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• Planck improve limits wrt WMAP by a factor of ~3.

• We can think of Inflation as being characterized by higher dimension opt.s

• Since

• Given the absence of known or nearby threshold, this is not much.

• Planck is great

• but Planck is not good enough

– not Plank’s fault, but Nature’s faults

• Please complain with Nature

• Planck was an opportunity for a detection, not much an opportunity to change the 
theory in absence of detection

• On theory side, little changes

– contrary for example to LHC,  which was crossing thresholds

• Any result from LHC is changing the theory

What has Planck done to theory?
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• In order to increase our knowledge of Inflation, we need more modes.

• Large Scale Structures offer the ideal place for hunting for more modes

– I will show results that, if verified and extended to all observable, can increase 
limits to 

– We can argue that absence of detection of NG up to this level implies 
observational proof of slow-roll inflation

• This is learning even without detection

• This also offers us a way to study the large scale structures of the univrse 

– which are nice

• Implications for dark energy, neutrinos, light species, etc.

What has Planck done to theory?
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(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• Plank will increase by a factor of less than 2.

• Next are Large Scale Structures

• Like moving from LEP to LHC: 

– much dirtier, but much more potential

What is next in Cosmology?
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• Non-linearities at short scale

A well defined perturbation theory
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• Non-linearities at short scale

A well defined perturbation theory
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• Standard perturbation theory is not well defined

• Standard techniques

– perfect fluid 

– expand in                   and solve iteratively

• Perturbative equations break in the UV

–  .

– no perfect fluid if we truncate

A well defined perturbation theory
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Idea of the
Effective Field Theory
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• Very complicated on atomic scales

• On long distances

– we can describe atoms with their gross characteristics

• polarizability                               : average response to electric field

– we are led to a uniform, smooth material, with just some macroscopic properties 

• we simply solve Maxwell dielectric equations, we do not solve for each atom.

• The universe looks like a dielectric

Consider a dielectric material

goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s
(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• Very complicated on atomic scales

• On long distances

– we can describe atoms with their gross characteristics

• polarizability                               : average response to electric field

– we are led to a uniform, smooth material, with just some macroscopic properties 

• we simply solve Maxwell dielectric equations, we do not solve for each atom.

• The universe looks like a dielectric

Consider a dielectric material
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(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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�ḢM2

Pl(@µ⇡)2 + M4⇡̇2 + M̄3H(@i⇡)2 + M̃2(@2⇡)2
i

(22)

H(t + ⇡) ) Ḧ⇡2 (23)

M2
Pl

✓
V 0

V

◆2

, M2
Pl

V 00

V
(24)

goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s
(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.

~ddipole ⇠ ↵ ~Eelectric (1)

datomic (2)

d� datomic (3)

⇤2
U & ⇤2

min ⇠ 103H2 ) ⇤2
min ⌧ 105H2 (4)

vl,R(~x, t) = vl(~x, t)� e1@�(~x, t) + · · · (5)

h⌧i@2�
l

= c1@
2�l + . . . (6)

@2�l ⌧ 1 (7)

Var(⌧) = h⌧ 2i � h⌧i2 (8)

h⌧i@2�
l

= c1@
2�l + c2@

3�l + . . . + d1(@
2�l)

2 + . . . (9)

(k/kNL)4 for k . 0.1 h Mpc�1 (10)

(k/kNL)2 for k . small introduced by spurios e↵ects (11)

h!i!ji⌧ higher order ⇠ �D(~k + ~k0) �ij c4
v

H2

kNL
3

✓
k

kNL

◆7+2n

, (12)

P�⇡ (13)

P11 =
1

kNL
3

✓
k

kNL

◆�3/2

(14)

f loc
NL ⇠

1

e�ciency
& 1 (15)

⇤2
U & ⇤2

min ⇠ 103H2 (16)

) (17)

⇡̇3
c

⇤2
U

, ⇤4
U ⇠ c5

sḢM2
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• We will define a manifestly convergent perturbation theory

– where the ingredient is                                                                                                  
an fluid-like system with 

A well defined perturbation theory
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• 2-loop in the EFT, with IR resummation

• Data go as                : factor of 200 more modes than naive

Bottom line result
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Construction of the
Effective Field Theory
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• On short distances, we have point-like particles

– they move

– induce overdensities

– Source gravity

Point-like Particle versus Extended Objects
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• But we cannot describe point-like particles: we need to focus on long distances. 

– We deal with Extended objects

• they move differently:

Point-like Particle versus Extended Objects

Friday, January 31, 14



• But we cannot describe point-like particles: we need to focus on long distances. 

– We deal with Extended objects

• they move differently:

• the center of mass moves from force on center of mass, but also from tidal force 
proportional to quadrupole of mass distribution

– there is also a force that comes when regions overlap.

Point-like Particle versus Extended Objects
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• But we cannot describe point-like particles: we need to focus on long distances. 

– We deal with Extended objects

• they induce number over-densities and real-space multipole moments 

• they source gravity with the overall mass

• These equations can be derived from smoothing the point-particle equations

– but actually these are the assumption-less equations

Point-like Particle versus Extended Objects
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• Similar to treatment of material polarizability:

• Take moments:

• Expectation value

• Response (non-local in time)

• Stochastic noise

• Overall

•  In summary: we obtain an expression just in terms of long-wavelength variables

How do we treat the new terms?
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• For local EFT, we need hierarchy of scales.

– In space we are ok

– In time we are not ok: all modes evolve with time-scale of order Hubble

•            The EFT is local in space, non-local in time
– Technically it does not affect much because the linear propagator is local in space

This EFT is non-local in time
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than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• Similar to treatment for material polarizability:

• Short distance physics is taken into account by expectation value, response, and noise

• Force equation breaks when

– force on center of mass ~ force from tidal forces

• Poisson equation breaks when

– gravitational potential from quadrupole moment ~ the one from center of mass

• By dimensional analysis, this happens for distances shorter than a critical length

– the non-linear scale

– on long distances,                 , write as many terms as precision requires.

