Quantum Fields Beyond Perturbation Theory, KITP, January 2014

Overview: Conformal Bootstrap

Slava Rychkov

CERN \&
École Normale Supérieure (Paris) \&
Université Pierre et Marie Curie (Paris)

See also David Poland's recorded review talk: http://online.kitp.ucsb.edu/online/qft| 4/poland/

Disambiguation

Conformal bootstrap I [Polyakov ‘70, Migdal ‘7I]

$$
\bigcirc=\frac{1}{\left(x_{1}-x_{2}\right)^{2 \Delta}}
$$

(of historical interest only)

Here:

Conformal bootstrap II [Ferrara,Gatto,Grillo ‘73, Polyakov’74, BPZ’83]
non-perturbative, non-Lagrangian approach to solving/constructing CFTs
to introduce it in some detail...

CFT $_{d \geq 3}$ kinematics in flat space

(I) Local operators $=$ primaries + descendants (derivatives)

Quantum numbers: Δ_{a} - scaling dimension, R_{a} - irrep of $\mathrm{SO}(\mathrm{d})$
\Rightarrow fix 2-pt function

$$
\left\langle O_{a}(x) O_{b}(0)\right\rangle=\frac{\delta_{a b}}{x^{2 \Delta_{a}}} \times(\text { fixed tensor structure })
$$

(2) 3-pt functions of primaries:
$\left\langle O_{a}(x) O_{b}(y) O_{c}(z)\right\rangle=\sum_{i \leq I\left(R_{a}, R_{b}, R_{c}\right)} f_{a b c}^{i} \times(\text { tensor structure })_{i}$
(2) $\Leftrightarrow\left(2^{\prime}\right)$ OPE

$$
O_{a}(x) O_{b}(y)=\sum_{c}\left\{\sum_{i} f_{a b c}^{i} P_{i}\left(x-y, \partial_{y}\right) O_{c}(y)\right\}
$$

Dynamics

whatever fixes Δ_{a}, R_{a} and $f_{a b c}$
RG way
view $\mathrm{CFT}_{\mathbb{I}}$ as a fixed point of a Lagrangian RG flow
(use CFT kinematics to organize end results)

Bootstrap way

impose associativity condition on the operator algebra:

$$
O_{a}(x) O_{b}(y) O_{c}(z)=O_{a}(x) O_{b}(y) O_{c}(z) \quad \forall a, b, c
$$

I

$$
\langle\underbrace{O_{a} O_{b} O_{c} O_{d}}_{a}\rangle=\langle\underbrace{U_{d}}_{\underbrace{}_{a} O_{b} O_{c}} O_{d}\rangle \quad \forall a, b, c, d
$$

Why bother?

- RG method has run out of steam

Example I: 3d Ising CFT

	$Z 2$	$\Delta(\mathrm{RG})$
σ	-	$0.51675(125)$
ε	+	$1.4137(33)$
ε^{\prime}	+	$3.799(11)$

$\Delta(M C)$	
$0.51814(5)$	factor 25 better
$1.41275(25)$	factor 13 better
$3.832(6)$	factor 2 better

Example 2: 3d O(2) model

$$
\begin{aligned}
\Delta_{\varepsilon} & =1.5094(2) \quad\left(\mathrm{He}^{\wedge 4} \mathrm{exp}\right) \\
& =1.5112(2) \quad \text { (Lattice) } \quad 8 \sigma \text { discrepancy } \\
& =1.5081(33) \text { (from RG) inconclusive }
\end{aligned}
$$

- Bootstrap can be used to construct CFTs for which RG interpretation is unknown or does not exist

Bonus points

Bootstrap equations may be our best first-principle definition of CFTs

- convergent, mathematically well-defined
- give results with rigorous error bars

O(IO0) papers since 2008

$\mathbf{2 < d} \leq 4$ and d=2 SL(2,C)

-bounds (dims, ope coeffs, central charges)
-extremal spectrum studies
-numerical techniques (simplex method, SDPA, dual/
direct) ellipsoid method minor method by Gliozzi
-global syms
-impact of SUSY
-large $N \leftrightarrow A d S$
-lightcone results: large spin, small twist numerical impact?

