) \\
& +\sigma\left(\frac{1}{4} \kappa_{A B} F_{\mu \nu}^{A} F^{B \mu \nu}+\frac{1}{2} \zeta_{A I J} F_{\mu \nu}^{A} \nabla^{\mu} \lambda^{I} \nabla^{\nu} \lambda^{J}\right)+\nabla^{\mu} \sigma\left(\eta_{A I} F_{\mu \nu}^{A} \nabla^{\nu} \lambda^{I}\right) \tag{2.49}
\end{align*}
$$

Io differential constraints involving 25 tensorial coefficients

all but a few constraints can be "solved"

$$
\begin{aligned}
& \frac{1}{\sqrt{g}} \sigma \mathcal{A}_{R^{2}}=\sigma\left(\frac{1}{2} b_{a b} \Pi^{a} \Pi^{b}+\frac{1}{2} b_{a I J} \Pi^{a} \Pi^{I J}+\frac{1}{4} b_{I J K L} \Pi^{I J} \Pi^{K L}\right) \\
& \Pi^{I J}=\nabla_{\mu} \lambda^{I} \nabla^{\mu} \lambda^{J}-B^{(I} \Lambda^{J)} \\
& \Pi^{a}=m^{a}-\frac{1}{6} t^{a} R(g)-\theta_{I}^{a} \Lambda^{I} \\
& \\
& \delta_{\sigma} \Pi^{I J}=\sigma\left(\square \lambda^{J}+\frac{1}{6} B^{J} R(g)\right) \\
&
\end{aligned}
$$

absence of derivative terms: consistency is manifest

$$
\begin{aligned}
& \frac{1}{\sqrt{g}} \sigma \mathcal{A}_{R^{2}}=\sigma\left(\frac{1}{2} b_{a b} \Pi^{a} \Pi^{b}+\frac{1}{2} b_{a I J} \Pi^{a} \Pi^{I J}+\frac{1}{4} b_{I J K L} \Pi^{I J} \Pi^{K L}\right) \\
& \Pi^{I J}=\nabla_{\mu} \lambda^{I} \nabla^{\mu} \lambda^{J}-B^{(I} \Lambda^{J)} \\
& \Pi^{a}=m^{a}-\frac{1}{6} t^{a} R(g)-\theta_{I}^{a} \Lambda^{I} \\
& \Lambda^{J} \propto\left(\square \lambda^{J}+\frac{1}{6} B^{J} R(g)\right) \\
& \delta_{\sigma} \Pi^{I J}=\sigma(\ldots)+\nabla_{\mu} \sigma(\ldots)+\nabla^{2} \sigma(\ldots)
\end{aligned}
$$

absence of derivative terms: consistency is manifest

$$
\frac{1}{\sqrt{g}} \sigma \mathcal{A}_{R^{2}}=\sigma\left(\frac{1}{2} b_{a b} \Pi^{a} \Pi^{b}+\frac{1}{2} b_{a I J} \Pi^{a} \Pi^{I J}+\frac{1}{4} b_{I J K L} \Pi^{I J} \Pi^{K L}\right)
$$

$$
\Pi^{I J}=\nabla_{\mu} \lambda^{I} \nabla^{\mu} \lambda^{J}-B^{(I} \Lambda^{J)} \Lambda^{J} \propto\left(\square \lambda^{J}+\frac{1}{6} B^{J} R(g)\right)
$$

$$
\Pi^{a}=m^{a}-\frac{1}{6} t^{a} R(g)-\theta_{I}^{a} \Lambda^{I}
$$

$$
\begin{aligned}
\Delta_{\sigma} \Pi^{I J} & =\sigma\left[2 \Pi^{I J}-\gamma_{K}^{I} \Pi^{K J}-\gamma_{K}^{J} \Pi^{I K}+\gamma_{K L}^{I J} \Pi^{K L}\right] \\
\Delta_{\sigma} \Pi^{a} & =\sigma\left[2 \Pi^{a}-\gamma_{b}^{a} \Pi^{b}+\gamma_{I J}^{a} \Pi^{I J}\right]
\end{aligned}
$$