• Manifestly convergent expansion in 

When do we stop?
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than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• In the universe, finite-size particles move

• In Lagrangian space, we do not expand in

• In Eulerian, we do: we describe particles from a fixed position

Connecting with the Eulerian Treatment
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• If we expand the exponential, we expand in                    

– This means that we describe the motion of the extended object as seen from a fixed 
point in space

• We get the Eulerian-point-of-view description of a continuum of particles

• The resulting equations are equivalent to Eulerian fluid-like equations

– here it appears a non trivial stress tensor for the long-distance fluid

Connecting with the Eulerian Treatment
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(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• Can the short distance non-linearities change completely the overall expansion rate of 
the universe, possibly leading to acceleration without         ?  

• In terms of the short distance perturbation, the effective stress tensor reads

• when objects virialize, the induced pressure vanish

– ultraviolet modes do not contribute (like in SUSY) 

• The backreaction is dominated by modes at the virialization scale 

A non-renormalization theorem
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Perturbation Theory
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• In the EFT we can solve iteratively (loop expansion) 

• To estimate

– Approximate as piecewise scaling universe

Perturbation Theory within the EFT
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with counter-terms and can be “integrated out”. As a result, to understand the structure of the
perturbative expansion, we need only understand the behavior of P

11

(k) in the vicinity of the k
of interest.

It is easiest to illustrate the power of the EFTofLSS in the context of a scaling universe [6, 8]
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P
11

(k) = (2⇡)3

1

k3

NL

✓

k

k
NL

◆

n

. (5)

The advantage of such scaling universes is that their behavior at a given loop order can be
determined by dimensional analysis and symmetries. As we will show in the next subsection, for
a given loop order L, the result scales as (k/k

NL

)(3+n)LP
11

. Therefore, given k
NL

and n, each order
in perturbation theory can be estimated reliably.

In order to gain intuition for calculation in the real universe, it is useful to approximate the
linear power spectrum by a sequence of power laws. This approximation will miss important oscil-
lationary features that are present in the matter power spectrum, the Baryon Acoustic Oscillation,
but it should be a good approximation to estimate the size of the various contributions. As our
primary interest is pushing k towards the non-linear scale, we are interested in the behavior in
the range k ⇠ 0.1 � 1 h Mpc�1. By fitting power laws to the linear power spectrum of the real
universe, we find that a useful approximation is
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where k̃
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= (k0.9
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)1/1.3. The results of the fit are shown in Fig. 1 with the fit parameters

k
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tr

= 0.25 h Mpc�1 k̃
NL

= 1.8 h Mpc�1 . (7)

The appearance5 of such high scales suggests that the perturbative expansion may be reliable well
beyond k ⇠ 0.1 h Mpc�1.

The rest of this section will be devoted to understanding the size of corrections in the real
universe given the parameters from the above fit. For the purpose of understanding the scaling
of perturbations (Section 3.2), we will consider the scaling n = �3/2 to gain intuition. However,
when it comes to making estimates for the real universe (Section 3.4), we will focus on n = �2.1
for two reasons6. First, from the fit in Fig. 1, we see that n = �2.1 provides an extremely good
fit to P

11

from k = 0.3 h Mpc�1 to k = 0.7 h Mpc�1 . Second, we will find that higher order
corrections are expected to become important around k = 0.5 h Mpc�1 , which is well inside the
n = �2.1 scaling regime.

5Our k
NL

values are large due to the normalization of the power spectrum by (2⇡)3, rather than the more
conventional 2⇡2. This normalization is motivated by the loop counting in the next subsection and by explicit
calculations, like those in Appendix A.

6For some purposes, we could use n = �2 to estimate the k/k
NL

scaling. However, the best fit value of k
NL

depends sensitively on n. For example, the fit holding n = �2 fixed gives k
NL

⇠ 3.5 h Mpc�1 . The di↵erence
between n = �2.1 and n = �2 is magnified when we raise k
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to large powers.
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• Regularization and renormalization of loops (scaling universe)

– evaluate with cutoff. By dim analysis:

Perturbation Theory within the EFT
UV convergent. If we regularize it with a cuto↵ ⇤, dimensional analysis allows us to conclude
that, after integration, P I
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will take the form
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where all the coe�cients c...

...

are expected to be numbers of order one. In the above formula, we
have used the fact that the diagrams P I
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and P I

33

are not divergent for n = �3/2, so the divergent
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, so we have expressed it in that way for simplicity. Here the superscript, I,
of P I
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, refers to “irreducible” diagrams, which means that they do not reduce to combinations of
lower order diagrams. Roughly speaking, this means that all but one of the loop integrations are
nested and are not independent. Only one azimuthal angular integral is independent, explaining
the overall factor of (2⇡) in (9). We will consider the “reducible” diagrams8 in the next subsection.
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8Here irreducible is not the same as one-particle irreducible (1PI). Specifically, all non-1PI diagrams are re-
ducible, by our definition, but some 1PI diagrams are also reducible.
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ċs

csH
(15)

Z
d4x

⇥
(@�)2 + V (�)

⇤
(16)

) fNL ⇠ �

H
(17)

Z
d4x M4 ⇡̇4 (18)

Z
d3x


(@�)2 +

1

M4n
(@n�)4

�
(19)

NG ⇠ H2

⇤2
U

) ⇤min, Planck
U ' 2 ⇤min, WMAP

U (20)

f equil., orthog.
NL ⇠ 1 ) ⇤4

U & ḢM2
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• Regularization and renormalization of loops (scaling universe)

– evaluate with cutoff. By dim analysis:

– absence of counterterm

Perturbation Theory within the EFT
UV convergent. If we regularize it with a cuto↵ ⇤, dimensional analysis allows us to conclude
that, after integration, P I
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where all the coe�cients c...

