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Disambiguation
Conformal bootstrap 1 [Polyakov ‘70, Migdal ‘71]

(of historical interest only)

Conformal bootstrap 1I [Ferrara,Gatto,Grillo ‘73, Polyakov’74, BPZ’83]

Here:

non-perturbative, non-Lagrangian approach to solving/constructing CFTs 

to introduce it in some detail...
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CFTd≥3  kinematics 

(1)  Local operators = primaries + descendants (derivatives)

Quantum numbers:  Δa - scaling dimension, Ra - irrep of SO(d)
⇒ fix 2-pt function

(fixed tensor structure)

(2) 3-pt functions of primaries:

(2)⇔(2’) OPE 

in flat space
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Dynamics
whatever fixes Δa, Ra and fabc     

RG way

view CFTIR as a fixed point of a Lagrangian RG flow

(use CFT kinematics to organize end results)

Bootstrap way

impose associativity condition on the operator algebra: 
⇔
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Why bother? 
● RG method has run out of steam

Example 1: 3d Ising CFT

Z2 Δ (RG)
σ - 0.51675(125)
ε + 1.4137(33)
ε’ + 3.799(11)

Δ (MC)
0.51814(5) factor 25 better
1.41275(25) factor 13 better
3.832(6) factor 2 better

Example 2: 3d O(2) model

    Δε =1.5094(2)   (He^4 exp)
=1.5112(2)   (Lattice)    8σ discrepancy
=1.5081(33) (from RG)   inconclusive

● Bootstrap can be used to construct CFTs for which RG interpretation 
is unknown or does not exist

practice and principle
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Bonus points 

Bootstrap equations may be our best first-principle definition of CFTs

- convergent, mathematically well-defined

- give results with rigorous error bars

6

forget about divergences, resummations, asymp. series
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O(100) papers since 2008

2<d≤ 4 and d=2 SL(2,C)
•bounds (dims, ope coeffs, central charges)
•extremal spectrum studies
•numerical techniques (simplex method, SDPA, dual/
direct)
•global syms
•impact of SUSY
•large N ↔ AdS

•lightcone results: large spin, small twist numerical impact?

-exact expressions
-power series expansions
-recursions
-for ops with spin
-large d limit

Conformal blocks

CFTd with bdry
Conformal defects ↔ d=1 bootstrap

[Study of 2d CFT torus partition functions]

ellipsoid method

• several correlators
• basis optimization
• external states with spin (T, J)

d=2 non-rational  Virasoro bootstrap
Bootstrap on other geometries (Rd-1 x S1)

Red = to do

d→ 1 limit

minor method by Gliozzi
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Why bootstrap is practical- 
operator decoupling
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2d Minimal models

•finitely many primaries, dims known
•bootstrap for ope coeffs = finite 
dimensional linear algebra

CFT(d≥ 3) & 2d non-rational

• ∞ many primaries, dims unknown
• bootstrap = system of ∞ eqs for 

∞ unkowns

Any truncation in Δ space?
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Pappadopulo, SR, Espin,Rattazzi

High-dim operators decouple exponentially fast (any d):

Proof:

Now pick z* optimally:

(rewriting)

≤
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We do numerical bootstrap around z~1/2

Regions of OPE convergence overlap 
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A family of spectra solving the bootstrap equation near 3d Ising
(Roughly, z∈[ε,1-ε], ε → 0)

Stress tensor Δ=3

[El-Showk, Paulos, Poland, 
Simmons-Duffin, SR, Vichi, to appear]
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Operator decoupling makes bootstrap practical

● Can imagine “recursive bootstrap”:

⇒ learn something about O2’s

then

⇒ learn something about O3’s

●  Alternatively, can study several correlators together:

So far, no systematic study beyond N=1

ecc.

13
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Improving sensitivity to high-dimension operators

● by z→ 1
● external states themselves of high dimension

● by going to Minkowski space

Even mundane, statistical mechanical models like 3d Ising model CFT,
- should be well-defined in Minkowski
- by looking at them in Minkowski one may learn something nontrivial
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Example 1: “Callan-Gross”-type relations

Sensitive to low-twist operators of arbitrary spin

Q: can Minkowski be exploited numerically, 
to improve sensitivity say at l=4? 

[noticed in perturbation theory by Callan-Gross’73]

⇒ Prove existence of large spin operators with low twist:
Fitzpatrick, Kaplan, Poland,Simmons-Duffin’12;

Komargodski, Zhiboedov’12
cf. Alday,Maldacena’07
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Example 2: Nachtmann’s “theorem” [Nachtmann’73]

leading twists form a monotonic, upward convex function

Tμν 
d-2 2 4 6 8 10 12 14 16 l

Τl

in 3d Ising CFT: [Campostrini et al’97]

can be extracted by numerical bootstrap,
both Nachtmann and Callan-Gross seem OK

(from Callan-Gross)
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Proof - analyze certain “scattering amplitude”

*q

P
~

q −q

P −P
Im

* *

Fig. 4: The total inclusive cross section can be extracted from the imaginary part

of a Compton-like scattering where the momenta of the outgoing states are identical
to the momenta of the incoming states.

The optical theorem allows to extract the inclusive amplitude for DIS via the analog

of Compton scattering (see fig. 4). The amplitude in our “scalar DIS” setup is

A(qµ, Pµ) ≡
∫

ddyeiqy〈P |T (O(y)O(0)) |P 〉 , (2.1)

where we have denoted the momentum of the target |P 〉 by Pµ. We will only discuss the

case of q2 < 0, i.e. space-like momentum for the virtual particle. The above amplitude

obviously depends on the mass scales of the theory (we set P 2 = 1 for convenience), and

the two invariants q2, ν ≡ 2q · P .