absence of derivative terms: consistency is manifest

Nontrivial anomalies

$$
\left.\begin{array}{c}
\frac{1}{\sqrt{g}} \mathcal{A}_{E_{4}}=\sigma a E_{4}+\sigma \frac{1}{2} \chi_{I J} G_{\mu \nu} \nabla^{\mu} \lambda^{I} \nabla^{\nu} \lambda^{J}+\nabla^{\mu} \sigma w_{I} G_{\mu \nu} \nabla^{\nu} \lambda^{I}+\ldots \\
\frac{1}{\sqrt{g}} \mathcal{A}_{F^{2}}=\sigma \frac{1}{4} \kappa_{A B} F_{\mu \nu}^{A} F^{B \mu \nu}+\sigma \frac{1}{2} \zeta_{A I J} F_{\mu \nu}^{A} \nabla^{\mu} \lambda^{I} \nabla^{\nu} \lambda^{J}+\nabla^{\mu} \sigma \eta_{A I} F_{\mu \nu}^{A} \nabla^{\nu} \lambda^{I}+ \\
\mathcal{L}\left[w_{I}\right] \\
\mathcal{L}\left[\eta_{A I}\right] \\
=-8 \partial_{I} a+\chi_{I J} B^{J} \\
0
\end{array} \begin{array}{rl}
& =\eta_{A B} P_{I}^{B}+\zeta_{A I J} B^{J}+\chi_{I J}\left(T_{A} \lambda\right)^{J} \\
0
\end{array}\right]
$$

Gradient flow equation

$$
\tilde{a} \equiv a+\frac{1}{8} w_{I} B^{I}
$$

$$
8 \partial_{I} \tilde{a}=\left(\chi_{I J}+\partial_{I} w_{J}-\partial_{J} w_{I}+P_{I}^{A} \eta_{A J}\right) B^{J}
$$

Jack,Osborn 2013

- non-trivial constraint on perturbative expansion of B^{I}
- at fixed points $\tilde{a}(\lambda)$ is stationary
- along line of fixed points $\tilde{a}=a=$ const

$$
8 \mu \frac{d \tilde{a}}{d \mu} \equiv 8 B^{I} \partial_{I} \tilde{a}=\chi_{I J} B^{I} B^{J}
$$

$$
\left\langle\mathcal{O}_{I}(x) \mathcal{O}_{J}(0)\right\rangle=\frac{\chi_{I J}}{x^{8}}+O(\partial B, B) \quad \text { by unitarity } \quad \chi_{I J}>0
$$

$$
8 \mu \frac{d \tilde{a}}{d \mu}=\chi_{I J} B^{I} B^{J} \geq 0
$$

$$
\tilde{a}\left(\lambda\left(\mu_{1}\right)\right)-\tilde{a}\left(\lambda\left(\mu_{2}\right)\right)=\frac{1}{8} \int_{\mu_{1}}^{\mu_{2}} \chi_{I J} B^{I} B^{J} d \ln \mu
$$

since \tilde{a} is finite the only possible asymptotics must satisfy $B^{I}=0$

CFT, free or interacting, is the only possible asymptotics

scheme dependence

$$
W \rightarrow W+\frac{c_{I J}}{2} \sqrt{g} G^{\mu \nu} \nabla_{\mu} \lambda^{I} \nabla_{\nu} \lambda^{J}
$$

$$
\tilde{a} \rightarrow \tilde{a}+B^{I} B^{J} c_{I J} \quad \chi_{I J}^{g} \rightarrow \chi_{I J}^{g}+\mathcal{L}\left(c_{I J}\right)
$$