...

are expected to be numbers of order one. In the above formula, we
have used the fact that the diagrams P I

42
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33

are not divergent for n = �3/2, so the divergent
terms come only from P I
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and are therefore proportional to P
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and
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, so we have expressed it in that way for simplicity. Here the superscript, I,
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, refers to “irreducible” diagrams, which means that they do not reduce to combinations of
lower order diagrams. Roughly speaking, this means that all but one of the loop integrations are
nested and are not independent. Only one azimuthal angular integral is independent, explaining
the overall factor of (2⇡) in (9). We will consider the “reducible” diagrams8 in the next subsection.

Each of the ⇤ dependent terms above needs to have a counter-term that cancels the ⇤ depen-
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can be verified numerically that c⇤
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8Here irreducible is not the same as one-particle irreducible (1PI). Specifically, all non-1PI diagrams are re-
ducible, by our definition, but some 1PI diagrams are also reducible.
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• Regularization and renormalization of loops (scaling universe)

– evaluate with cutoff. By dim analysis:

– absence of counterterm

– One divergent term

– Sum up and

Perturbation Theory within the EFT
UV convergent. If we regularize it with a cuto↵ ⇤, dimensional analysis allows us to conclude
that, after integration, P I
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where all the coe�cients c...

...

are expected to be numbers of order one. In the above formula, we
have used the fact that the diagrams P I

42
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33

are not divergent for n = �3/2, so the divergent
terms come only from P I
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, so we have expressed it in that way for simplicity. Here the superscript, I,
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, refers to “irreducible” diagrams, which means that they do not reduce to combinations of
lower order diagrams. Roughly speaking, this means that all but one of the loop integrations are
nested and are not independent. Only one azimuthal angular integral is independent, explaining
the overall factor of (2⇡) in (9). We will consider the “reducible” diagrams8 in the next subsection.

Each of the ⇤ dependent terms above needs to have a counter-term that cancels the ⇤ depen-
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8Here irreducible is not the same as one-particle irreducible (1PI). Specifically, all non-1PI diagrams are re-
ducible, by our definition, but some 1PI diagrams are also reducible.
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• Has everything being lost?

– to make result finite, we need to add a counterterm with finite part

• need to fit to data (like a coupling constant), but cannot fit the power
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• Has everything being lost?

– to make result finite, we need to add a counterterm with finite part

• need to fit to data (like a coupling constant), but cannot fit the power

– the subleading finite term is not degenerate with a counterterm.

• it cannot be changed

• it is calculable by the EFT 

– so it predicts an observation 

Calculable terms in the EFT

UV convergent. If we regularize it with a cuto↵ ⇤, dimensional analysis allows us to conclude
that, after integration, P I
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will take the form
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where all the coe�cients c...

...

are expected to be numbers of order one. In the above formula, we
have used the fact that the diagrams P I

42

and P I

33

are not divergent for n = �3/2, so the divergent
terms come only from P I

51

and are therefore proportional to P
11

. The finite parts from P I

42

and
P I

33

are not proportional to P
11

, but have the same scaling in terms of k and k
NL

as the term
proportional to cfinite

1

, so we have expressed it in that way for simplicity. Here the superscript, I,
of P I

...

, refers to “irreducible” diagrams, which means that they do not reduce to combinations of
lower order diagrams. Roughly speaking, this means that all but one of the loop integrations are
nested and are not independent. Only one azimuthal angular integral is independent, explaining
the overall factor of (2⇡) in (9). We will consider the “reducible” diagrams8 in the next subsection.

Each of the ⇤ dependent terms above needs to have a counter-term that cancels the ⇤ depen-
dence. For example, the second term proportional to c⇤

1

can be cancelled by the counter-term

P
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Notice that we multiplied by a factor of (2⇡) in order to make the scaling match P I
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with c⇤

1

and �c
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being ⇤-independent, c⇤

1

can cancel the UV divergence while �c
counter

gives
a finite contribution. The first and third terms in (9), proportional to c⇤

0

and c⇤

2

respectively,
cannot be cancelled by any counter-term available in the EFTofLSS, as such terms would violate
the combination of rotation invariance and locality, which requires analyticity in Fourier space. It
can be verified numerically that c⇤
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= c⇤

2

= 0, as required [8].
By taking ⇤ su�ciently large, we can neglect the terms that depend on ⇤ in a vanishing way

as ⇤!1. Therefore, we have
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8Here irreducible is not the same as one-particle irreducible (1PI). Specifically, all non-1PI diagrams are re-
ducible, by our definition, but some 1PI diagrams are also reducible.
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Appendix

A One and Two-Loop Results in the Scaling Universe

In this appendix we collect some results from calculations in the scaling universe. For the n = �2
scaling universe, the 1-loop diagrams are given by13 [6]
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For comparison, the two loop result is given by
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For the n = �3/2 scaling universe, the results are slightly more surprising. At 1-loop, one has
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We see that there will be a significant cancelation between P
22

and P
13

in computing P
1-loop

. These
results become more dramatic when we consider two-loops,

P
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1

= 0.044 (67)

The small size of the ⇤-independent term might be surprising, given our loop counting we expected
O(2⇡), but the small number can be understood as cancellations due to the relative sizes of 2P

22

and P
13

, which is the combination that appears in reducible diagrams not yet heavily suppressed
at 2-loops.

