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EFT =QFT — CFT

Theory Space of Canonical EFTs

unknown UV completion

Standard Model (GR)
PGB (pions) \
\ \
Euler Heisenberg \;2

Usually trivial fixed point

(QCD, QED)

(I will be concentrating on theories which are
realized in nature)

To get something interesting we must
consider non-trivial backgrounds



Non-traditional RG flow: e.g. velocity RG, rapidity RG 4

NRQCD SCET /

Theory of sources (e.g. heavy quarks, or Non-trivial fixed points

eikonal sources, vortices, Black Holes)
 Non-Fermi Liquids
Heavy Quark EFT * Fermions at Unitarity
NRQCD

S Collca EE L EEED

« NRGR (Non-Relativistic GR)
|_arge Scale Structure (see Senatore)
Hydrodynamics




Crucial distinction between EFT with/out
non-trivial backgrounds is that the explicit
symmetry breaking can lead to hierarchies

of scales which would otherwise not be

present. These scales can be explicit (e),
dynamically generated (dg), or induced by

the measurement process (m).

HQET: mqg (e),Agcp(dg)

NRQCD: mgq (e),mv (dg), mv? (dg),Agcp (dg)

SCET: Q (e),(Q(l1 —x),pr,QT,Qe) (m),Agcp(dg)



These scales can in general introduce two novel
effects:

 Modal Field Decompositions

Fields are split into modes which have
differing momentum scalings. The necessary modes are determined
by matching cut structure of the full theory. This must be done in a
way which is consistent with gauge invariance and
care must be taken not to double count.

* Non-Wilsonian Renormalization group.

Large Logs arise as a consequence of ratios which are unrelated to
invariant masses.



Any well defined EFT must have an action
INn which each term scales homogeneously
In the relevant expansion parameter in
order to preserve the systematics

Moreover, it often the case that such actions
lead to mode factorization, which is crucial
in the case of QCD for predictive power.



Modes needed to reproduce non-analyticities
fixedby Landau conditions,or more physically
Colemen-Norton Theorem

SCET: Effective theory of highly energy particles

. p% N (1’ )\27 1) Bauer,Luke,FI.eming, Piron,Stevvart)
Collinear

< pho~ (A%, 1,))  (A=55)

modes

Reproduce NA structure of Jets

v(x) =2+ e’P+*=¢,. () Remove large momentum from the field
(reminiscent of EFT of Fermi surface)

(pu/Q < 1)

In addition we have SOFT modes which could
in principle talk between jets



Naively modes these mode do not decouple as
their interactions are LO in power counting

n

w1

Manifest SU(3), ® SU(3)x an?r%%?ry
L=0L,+ L T =T5 +T 4+ 0(1/Q)

How do soft modes affect this picture?



Nature of the Soft Mode depends upon the
choice of observable

SCE] SCETI
P~ (A2, A2, \2) P~ (A A A)
Observable insensitive to Observable sensitive to
soft recoll soft recoll
DIS x->1 Sudakov Form Factor
Drell-Yan at Threshold Transverse Momentum Distributions
Jet Thrust Jet Broadening

How does factorization Persist?



SiG=1 o=

off shell state

US interactions allowed at
level of action

S =3, [d' &(in- D+ Dt-L-phie,

Soft interactions only allowed at
level of operators

US gauge field acts as background field, Integrating out off shell modes
factorization is made manifest by BPS field generates soft Wilson lines
redefinition _ ;

f — Yf Y = Pei fooo n-A(nA+z)dA OSFF — ganSJLVi_SﬁWﬁgﬁ

(Pn | OsFF | pa) = JnJnS
S:<O|S};Sﬁ|0> Jn:<pn|§nw7]:|0>

Wilson lines appear in operators

In both cases factorization is manifest at level
of the action and symmetry group is SU(3)n ® SU(3)a ® SU(3)sws)

factorization L=L,+ Ls+ Lsus

(Pnp7 | OnOnO0s.us | papa) = (Pn | On | pn) @ (pa | On | pa) ® (0] Os.us | 0)

Matrix Factorizes to all orders



Crucial Distinction Between SCETI and
SCETII

SCETIIl involves modes that sit on
same rapidity hyperbola. This leads to
the need for a factorization scale,
which arises in the form of a new set
of divergences which are not
regulated by dim. reg.