- several correlators
- basis optimization
- external states with spin (T, J)

Conformal blocks

-exact expressions
-power series expansions
-recursions
-for ops with spin
-large d limit
CFT_{d} with bdry
Conformal defects $\leftrightarrow d=1$ bootstrap $d \rightarrow$ I limit
[Study of 2d CFT torus partition functions]
$\mathrm{d}=2$ non-rational Virasoro bootstrap
Bootstrap on other geometries ($\mathrm{R}^{\mathrm{d-I}} \times \mathrm{S}^{\prime}$)

Why bootstrap is practicaloperator decoupling

2d Minimal models

-finitely many primaries, dims known -bootstrap for ope coeffs = finite dimensional linear algebra

CFT($\mathrm{d} \geq 3$) \& 2d non-rational

- ∞ many primaries, dims unknown
- bootstrap $=$ system of ∞ eqs for ∞ unkowns

Any truncation in Δ space?

High-dim operators decouple exponentially fast (any d):

$$
\left\langle\left.\phi(0) \phi(z)\right|_{\Delta \geq \Delta_{*}} \phi(1) \phi(\infty)\right\rangle \leq C \Delta_{*}^{2 \Delta_{\phi}}|z|^{\Delta_{*}} \quad\left(\Delta_{*} \geq \Delta_{\phi} /(1-z)\right)
$$

Proof:

$$
\begin{aligned}
&\langle\phi(0) \phi(z) \phi(1) \phi(\infty)\rangle=\sum f_{\Delta}^{2} z^{\Delta} \\
& \sim \frac{1}{(1-z)^{2 \Delta_{\phi}}} \quad(z \rightarrow 1) \\
& \sum_{\Delta \geq \Delta_{*}} f_{\Delta}^{2} z^{\Delta}=\sum f_{\Delta}^{2} z_{*}^{\Delta}\left(\frac{z}{z_{*}}\right)^{\Delta} \quad(\text { rewriting }) \\
& \leq\left[\sum f_{\Delta}^{2} z_{*}^{\Delta}\right]\left(\frac{z}{z_{*}}\right)^{\Delta_{*}}\left(z<z_{*}<1\right) \\
& \leq \frac{\stackrel{1}{C}}{\left(1-z_{*}\right)^{2 \Delta_{\phi}}}\left(\frac{z}{z_{*}}\right)^{\Delta_{*}}
\end{aligned}
$$

Now pick z* optimally: $\quad z_{*}=1-O\left(\Delta_{\phi} / \Delta_{*}\right)$

We do numerical bootstrap around z~1/2

Regions of OPE convergence overlap

A family of spectra solving the bootstrap equation near 3d Ising

 (Roughly, $z \in[\varepsilon, l-\varepsilon], \varepsilon \rightarrow 0$)

[El-Showk, Paulos, Poland, Simmons-Duffin, SR,Vichi, to appear] 12/22

Operator decoupling makes bootstrap practical

- Can imagine "recursive bootstrap":
$\left\langle O_{1} O_{1} O_{1} O_{1}\right\rangle \quad \Rightarrow$ learn something about O_{2} 's $\Delta_{2} \lesssim$ few $\times \Delta_{1}$ then
$\left\langle\mathrm{O}_{2} \mathrm{O}_{2} \mathrm{O}_{2} \mathrm{O}_{2}\right\rangle,\left\langle\mathrm{O}_{1} \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{2}\right\rangle \Rightarrow$ learn something about O_{3} 's ecc.
- Alternatively, can study several correlators together:

$$
\left\langle O_{i} O_{j} O_{k} O_{l}\right\rangle, \quad i=1,2, \ldots N
$$

So far, no systematic study beyond $N=1$

Improving sensitivity to high-dimension operators

- by $\mathrm{z} \rightarrow$ I
- external states themselves of high dimension
- by going to Minkowski space

Even mundane, statistical mechanical models like 3d Ising model CFT,

- should be well-defined in Minkowski
- by looking at them in Minkowski one may learn something nontrivial

Example I: "Callan-Gross"-type relations

> [noticed in perturbation theory by Callan-Gross'73]

Sensitive to low-twist operators of arbitrary spin
\Rightarrow Prove existence of large spin operators with low twist:

$$
\tau_{\ell} \approx 2 \Delta_{\phi}+O\left(1 / \ell^{d-2}\right)
$$

Fitzpatrick, Kaplan, Poland,Simmons-Duffin' I2;
Komargodski, Zhiboedov'I2
cf.Alday,Maldacena’07
Q: can Minkowski be exploited numerically, to improve sensitivity say at $\mathrm{I}=4$?