B SPT Formulas up to Two Loops

The loop corrections to the power spectrum in SPT are conventionally written in terms of separate
diagrams, which themselves are integrals of factors of P

11

times symmetrized kernels F
(s)

n

and G
(s)

n

13Our conventions for k
NL

di↵er from [6] by kours
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= (4⇡)1/(3+n) ktheirs
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.
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• Each loop-order      contributed a finite, calculable term of order 

– each higher-loop is smaller and smaller

• This happen after canceling the divergencies with counterterms

– at each higher loop one needs to adjust the lower order counterterms

• by this is not a new fit, this is calculable

Lesson

Appendix

A One and Two-Loop Results in the Scaling Universe

In this appendix we collect some results from calculations in the scaling universe. For the n = �2
scaling universe, the 1-loop diagrams are given by13 [6]
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The small size of the ⇤-independent term might be surprising, given our loop counting we expected
O(2⇡), but the small number can be understood as cancellations due to the relative sizes of 2P
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and P
13

, which is the combination that appears in reducible diagrams not yet heavily suppressed
at 2-loops.
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We see that even though P
51

is arbitrarily large, the sum of P
51

and of its counter-term is finite. The
divergent term in P

51

is reabsorbed by the counter-term, and so we identify it with the contribution
of the counter-term. Notice that this part is degenerate with the counter-term, and there is no
way to physically distinguish these two contributions. However, the part of P I

2-loop

proportional to
cfinite

1

is not degenerate with a counter-term, and is therefore important to calculate. Computing
this term is indeed the only reason why we need to compute the full loop. Following the standard
jargon of EFT in particle physics, we can call it the “calculable,” or “finite,” part of P

2-loop

:

P I

2-loop finite

= (2⇡)cfinite

1

✓

k

k
NL

◆

3

P
11

(13)

What we have just done is what in the context of particle physics is usually called regularization
(for us putting a cuto↵ to the diagrams), and renormalization (for us adding a counter-term and
taking ⇤ ! 1). The most important here is that the finite, or calculable, contribution of the
2-loop diagram scales as (k/k

NL

)3/2 and is smaller than the tree and one-loop contributions when
k ⌧ k

NL

.

One can repeat the exact same logic for general n to determine both the divergent contributions
and the remaining finite terms. Specifically, the divergences are given by

P I

L-loops diverg.

= (2⇡)4cL-loop diverg.

1

k3

NL

✓

⇤

k
NL

◆

(3+n)L�2

✓

k

k
NL

◆

2

✓

k

k
NL

◆

n

+ subleading divergences

(14)
while the finite contribution is given by
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. (16)

All the terms that depend on ⇤, including P
L-loops diverg.

, can be removed by adding counter-terms
in the equations of motion of �. As in the above example, the leading divergence can always
be removed by including the appropriate counter-term (e.g. c2

s

@2� 9). In this sense, the only
meaningful term is P

L-loops finite

.
A new counter-term is required for any coe�cient that depends on ⇤. By reversing this logic,

we can then determine the possible ⇤ dependence of a given order in SPT by comparing to the
available counter-terms. The scaling of the counter-terms are determined both by the number of
loops at which they are evaluated, L, and the derivatives of the counter-term, 2M , where M is a

9This counterterm can be written as the usual speed of sound only in the limit in which the response time of
the short distance physics to the long wavelength fluctuations is very short. As explained later, this di↵erence is
irrelevant if the counterterm is evaluated at tree level.
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• At 1-loop, we add a counterterm

•        is chosen by fitting to data so that 

• At 2-loop, there is a divergency that requires the same counterterm. 

– Adjust                                    in a known way (without looking again at the data) 

• Up to 2-loops no additional counterterm is needed

Example

k ( h Mpc�1)

P
i

0.0 0.2 0.4 0.6 0.8

-15

-10

-5

0

Figure 3: The functions P̃
1,2,3

are solid, dashed and dotted lines respectively.

4.2 Results

We will now compare our calculations with the results of simulations. Specifically, we use the
Coyote interpolator [14–17] to generate a nonlinear matter power spectrum with cosmological
parameters h = 0.7136, ⌦

m

= 0.258, ⌦
b

= 0.0441, n
s

= 0.963, and �
8

= 0.796. We use CAMB [9]
to generate our linear power spectrum, and the recursive implementation of the kernels given in the
Copter library [5], but combined to be IR-safe as described in [8], with all numerical integrations
performed using Monte Carlo integration routines from the CUBA library [18], to compute P

1-loop

and P
2-loop

.
First, let us outline the procedure schematically: in order to determine c2

s(1)

, we consider the
1-loop EFT prediction,

P
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We determine c2

s(1)

by fitting P
EFT-1-loop

to the non-linear power spectrum at low k, where P
1-loop

is expected to be reliable. After determining c2
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, the two-loop power spectrum is given by
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20

determined simply subtracting the excess in P
2-loop

at scales where the finite terms are expected to
be negligible. Therefore, although we have two parameters that are not included in SPT, c2

s(1)

and

c2

s(2)

, only c2

s(1)

is determined by fitting the 1-loop power spectrum to data and c2

s(2)

is determined

from perturbation theory 10. Thus, there is no need to fit P
2-loop

to the non-linear data to make
predictions up to k ⇠ 0.5 h Mpc�1 . Of course, there can be obstacles to performing this procedure
in practice, for a variety of reasons we will discuss.

4.1 Deriving the Counter-terms

To derive the counterterms we require for one- and two-loop calculations of the power spectrum
from the short-distance physics, we should specify the form of the e↵ective stress-energy ⌧ ij intro-
duced in Sec. 2 to higher order in k/k

NL

. By the equivalence principle, the short modes we have
smoothed over can only influence the long modes via tidal e↵ects, so we should write ⌧ ij as an
expansion in powers and derivatives of @

i

@
j

�, where � is the gravitational potential sourced by �.
However, we should also be careful at what coordinate values we evaluate � when it appears in
⌧ ij, for the following important reason.