Manifest itself in the form of
rapidity divergences which do
not cancel sector by sector

. dk —
Introduce a rapidity scale v I= [l ke/v
which separates modes
- Gauge invariant prescription

do = S(v, p)Jn(p, v)Jn(p, v)



Rapidity Renormalization Group

(Chiu, Jain,Neill|1IZR)

ViS — AV I/iJn _ an
v 'S W 1 (Also see earlier work by
Balitsky)
d d 1_ 0 0. d
[d log v’ d log M:I - O (8IH[ILL] + ﬁag)/}/l/ — dln[u] Y = ZIWCuSpv
7
A
V(g vispy) final |
MR Mooin . Allows for systematic
R < resummation of rapidity
= patn 14| = logs along with control of
S I Vs i) scale dependence
; } > 1/

Phenomenlogical Implications



(Higgs) Transverse Momentum

DiStribUtion (Chiu,Jain,Neill,IZR)
do Ci d"pn 1. pf ,
dp dy 8v2S(NC2 —1) / (QW)4(27T)5+(10% - m%)é(y —3 In p_%) <5(pzl — |PhJ_\2)

4(2#)8/d4x6_m'th(mh) f

fJ_Ijg/P(O7ZC+, fJ_)ng/pW(x_, 0, QE’J_)S(O, 0, fJ_)

5(0.0.71) = Gsaryr—) OIS (@) Si @) SO S O)0)
p0a™, &) = 2(21@3<pn\[B;?f(x+,@>Bﬁ(0)]|pn>, TMPDF’'s match onto PDF at the
|
™ 00) = 5o o B ) B O scale pt
fJ_NfJ_(M:ptaV:mH) SNS(,LL:pt,V:pT) HNH(,LL:mH)

Working in P.T. implies both canonical scale as well as
rapidity scale dependence

. — p=1/b0; v=2/(b0) 25 [T [T RAAALLARRRARRR LAY AR A AN LR ul
— p=1/b0; v=1/(2b0) ' ' C gg— H (8 TeV) ]
Percentage (Nel | | ) |ZR’ Valdya) 20| L M =125 Gelg (Stewart’ TaCkmann
deviation . r R=0.4 .
2.0 A E Walsh, Zuberi)
10 15 2 25 30 35 & E
Pt (GeV) f§10 - 1
© T B NNLL/, +NNLO
5H E=g NLL, +NLO
. . . W L NLLPT 1
Uncertalnty due to rapldlty Scale 00 m]\-\(\) \\\\\\ 5\0\ \\\\\\ \?\’\0\ \\\\\\ \é\t\(\) \\\\\\ 5\0\ \\\\\\ 6\0\\\\\\\\’\7\(\) \\\\\\ éo



SCET formalism is lacking a treatment of a
nettlesome mode (Work in progress with |.

Stewart)
" ‘ The Glauber mode %
TGP P~ (A% A%0)
n ' Contributes at leading order to action,
0, = %(ganTa%ngn)(gﬁWﬁTa%ngﬁ) threatens factorization.
active-active active-spectator spectator-spectator

If there were no hard interaction then
Glauber is responsible for forward scattering,

so Glaubers form a phases in hard collisions e Abelian Eikonal Phase

— I s . R - 1 it ¥
: P W — D )T = PG
o+ e E:(erl)!(quG) e 1

m —N




Note: to make sense of integrals
iIn EFT need rapidity regulator

| ks/v |77 1

/d—dk 2 2 (p1L+ki)? . / (p', —k1)? .
kJ_(kJ__QJ_) [k+—|—p+—p—_+”&0”—k_—|—p_—p,—_—FZO]

This had to be the case since Glauber shares a
rapidity hyperbola with collinears, need rapidity
factorization (non-trivial RRG?)

8 soft quark
T . S
soft gluon
0O6eE collinear gluon
e




Mixing induces both RG as well as RRG running

It we write four body operators as o
product of bi-linears (allowing for 04 = 0,005
identity operator) then the problem
is reduced to mixing of bilinear On = Op(p = Vi, v = V'S) natural
and time ordered products Os = Os(v = /1) scales

Let us focus on RRG

To eliminate resum Log(s) let us run
the collinear sector in nu from s down
to 1.