22

Fig. 5: The analytic structure in the ν plane.
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[Nachtmann’73, Komargodski,Zhiboedov’12]

•a state in a massive deformation
•can be thought of as created by O(∞) ?

asymptotics in the Regge limit. We simply assume the amplitude is bounded polynomially8

lim
x→0

A(x, q2) ≤ x−N+1 , (2.9)

for some integer N . Polynomial boundedness is discussed in [20]. A recent discussion and

more references to the original literature where polynomial boundedness is discussed can

be found in [21]. In this case the contour manipulation leading to (2.7) can be justified

only for s ≥ N . This has to be borne in mind in the following, where we derive some

consequences of (2.7) using convexity properties. The first place we are aware of where

convexity properties appear in this context is [19].

2.2. Convexity

We will discuss various simple inequalities that the moments µs(q2) have to satisfy.

These properties follow simply from unitarity

ImA(x, q2) ≥ 0 , (2.10)

which is nothing but saying that the cross section for the process of DIS is nonnegative.

In fact, ImA(x, q2) must be nonzero at least around some points, otherwise, the scattering

is trivial.

The general inequalities stated below can be proven with the method we are using

only for s ≥ N with some finite N . However, they may or may not be true for smaller

spins as well. We will denote the spin from which these inequalities become true by sc.

We see that sc is finite and it is at most N .

From (2.7) it is clear (because of (2.10)) that µs > µs+1, which together with the sum

rule (2.8) leads to

τ∗s ≤ τ∗s+1 . (2.11)

8 For on-shell scattering processes, we have the bound of Froissart-Martin [35,36] σ ≤

C(log(s))2, where C is some dimensionful coefficient. In deep inelastic scattering we are dealing

with an amplitude involving an off-shell particle (for example, a virtual photon), so the argument

of Froissart-Martin does not carry over. In the context of QCD, one can use various phenomeno-

logical approaches to model the small x behavior. For example, see the review [37]. The result of

these phenomenological models is that the amplitude grows only as a power of a logarithm with

1/x. This may be more general than QCD, for example, it would be interesting to understand the

small x asymptotics in N = 4 [38]. We thank M. Lublinsky and A. Schwimmer for discussions

about the Regge limit.

15

Crucial assumption:
Polynomial boundedness in the Regge limit:

Monotonic convexity results only for spins ≥ N 

However, “experimentally” for 3d Ising CFT holds for spin≥ 2

Can one prove polynomial Regge limit boundedness in CFTs 
rigorously, using known OPE coefficients asymptotics?
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Comment on small anomalous dimensions of spin≥4 
currents 

In 3d Ising, spin field anomalous dimension is very small, γ=0.01675(125)

Now that we know this, can we use it to further 
constrain the 3d Ising CFT? 

Nachtmann + Callan-Gross & numerical bootstrap
⇒ leading spin≥4 currents have small anomalous dimension ≤ 2γ  

“Weakly broken higher spin symmetry” (?)
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Future - numerics vs analytics

• physics can be constrained but not fully captured by analytical 
constraints (simply because not all theories will saturate them)

• numerics suggest the existence of some very special “extremal” 
theories, like 3d Ising CFT ⇒ some new form of “integrability” (?)

• but it would be equally cool if 3d Ising CFT is not “integrable”, yet we 
can find a way to solve with with arbitrary accuracy

• in any case we don’t expect that all CFTs are “integrable”

⇒ important to keep developing numerical methods, which will be 

applicable to any CFT
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Basis problem (Truncation No.2, in z-space)

•Bootstrap eq.: Q=crossing deficit

•Functional equation, has to be truncated in some basis 

Standard way:

N as large as possible

Is this analytically most justified/numerically most economical 
way to truncate?

E.g. why not choose a set of points zi and study 
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Try to use information from OPE convergence rate?induced by truncating (2.3) at some maximal dimension ∆ = ∆∗ is exponentially small:
�����

�

O:∆(O)�∆∗

f 2
O
GO(z, z̄)

����� �
∆

4∆φ
∗

Γ(4∆φ + 1)
|ρ(z)|∆∗ . (4.15)

To be precise, this estimate was shown to hold for ∆∗ � ∆φ/(1− |ρ(z)|) . Most importantly,
it holds in an arbitrary CFT with no extra assumptions about the φ×φ OPE. For example,
it might seem that having too many operators at high ∆, or a single operator with a huge
OPE coefficient, might invalidate this bound. However, the proof in [27] shows that such
situations cannot occur in a consistent CFT.

The estimate (4.15) is relevant to our discussion, because in most practical approaches to
the bootstrap one has to truncate the spectrum of considered operators from above (to make
the problem finite). Now we know that the error induced by this operation is controlled by
|ρ(z)|, while the error in the crossed channel will be controlled by |ρ(1 − z)|. Therefore it
seems natural to distribute the points zi in a region of the form (see Fig. 9)

λ(z) = max(|ρ(z)|, |ρ(1− z)|) � λc , (4.16)

where λc should be chosen commensurately with the eventual dimension cutoff ∆∗.
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Figure 9: The contour plot of the function λ(z) in the plane (Re z, Im z). Only the region

Im z � 0 is shown, since the conformal blocks are symmetric in z, z̄.

One way to choose ∆∗ is so that the error (4.15) is below the numerical precision one is
working with (say double precision) everywhere within the region (4.16). Alternatively, one
can choose ∆∗ lower, so that the error is non negligible. Then one has to include this error
estimate directly into the bootstrap equation. Such a modified equation takes the form:
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�
. (4.17)
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How to distribute points efficiently?

Truncated bootstrap equation: [Hogervorst,SR]
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Bootstrap turns Conformal Field Theory from an art into a craft

Becomes a linear algebra problem which you can give to a computer

22
Like in engineering!

ω1 ω2 ω3 