The EFTofLSS is local in space, but is non-local in time. Specifically, we are integrating out
modes with k & k

NL

, but all these modes have slow time-dependence, on the order of a Hubble
time. As a result, we have integrated out physics that has long range correlations in time. In this
sense, the behavior of � along a fluid element’s entire path should influence its current state. This
can be encoded writing each term in ⌧ ij as a convolution with some (unknown) time-dependent
kernel:
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where the ellipses denote higher powers and derivatives of @
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j

�. The partial derivatives are
evaluated with respect to ~x but the gravitational potential � is evaluated along the path ~x
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[⌧, ⌧ 0]
of a fluid element, defined recursively by
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10We could determine c2

s(1) explicitly by imposing, similarly to what is usually done in particle physics, that
the one-loop prediction for the power spectrum equals the non-linear spectrum at some renormalization scale k

ren

.
Then, we could compute c2

s(2) completely from perturbation theory, by imposing that the one- and two-loop
predictions are equal at k

ren

. This yields the following expression for c2
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In practice, we do not apply exactly this procedure for the reasons highlighted in the text.
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UV convergent. If we regularize it with a cuto↵ ⇤, dimensional analysis allows us to conclude
that, after integration, P I
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where all the coe�cients c...

...

are expected to be numbers of order one. In the above formula, we
have used the fact that the diagrams P I
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are not divergent for n = �3/2, so the divergent
terms come only from P I

51

and are therefore proportional to P
11

. The finite parts from P I

42

and
P I

33

are not proportional to P
11

, but have the same scaling in terms of k and k
NL

as the term
proportional to cfinite

1

, so we have expressed it in that way for simplicity. Here the superscript, I, of
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, refers to “irreducible” diagrams, which means that they do not reduce to combinations of lower
order diagrams. Roughly speaking, this means that all but one of the loop integrations are nested
and are not independent. Only one azimuthal angular integral is independent, explaining the
overall factor of (2⇡) in (10). We will consider the “reducible” diagrams8 in the next subsection.
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with c⇤
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being ⇤-independent, c⇤
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can cancel the UV divergence while �c
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gives
a finite contribution. The first and third terms in (10), proportional to c⇤
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respectively,
cannot be cancelled by any counter-term available in the EFTofLSS, as such terms would violate

8Here irreducible is not the same as one-particle irreducible (1PI). Specifically, all non-1PI diagrams are re-
ducible, by our definition, but some 1PI diagrams are also reducible.
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• The 3-loop contribution should be negligible up to k ⇠ 0.5 h Mpc�1 .

• No additional counter-terms beyond the three mentioned above, should contribute up to
k ⇠ 0.5 h Mpc�1 . All the terms we include are all computable in terms of the single coe�-
cient c2

s(1)

.

Based on these observations, we should find agreement between the non-linear data and the 2-
loop EFT up to k ⇠ 0.5 h Mpc�1 by considering only the parameter c2

s

(that receives a 1-loop and
2-loop contribution).

It is worth emphasizing that because c2

s(2)

is introduced to remove the UV-dependence from

the two-loop integrals, we can actually determine c2

s(2)

without fitting to non-linear data. It can be
determined simply subtracting the excess in P

2-loop

at scales where the finite terms are expected to
be negligible. Therefore, although we have two parameters that are not included in SPT, c2

s(1)

and

c2

s(2)

, only c2

s(1)

is determined by fitting the 1-loop power spectrum to data and c2

s(2)

is determined

from perturbation theory 10. Thus, there is no need to fit P
2-loop

to the non-linear data to make
predictions up to k ⇠ 0.5 h Mpc�1 . Of course, there can be obstacles to performing this procedure
in practice, for a variety of reasons we will discuss.

4.1 Deriving the Counter-terms

To derive the counterterms we require for one- and two-loop calculations of the power spectrum
from the short-distance physics, we should specify the form of the e↵ective stress-energy ⌧ ij intro-
duced in Sec. 2 to higher order in k/k

NL

. By the equivalence principle, the short modes we have
smoothed over can only influence the long modes via tidal e↵ects, so we should write ⌧ ij as an
expansion in powers and derivatives of @

i

@
j

�, where � is the gravitational potential sourced by �.
However, we should also be careful at what coordinate values we evaluate � when it appears in
⌧ ij, for the following important reason.

The EFTofLSS is local in space, but is non-local in time. Specifically, we are integrating out
modes with k & k

NL

, but all these modes have slow time-dependence, on the order of a Hubble
time. As a result, we have integrated out physics that has long range correlations in time. In this

10We could determine c2

s(1) explicitly by imposing, similarly to what is usually done in particle physics, that
the one-loop prediction for the power spectrum equals the non-linear spectrum at some renormalization scale k
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.
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predictions are equal at k
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In practice, we do not apply exactly this procedure for the reasons highlighted in the text.
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In practice, we do not apply exactly this procedure for the reasons highlighted in the text.
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performed using Monte Carlo integration routines from the CUBA library [18], to compute P
1-loop

and P
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.
First, let us outline the procedure schematically: in order to determine c2
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1-loop EFT prediction,
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We determine c2

s(1)

by fitting P
EFT-1-loop

to the non-linear power spectrum at low k, where P
1-loop

is expected to be reliable. After determining c2
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, the two-loop power spectrum is given by
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The purpose of c2

s(2)

is to cancel the ( k
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)2P
11

dependence of P
2-loop

that arises from loop momenta

with q � k. Because this contribution is larger than P finite

2-loop

, we can determine it by comparing
to P

EFT-1-loop

in the region where P finite

2-loop

is negligible. By doing so, we can determine all the
parameters in P

EFT-2-loop

without ever fitting the 2-loop power spectrum to the nonlinear data
directly!