(€€, BB) basis

d 0 _ .. _ a@)Ca 2
VE&:A”& A( y) y =z = =5~ log(p/t)



EigenSVStem [>‘1 — 07:01 — (170) : Aoy = Ly, P2 = (17 1)]

Enitln (v = \/3) = Eaitln (v = V1) (BBy + Enifn)én(v = v/3) = [(BB + &nifén) (v = VO] (v/3/VD) "
BBn(V = \/%) = [(\/%/\/§>x = 1]57177{571(” = \/E) g (\/%/\/EYEBB?”L(V = \/E)

Gluon Reggeization
* Exponent is IR finite to all orders

e Anomalous dimensions leads to
universality of Reggeization

* There can be additional Log(s) dependence
depending upon the choice of PHYSICAL
observable. e.g. hemisphere masses. (need
to match onto next theory)



M-SCET

Hard interactions

observable sensitive

to soft recoil

SCETI

DIS,DY, Threshold
production,thrust

SCETII

pt distributions, Jet

Sudakov FF

broadening, Massive

Regge Limit

observable sensitive
to soft recoil

SCETlg  SCETIig
Sensitivity to see- ?

saw saw scales Diffractive

(t%,p*)/s Higgs”

Dont expect Regge theory
to capture all of Log(s)
dependence



Gravitational EFT for Compact
Bodies (Walter Goldberger, IR)

Scales Relevant to Inspiral
Longest

Distance scale
Short Distance scale —> R <7 < A~ 71/v

Intermediate scale

detector

/.

Interested in calculating gravitational wave
form with high precision (LIGO)



This is a modal theory which share
many similarities (when working in PN
approximation) with NRQCD

 Modes which generate internal
dynamics of compact bodies.

e Potential pt = (v/r,1/)r)

« Radiation (only IR modes in theory) p* = (v/r,v/r)

Two Stage Theory

e Integrate out short distance modes match on to theory
of point particleS

* Integrate out potential mode leaving an effective theory of multipole
moment coupling to radiation field



|) treat constituents as point particles
Sy = —m/ds S = /—QMZ?Z\/ERCZ%

more on
Sﬁg —- Cg / drb,, B" + cp / dr B, B" these later
Cg,Cp ~ R®

Cgr,Cy, ~ R?
+CR/dTR + O, /dT’UH’U,,RW + .

Removable by field redefs
(Birkoffs Thm)

This theory is applicable to either EMRI or PN at this point.
One point function is UV log divergent absorbable into  (C, Cp

> T e e e = Ay e S
<; L In | Fag e |_‘| < |

‘f:, L, {_.r ~ ,_,' "—|}_|

< h < 3

< S S >

-'_'\ (:_\ I:) {"}

(':; < S C:

% . < %

(a ‘b ¢



|) Integrate out short distance potential mode

2) Match onto a theory of long wavelength radiation gravitons
coupling to multipole moments of system.

5/2
.. ~
Radiation treated as background field Radiation

maintains diff inv. H h /
L uv %
v — Ny + +

vt :
Mpl " Mpl‘%\
Zau] = [(DH)YDRS 0

Every term in S scales homogenously in v

_ /(Dh)eiseff(w,L,Q,hJ

hw _

, 2
Potential ~ v

m = 0 H, 0 o . |
% & 3 4 Calculate to some fixed order in PN
[l “H :] : :
& Quantum corrections

suppressed by 1/L



potential calculated at 3PN and O(G?v*) 4PN  (Foffa and Sturani)

100+Diagrams usual story, however we can use
modern unitarity +BCFW methods to reduce the

workload (D. Neill, IZR)
Calculate tree level S-matrix for scalar-graviton scattering via BCFW
-
Unitarity > Sew together to tree level
S-matrix elements
(Bern, Dixon, Kosower)
(S-channel cuts don’t contribute -

to classical potential)

Eliminates the need to calculate all the
graviton Feynman diagrams

Match onto a theory of massive scalar
interacting via a set of potentials

L= Z / dPpd3q Vi(q,p) ¢'(p + q/2)0(p — q/2)¢' (—=p — q/2)p(—p + ¢/2)

Given potentials we can also go to probe limit and extract metric, thus generating classical
space-time forgoing GR. Only assumption is the existence of a spin two massless field, the
rest follows from Lorentz invariance, unitarity and locality.