It would be desirable to have a statement based on physical quantities

The other perspective:

the dilaton effective action

- dilaton background $\quad g_{\mu \nu}=\Omega^{2}(x) \eta_{\mu \nu}$

$$
\nabla_{\mu} \lambda^{I}=m^{a}=A_{\nu}^{A}=0
$$

- extra UV divergences on curved background : Ex.: $\quad R(g)^{2} \quad R(g) \phi^{2}$

$$
\mu \frac{d}{d \mu} W[\Omega] \neq 0
$$

- 'on-shell' dilaton : $\quad R\left(\Omega^{2} \eta_{\mu \nu}\right)=0 \quad \longleftrightarrow \square \Omega=0$

$$
\left.\mu \frac{d}{d \mu} W[\Omega]\right|_{\square}=0 \quad \text { 'on-shell' amplitudes }
$$

forward amplitude

$$
\mathcal{M}(s)=\left.\frac{\delta}{\delta \Omega\left(p_{1}\right)} \frac{\delta}{\delta \Omega\left(p_{2}\right)} \frac{\delta}{\delta \Omega\left(-p_{1}\right)} \frac{\delta}{\delta \Omega\left(-p_{2}\right)} W\right|_{\Omega=1}=-8 \alpha(\lambda(\sqrt{s})) s^{2}
$$

$$
\bar{\alpha}(s) \equiv \frac{1}{\pi} \int_{0}^{\pi} d \theta \alpha\left(s e^{i \theta}\right)
$$

$$
s \frac{d \bar{\alpha}}{d s}=-\frac{2}{\pi} \operatorname{Im} \alpha(s) \geq 0
$$

$\bar{\alpha}(s) \quad$ finite

$$
\lim _{s \rightarrow \pm \infty} \operatorname{Im} \alpha(s)=0
$$

$$
\begin{gathered}
\mathcal{J}_{0}(\Omega) \equiv\left\{\begin{array}{l}
g_{\mu \nu}=\Omega^{2}(x) \eta_{\mu \nu}, \\
A_{\nu}^{A}=m^{a}=0
\end{array}\right. \\
\mathcal{J}_{1}(\Omega) \equiv \lambda^{I}(\mu) \\
W[\Omega]=\underbrace{W\left[\mathcal{L}_{\ln } \Omega\right.}_{\text {local }} \mathcal{J}_{0}(\Omega)= \begin{cases}g_{\mu \nu}=\eta_{\mu \nu} & \lambda^{I}=\lambda^{I}(\Omega \mu) \\
A_{\mu}^{A}=0 & m^{a}=m^{a}[\Omega]\end{cases} \\
\qquad \begin{array}{c}
\text { effectively generated by } \\
\mathcal{L}_{\text {eff }}=\lambda^{I}(\Omega \mu) \mathcal{O}_{I}+m^{a}[\Omega] \mathcal{O}_{a}
\end{array}
\end{gathered}
$$

$$
\left.W[\Omega]\right|_{\mathrm{on}-\mathrm{shell}}=W_{\mathrm{loc}}+W_{\mathrm{non}-\mathrm{loc}}
$$

$$
>=\left[\tilde{a}(\lambda(\Omega \mu))+O\left(B^{2}\right)\right](\partial \ln \Omega)^{4}
$$

$\left.W[\Omega]\right|_{\text {on-shell }}=W_{\text {loc }}+W_{\text {non-loc }}$

$$
>=\left[\tilde{a}(\lambda(\Omega \mu))+O\left(B^{2}\right)\right](\partial \ln \Omega)^{4}
$$

$\left.W[\Omega]\right|_{\text {on-shell }}=W_{\text {loc }}+W_{\text {non-loc }}$

$$
\mathcal{L}_{e f f}=\lambda^{I}(\Omega \mu) \mathcal{O}_{I}+\frac{1}{2} B^{I}(\Omega \mu) \theta_{I}^{a}(\Omega \mu)(\square \ln \Omega) \mathcal{O}_{a}
$$

$$
>=\left[\tilde{a}(\lambda(\Omega \mu))+O\left(B^{2}\right)\right](\partial \ln \Omega)^{4}
$$

$$
\left.W[\Omega]\right|_{\text {on-shell }}=W_{\text {loc }}+W_{\text {non-loc }}
$$

$$
\mathcal{L}_{e f f}=\lambda^{I}(\Omega \mu) \mathcal{O}_{I}+\frac{1}{2} B^{I}(\Omega \mu) \theta_{I}^{a}(\Omega \mu)(\square \ln \Omega) \mathcal{O}_{a}
$$

scheme choice $\theta_{I}^{a}=0$

$$
>=\left[\tilde{a}(\lambda(\Omega \mu))+O\left(B^{2}\right)\right](\partial \ln \Omega)^{4}
$$