However, implementing the above procedure is challenging. It is easy to measure c2

s(1)

and

c2

s(2)

when they contribute significantly to the power spectrum, namely above k ⇠ 0.1 h Mpc�1 .
However, in this regime, it is di�cult to determine, a priori, at which range of k the contribution
from P finite

2-loop

can be ignored (which is required for both measurements to be valid). If one works
at k ⌧ 0.1 h Mpc�1 , one can safely use 2(2⇡)(c2
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, one requires very high precision nonlinear data to make the

measurement of c2
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.
In practice, it appears that the real universe is much better behaved than one would have

naively expected. As we discussed in Section 3.1, in the regime 0.1 h Mpc�1 < k < 0.3 h Mpc�1 ,
the universe behaves much like a scaling universe with n = �1.7 ⇠ �3/2. As we show in
Appendix A, in the n = �3/2 universe P finite

2-loop

is smaller than our loop counting would suggest by
a factor of 10�2. As a result, we can trust P

EFT-1-loop

up to k ⇠ k
tr

, which is a much higher scale
than our naive counting would suggest. Therefore, in the range 0.1 h Mpc�1 < k < 0.25 h Mpc�1 ,
we can safely measure c2

s(1)

and c2

s(2)

by implementing the above procedure. This is very fortunate
because the error on available non-linear data is too large to apply to above procedure at k ⌧
0.1 h Mpc�1 .

We determine c2

s(1)

from a least-�2 fit of the P
EFT-1-loop

to the Coyote power spectrum over the
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Figure 4: Comparison of P
EFT-1-loop

normalized to non-linear data. The blue curve is the best fit value
of c2

s(1)

and the blue band shows the 2-� error on c2

s(1)

. We also show the data points that are fit, along
with their 2-� errors (assuming 1 percent error on all points).

range k ⇠ 0.15� 0.25 h Mpc�1 with �k ⇠ 0.005 h Mpc�1 . From the fit, we find 11
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= (1.62± 0.033)⇥ 1
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The result of the fit is shown in Fig. 4.
Having measured c2

s(1)

, we can now fit c2

s(2)

to P
EFT-1-loop

. In performing this fit, we must make

some assumption about P
(c

s

,p)

1-loop

. For now, we will take the p!1 limit, which corresponds to the
assumption that the e↵ective stress tensor ⌧ ij is completely local in time. We now fit P

EFT-2-loop

to P
EFT-1-loop

over the range k ⇠ 0.15 � 0.25 h Mpc�1 . Here we are using the expectation that
P finite

2-loop

is negligible over this range, such that the dominant source of error is our uncertainty in
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. Using this fitting procedure, we find that
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The error bar for c2

s(2)

is smaller than c2

s(1)

because we can determine it without using the non-linear

data. In fact, for a scaling universe we can determine c2

s(2)

exactly.
In additional to statistical errors, we also have theoretical uncertainties due to the higher

orders terms we are neglecting. This includes 3-loop SPT, c2

s(1)

and c2

s(2)

evaluated at 2-loops, and
higher-order counter-terms. These contributions were estimated in Section 3.4. The two largest
uncertainties are due to

PR
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⇠ ↵(2⇡)2

✓

k

k
NL

◆

2.7
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(k) (66)
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NL
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In Fig. 5, we show the best fit P finite

2-loop

normalized to non-linear data. We have included these
two sources of uncertainty as a series of red bands. The outermost and innermost bands (at
k = 0.6 h Mpc�1 ) are from PR

3-loop

with ↵ = 1 and 1/2 respectively. The middle band is given by

4⇡c2

s(1)

k

2

k

2

NL

P
2-loop

(k). Our target is one or two percent agreement (1-�) between the power spectrum

of the EFTofLSS and the non-linear data. We have included this targets in the figures as dotted
and dashed black lines, for 1 and 2 percent (1-�) respectively. Here we have taken into account the
two percent (2-�) error in the non-linear data from Coyote by adding in quadrature the allowed
error (2 or 4 percent at 2-�) and the 2 percent error of the simulation.

Although we have been careful throughout to estimate where P
EFT-3-loop

becomes important,
there is still uncertainty in the precise order one factors. As a result, which of the three-loop
bands (if any) represents the real breakdown cannot be determined at this level. Alternatively,
we could estimate the maximum k up to which we can trust our calculation using the scale at
which P

EFT-2-loop

deviates from the non-linear data 12. We see from figure 5 that the prediction
of the EFTofLSS at 2-loop agrees with the non-linear data at redshift z = 0 at percent level
up to k ' 0.6 h Mpc�1 . This is a very remarkably high wavenumber given the results of former
perturbative calculations, as we discuss next.

Now, let us remove to our assumption of locality in time. As we discussed in the previous
section, the EFTofLSS is not local in time, but our knowledge of its non-locality is limited. We
can check how our results depend on the assumption by repeating the above procedure for di↵erent
values of p. This is shown in Fig. 6. We see that for p � 3, the best fit curves are within the 2-�

12 One possible concern in using this criterion of convergence is that we might be over fitting. But this is clearly
not the case for two reasons. First, we are fitting only one parameter in the range 0.15 h Mpc�1 < k < 0.25 h Mpc�1 ,
which is quite below the values of k where our calculation begins to fail. Second, we expect the maximum k to be
quite close to the value of k where the 3-loop term becomes important, which is indeed the case.
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• In Eulerian treatment

The Effect of Long-modes on Shorter ones

xEulerian

x0

t0
δρshort wavelength
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• Add a long `trivial’ force (trivial by GR)

• This tells you that one can resum the IR modes: this is the Lagrangian treatment

The Effect of Long-modes

δρshort wavelength

x0

xEulerian

x0

t0
δρshort wavelength

t1

time

#∇Φlong wavelenght

xEulerian

Big `trivial’ Perturbation
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• Well defined and manif. converg.