Radiation Theory

One we have integrated out the potentials we match onto
another point particle theory, endowed with moments of

binary.
1 ab 1 ab 4 ab 1 abc
S =— Mdr — 5 d,flj"u’w“ Lab+ dT(§QabE — §J Bab+ gO vcEab+.....)
source moments (wor'ked out to all orders (Ross))

Power Loss can be calculated via in-out S matrix elements  Ap(k) =out (€(k) | 0)in

note that higher order effects involving calculation
within this final theory: e.g. tail and memory effects

““radiative moments "
\\ R
N
oy

Q M Q

Tall Effect Memory Effect



Renormalization of the Radiation
Theory and Log Resummation

Quadrapole renormalization (Goldberger and Ross)

Quadrapole moments are scale dependent via

UV div. physical log

= -
1
li -3 a + ALog(w2/,u2)
IR div. C?ulomb ph?se S ;1;1 /
(cancels in any physical P &ED, +
observable) ﬁ B, ,r F * o
& © i,
Q M Q M M
. . . R _ -1 B
Divergence gets absorbed into renormalized quadrapole ij — Z (w, N)Qij
107
u QB -0 r__ 214 9 ~R
d Gmw
v H dp,Q 105( )°Q



By Choosing © =w we eliminate the logs in the amplitude.
Q" (w, ) = (/o) 1M Q(, o)

/

Infinite sum of log enhanced terms Z C(Gmw)*" Log™ (rw)

39201376

_W(Gmw)ﬁLog3 (wr) ~ v'® checked in test mass limit (Fujita)

MaSS Renormallzatlon (Goldberger, Ross, IZR)

:i;%@% + Lagrangian mass parameter is asymptotically free
and time dependent

M Q Q d
— 3 3
p-m = —2G2QP Q1)
Bo = —214/105 du
) [QP0), —(@P0P)]  1ePe®) , P, L g @09,
= exp =1 — “Ln(v) ————r Ln"(v) ———r,Ln”(v) +....
m(MO) ﬁng 2 mg 420 mg 132300 mg
w448 : , , hic
E(Q) S vellnx + ... Agrees with (Blanchet,Detweiler, Le Tiec and Whitting)



EFT methods have been used be to reach state of the art calculations. Some of
these results have yet to be calculated using traditional methods: e.g. 3PN
multipole moment for spinning holes (Porto,Ross,|ZR).



Finite Size Effects

SFS = CE/dTEMVE’UV—FCB/dTBHVB’W/ ~J fvlo

However, in addition there are dissipative effects which can not be accounted
for by local operators, we add degrees of freedom to world line.

(W. Goldberger,|ZR)

Sdis — /dT(QabEab + MabBab)
Dynamical evolution of

/ non-gapped DOF

Absorptive potential

—zVT—mf—jw [ ards'0 | TQUEQAE) | g + (1 > 2)

01 T(QY(MQY)) | 0) = Alr — 7)(S59H — 557 — §5%).



The imaginary part of the correlator can be 3 B
matched via the optical theorem "~ W;llm(m(“))

dP_ 1 GN O'(b)

dw T 6472 w?
a#b Also spinning of this
version (Porto)

Valid for any compact object, in
black hole case
7

32 7602 6172 e a :
P = EG (M7 M5 + M;MT) 2_ + L (poisson)

ré = 8

The real part has a Taylor expansion has coefficients
which correspond to the Coefficients of the finite size

local operators.



(Damour, and Nagar; Binnington and
Poisson)

Vanishing of cg for BHs

(Kol and Smolkin; Chakrabarti, Delsate
and Steinhoff (CDS))

12M Gw
45

3486611 1

— —Log(w/p) + ... (CDS)

A ~
() 54096525 45

+ (2MGw)*(

mu dependence cancelled by mu dependence of Cy: (1)

SFS = CEQ(/J/)/dTEQ

Absence of constant term implies
that cg =0

(hidden symmetry?)



This is a remarkable power law fine-tuning as
there exist diagrams which renormalize this
operator

(In progress with W.

Gabed(w) = / dre™0(T) (| [Qap(T), Qea(0)] | w) Goldberger)

2
Gabcd(w) = (__5ab60d + 5ac5bd -+ 5ad5bc) (CLR + ia] + W(bR + Zb]) + w2(cR + iC[) + ... )

3
Q" (w) = —%E%%(w)F(w) F(w) = (ar + ia; + w(iby) + w?(cr +icr) +. . .)
| (2] Qup | m) |?
ReF(w PZ Eo— F—w
Z | (2] Qu | m> °_ 0. Not a pure state
Eq —

§ e AEn) (n ] Qab JEm> <7g [Qu [7) _ ' Suppose it is thermal

m,n



Other applications of world line EFT

Caged Black Holes (chuGolberger,1zR), (Kol, Smolkin), (Gilmore, Smolkin, Ross)
EM RI (Galley, Galley and Porto)
Fluctuation Forces on membranes (peserno,izR Yolcu)

Casimir Cogs (vaidya)