Example 2: Nachtmann's "theorem" [Nachtmann'73]

leading twists form a monotonic, upward convex function

in 3d Ising CFT: $\quad \tau_{4} \approx 1.0208(12)$ [Campostrini et al'97]
$\tau_{4,6,8}, \ldots$ can be extracted by numerical bootstrap, both Nachtmann and Callan-Gross seem OK

Proof - analyze certain "scattering amplitude"

[Nachtmann'73, Komargodski,Zhiboedov'I2]

$$
\begin{aligned}
& A\left(q_{\mu}, P_{\mu}\right) \equiv \int d^{d} y e^{i q y}\langle P| T(\mathcal{O}(y) \mathcal{O}(0))|P\rangle \\
& \text { •a state in a massive deformation } \\
& \text { •can be thought of as created by } O(\infty) \text { ? }
\end{aligned}
$$

Crucial assumption:
Polynomial boundedness in the Regge limit:

$$
\lim _{x \rightarrow 0} A\left(x, q^{2}\right) \leq x^{-N+1}
$$

Monotonic convexity results only for spins $\geq N$
However,"experimentally" for 3d Ising CFT holds for spin ≥ 2

Can one prove polynomial Regge limit boundedness in CFTs rigorously, using known OPE coefficients asymptotics?

Comment on small anomalous dimensions of spin ≥ 4 currents

In 3d Ising, spin field anomalous dimension is very small, $\quad \gamma=0.01675(125)$
\quad Nachtmann + Callan-Gross \& numerical bootstrap
\Rightarrow leading spin ≥ 4 currents have small anomalous dimension $\leq 2 \gamma$
"Weakly broken higher spin symmetry" (?)

Now that we know this, can we use it to further constrain the 3d Ising CFT?

Future - numerics vs analytics

- physics can be constrained but not fully captured by analytical constraints (simply because not all theories will saturate them)
- numerics suggest the existence of some very special "extremal" theories, like 3d Ising CFT \Rightarrow some new form of "integrability" (?)
- but it would be equally cool if 3d Ising CFT is not "integrable", yet we can find a way to solve with with arbitrary accuracy
- in any case we don't expect that all CFTs are "integrable"
\Rightarrow important to keep developing numerical methods, which will be applicable to any CFT

Basis problem (Truncation No.2, in z-space)

-Bootstrap eq.: $\quad Q(z, \bar{z})=0 \quad Q=$ crossing deficit

- Functional equation, has to be truncated in some basis

Standard way:

$$
\left.\partial_{z}^{m} \partial_{\bar{z}}^{n} Q\right|_{z=\bar{z}=1 / 2}=0 \quad(m, n \leq N)
$$

Is this analytically most justified/numerically most economical way to truncate?
E.g. why not choose a set of points $\mathbf{z}_{\mathbf{i}}$ and study $Q\left(z_{i}, \bar{z}_{i}\right)=0$

Try to use information from OPE convergence rate?

$$
\begin{aligned}
\left\langle\left.\phi(0) \phi(z)\right|_{\Delta \geq \Delta_{*}} \phi(1) \phi(\infty)\right\rangle \lesssim \frac{\Delta_{*}^{4 \Delta_{\phi}}}{\Gamma\left(4 \Delta_{\phi}+1\right)}|\rho(z)|^{\Delta_{*}} \\
\rho(z)=\frac{z}{(1+\sqrt{1-z})^{2}}
\end{aligned}
$$

Truncated bootstrap equation: [Hogervorst,SR]

$$
\left.Q(z, \bar{z})\right|_{\Delta \geq \Delta_{*}} \lesssim \lambda(z)^{\Delta_{*}} \quad \lambda(z)=\max (|\rho(z)|,|\rho(1-z)|)
$$

How to distribute points efficiently?

Bootstrap turns Conformal Field Theory from an art into a craft

Becomes a linear algebra problem which you can give to a computer

Like in engineering!