• Every perturbative order improves the agreement as it should

• We know when we should fail, and we fail when we should

EFT of Large Scale Structures
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Figure 7: Comparisons between 1-loop EFT (solid red), 2-loop EFT (solid blue) and SPT at tree
level (dotted green), one loop (dashed red), and two loops (dashed blue). The left plot shows the results
normalized to non-linear data (solid black) while dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. The red and blue bands show the 2-�
errors on the 1 and 2 loop EFT parameters respectively. The right plot is the same information without
the normalization to the non-linear data, and with the low-k region omitted for readability.
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By Fourier-transforming this equation, we find that

⇡j(a,~k) =
i kj

k2

aH⇢
b

�0(a,~k) , (70)

where �0 ⌘ @�/@a. Therefore,

h⇡j(~k, a)⇡
j

(~q, a)i =

✓

aH⇢
b

k

◆

2

h�0(~k, a)�0(~q, a)i , (71)

and we can use the perturbative solutions for �(~k, a) (see App. C) to expand the right-hand side
up to the desired order. At one loop, we get

P
⇡⇡

(a, k) =

✓

aH⇢
b

k

◆

2

⇣

[D0
1

(a)]2P
11

(k) + [D
1

(a)D0
1

(a)]2 {3P
13

(k) + 4P
22

(k)}

�6[D
1

(a)D0
1

(a)]2c̄
1

k2P
11

(k)
�

. (72)

We further apply the ansatz (58) about the time-dependent kernel K(a, a0), so that c̄
1

= (2⇡)c2

s(1)

/k2

NL

.
Before we proceed, we should emphasize that the momentum power spectrum depends sen-

sitively on the assumptions made about the time-dependence of the c
n

(a) functions defined in

27

Friday, January 31, 14



• The lines with oscillations are obtained without resummation in the IR

EFT of Large Scale Structures

with Carrasco, Foreman and Green 1310
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• we fit until                                           , as where we should stop fitting

– there are 200 more quasi linear modes than previously believed!

EFT of Large Scale Structures
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• The function we are fitting is non-trivial, and made with non-trivial objects

EFT of Large Scale Structures
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Figure 7: Comparisons between one-loop EFT (solid red), two-loop EFT (solid blue) and SPT at tree
level (dotted green), one loop (dashed red), and two loops (dashed blue). The left plot shows the results
normalized to non-linear data (solid black). The dotted black line is as in Fig. 5. The red and blue
bands show the 2-� errors on the 1 and 2 loop EFT parameters respectively. The right plot is the same
information without the normalization to the non-linear data, and with the low-k region omitted for
readability. The improvement with respect to SPT is evident. More importantly, and contrary to the case
of SPT, in the EFTofLSS higher order contributions improve the fit up to a k

max

that can be estimated
beforehand, as it should be.

5 Momenta Power Spectra at one loop

As we have seen, the EFTofLSS allows one to compute power spectra and higher-point functions
(such as bi- or trispectra) of quantities relating to the dark matter distribution, such as � and the
momentum (or mass-weighted velocity) ⇡i ⌘ ⇢vi. These predictions will involve one or more EFT
parameters (such as c2

s(1)

), and therefore, one could measure these parameters using one observable

and then use these measurements to obtain predictions for other observables 16.
In this section, we put this procedure into practice by measuring c2

s(1)

from a matter power
spectrum measured from N -body simulations, and using it to predict the power spectrum of the
divergence, or scalar, part of momentum, ⇡

S

⌘ @
i

⇡i, as well as the cross spectrum between �
and ⇡

S

. Notice that ⇡i has also a vorticity component ⇡i

V

= ✏ijk@
j

⇡k. This term is vanishingly
small at linear level, as vector modes decay in the early universe. Interesting, this term is not
sourced by the leading order c2

s(1)

-like terms that represent the linear response of the short scale
stress tensor from the long modes. It is however sourced by non-linear terms in its equations of
motion. Here we focus on ⇡

S

, whose predictions are here compared to measurements from the
same set of simulations.

16While this paper was being written, Ref. [22] appeared, which might have some overlap with the results of this
section.
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• Comparison with Standard Treatment

• Fur the EFT, change from 1-loop to 2-loop predicted

– the other new terms are clearly important

– they `conspire’ to the right answer

EFT of Large Scale Structures

performed using Monte Carlo integration routines from the CUBA library [18], to compute P
1-loop

and P
2-loop

.
First, let us outline the procedure schematically: in order to determine c2

s(1)

, we consider the
1-loop EFT prediction,

P
EFT-1-loop

= P
11

+ P
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� 2 (2⇡)c2
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11

. (61)

We determine c2

s(1)

by fitting P
EFT-1-loop

to the non-linear power spectrum at low k, where P
1-loop

is expected to be reliable. After determining c2

s(1)

, the two-loop power spectrum is given by

P
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P
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(62)
The purpose of c2

s(2)

is to cancel the ( k

k

NL

)2P
11

dependence of P
2-loop

that arises from loop momenta

with q � k. Because this contribution is larger than P finite

2-loop

, we can determine it by comparing
to P

EFT-1-loop

in the region where P finite

2-loop

is negligible. By doing so, we can determine all the
parameters in P

EFT-2-loop

without ever fitting the 2-loop power spectrum to the nonlinear data
directly!