$\left.W[\Omega]\right|_{\text {on-shell }}=W_{\text {loc }}+W_{\text {non-loc }}$

$$
\mathcal{L}_{e f f}=\lambda^{I}(\Omega \mu) \mathcal{O}_{I}+\frac{1}{2} B^{I}(\Omega \mu) \theta_{I}^{a}(\Omega \mu)(\square \ln \Omega) \mathcal{O}_{a}
$$

scheme choice $\theta_{I}^{a}=0$
(Jujitsu)

$$
\bar{\alpha}(s)=\tilde{a}(s)+O\left(B^{2}\right)
$$

$$
\text { ensures a scheme choice exists where } \quad \bar{\alpha}(s)=\tilde{a}(s)
$$

$$
\begin{aligned}
& \left.\Delta-\operatorname{Im} \alpha(s)=\frac{1}{s^{2}} \sum_{\Psi}\left|\langle\Psi| B^{I}\left(\delta_{I}^{J}+\partial_{I} B^{J}\right) \mathcal{O}_{J}\left(p_{1}+p_{2}\right)+B^{I} B^{J} \mathcal{O}_{I}\left(p_{1}\right) \mathcal{O}_{J}\left(p_{2}\right)\right| 0\right\rangle\left.\right|^{2} \\
& \quad=B^{I} B^{J} G_{I J} \\
& G_{I J}=\frac{1}{s^{2}} \sum_{\Psi}\langle 0| \mathcal{O}_{I}+\partial_{I} B^{L} \mathcal{O}_{L}+B^{L} \mathcal{O}_{I} \mathcal{O}_{L}|\Psi\rangle\langle\Psi| \mathcal{O}_{J}+\partial_{J} B^{K} \mathcal{O}_{K}+B^{K} \mathcal{O}_{J} \mathcal{O}_{K}|0\rangle \geq 0
\end{aligned}
$$

$$
s \frac{d \bar{\alpha}(s)}{d s}=\frac{2}{\pi} G_{I J} B^{I} B^{J}
$$

$G_{I J}$ is the 4 D analogue of Zamolodchikov metric in 2 D

but 2D case simpler (just 2-point funtions)

$$
G_{I J}=\frac{1}{p^{2}} \sum_{\Psi}\langle 0| \mathcal{O}_{I}(p)|\Psi\rangle\langle\Psi| \mathcal{O}_{J}(p)|0\rangle
$$

without dilaton as guideline harder to figure things out in 4 D

Summary

Weyl anomaly off-criticality

4 D analogue of Zamolodchikov c-theorem

$$
s \frac{d \bar{\alpha}(s)}{d s}=\frac{2}{\pi} G_{I J} B^{I} B^{J}
$$

$$
G_{I J}=\frac{1}{s^{2}} \sum_{\Psi}\langle 0| \mathcal{O}_{I}+\partial_{I} B^{L} \mathcal{O}_{L}+B^{L} \mathcal{O}_{I} \mathcal{O}_{L}|\Psi\rangle\langle\Psi| \mathcal{O}_{J}+\partial_{J} B^{K} \mathcal{O}_{K}+B^{K} \mathcal{O}_{J} \mathcal{O}_{K}|0\rangle \geq 0
$$

Friday, January 31, 2014

Only option

More on the local RG equation:

- Any lessons hidden in the remaining consistency condition?
- What about the special case of supersymmetry?
- What about flows around CFT that break parity?