However, implementing the above procedure is challenging. It is easy to measure c2

s(1)

and

c2

s(2)

when they contribute significantly to the power spectrum, namely above k ⇠ 0.1 h Mpc�1 .
However, in this regime, it is di�cult to determine, a priori, at which range of k the contribution
from P finite

2-loop

can be ignored (which is required for both measurements to be valid). If one works
at k ⌧ 0.1 h Mpc�1 , one can safely use 2(2⇡)(c2

s(1)

+ c2

s(2)

)( k

k

NL

)2P
11

� P finite

2-loop

. However, because

2(2⇡)(c2

s(1)

+ c2

s(2)

)( k

k

NL

)2P
11

⌧ P
11

, one requires very high precision nonlinear data to make the

measurement of c2

s(1)

.
In practice, it appears that the real universe is much better behaved than one would have

naively expected. As we discussed in Section 3.1, in the regime 0.1 h Mpc�1 < k < 0.3 h Mpc�1 ,
the universe behaves much like a scaling universe with n = �1.7 ⇠ �3/2. As we show in
Appendix A, in the n = �3/2 universe P finite

2-loop

is smaller than our loop counting would suggest by
a factor of 10�2. As a result, we can trust P

EFT-1-loop

up to k ⇠ k
tr

, which is a much higher scale
than our naive counting would suggest. Therefore, in the range 0.1 h Mpc�1 < k < 0.25 h Mpc�1 ,
we can safely measure c2

s(1)

and c2

s(2)

by implementing the above procedure. This is very fortunate
because the error on available non-linear data is too large to apply to above procedure at k ⌧
0.1 h Mpc�1 .

We determine c2

s(1)

from a least-�2 fit of the P
EFT-1-loop

to the Coyote power spectrum over the
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• The EFT parameters can be measured from small N-body simulations

– similar to what happens in QCD: lattice sims

• As you change smoothing scale, the result changes

• Perfect agreement with fitting at low energies

– like measuring       from lattice sims and          scattering

Measuring parameters from N-body sims.

goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s
(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• A manifestly convergent perturbation theory

• we fit until                                           , as where we should stop fitting

– there are 200 more quasi linear modes than previously believed!

– huge impact on possibilities for

• Can all of us handle it?! This is an opportunity and a challenge for us 

– Primordial Cosmology can still have a bright near future!

EFT of Large Scale Structures

✓
kmax

EFT

kmax
old

◆ 3
2

⇠
✓

0.5

0.15

◆ 3
2

' 6 (52)

Improvement ⇠ 7 (53)

kmax ' 0.6 h Mpc�1 (54)

kmax ' 0.1 h Mpc�1 (55)

�f equil., orthog.
NL (Planck) ⇠ 75 (56)

�f equil., orthog.
NL (Euclid) ⇠ 10 (57)

�T (~k, ⌘) = �Tin(~k)⇥ cos(k ⌘ + �~k) ) �T (~k, ⌘now) = �Tin(~k)⇥ cos(k ⌘rec + �~k) (58)

k (59)

h@2
i [⌧(~r + ~r0)]l �l(~r

0)i (60)

h⇣3i 6= 0 (61)

h⇣3i
h⇣2i3/2

. 10�2 ⇠ 1

N
1/2
pix

(62)

�̈l ⇠ c2
s@

2� + @2 �⌧

⇢b

(63)

�⇢

⇢
(64)

k [h/Mpc] (65)

�⇢/⇢ & 1 (66)

Small cs ) Large non�Gaussianities (67)

k3
max (68)

) h�2
l istoch. ⇠

✓
k

kNL

◆4

(69)

k ⌧ kNL : (70)

�l,stoch. ⇠ @2

H2

�⌧

⇢b

) h�2
l istoch. ⇠

✓
k

H

◆4

h�⌧ 2i (71)

h�2
l ics ⇠

✓
k

kNL

◆2

h�2
l itree (72)

h�2
l itree ⇠

✓
k

kNL

◆n

, hv2
l itree ⇠

H2

k2
h�2

l itree , h�2itree ⇠ H4

k4
h�2

l itree (73)

h�2
l iL�loops ⇠ h�2

l iL+1
tree ⇠ h�2

l itree ⇥
✓

k

kNL

◆n⇥L

(74)

k

kNL

,
1

kMFP

⇠ vDMH�1 ⇠ 1

kNL

(75)

Sint ⇠
Z

⇡̇ O (76)

2

k ( h Mpc�1)
0.1 0.2 0.3 0.4 0.5 0.6

0.96

0.98

1.00

1.02

1.04

P
/P

n
o
n
l
i
n
e
a
r

k ( h Mpc�1)

P

0.2 0.3 0.4 0.5 0.6

1000

1500

2000

Figure 7: Comparisons between 1-loop EFT (solid red), 2-loop EFT (solid blue) and SPT at tree
level (dotted green), one loop (dashed red), and two loops (dashed blue). The left plot shows the results
normalized to non-linear data (solid black) while dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. The red and blue bands show the 2-�
errors on the 1 and 2 loop EFT parameters respectively. The right plot is the same information without
the normalization to the non-linear data, and with the low-k region omitted for readability.
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and we can use the perturbative solutions for �(~k, a) (see App. C) to expand the right-hand side
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• Many (most?) of the features of QFT appear in the EFT of LSS:

– Loops, divergencies, counterterms and renormalization

– non-renormalization theorems

– Calculable and non-calculable terms

– Measurements in lattice and lattice-running 

– IR-divergencies

• Many calculations and verifications to do:

– like if we just learned perturbative QCD, and LHC was soon turning on

• higher      -point functions

• Validation with simulation

• Bias, Redshift distortions (similar to hadronization in QCD)

• To me, what is at stake, in the 10 year future of primordial cosmology

• With a growing number of (young) collaborators

Conclusions
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