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What has Planck done to theory?
e Planck improve limits wrt WMAP by a factor of ~3.

.3
* We can think of Inflation as being characterized by higher dimension opt.s e
2 U
e Since NG ~ i — Amin, Planck ~ \/§ Amin,WMAP
A%] U U

e (Given the absence of known or nearby threshold, this 1s not much.
e Planck 1s great
e but Planck is not good enough

— not Plank’s fault, but Nature’s faults

e Please complain with Nature

* Planck was an opportunity for a detection, not much an opportunity to change the

theory 1n absence of detection

* On theory side, little changes

— contrary for example to LHC, which was crossing thresholds

e Any result from LHC is changing the theory
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What has Planck done to theory?

e In order to increase our knowledge of Inflation, we need more modes.
e Large Scale Structures offer the ideal place for hunting for more modes

— I will show results that, if verified and extended to all observable, can increase

limits to

equil, orthog, loc.
NL 5 1

— We can argue that absence of detection of NG up to this level implies

observational proof of slow-roll inflation

 This 1s learning even without detection

e This also offers us a way to study the large scale structures of the univrse
— which are nice

e Implications for dark energy, neutrinos, light species, etc.
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What 1s next in Cosmology?

* Plank will increase by a factor of less than 2.

* Next are Large Scale Structures

e Like moving from LEP to LHC:

—much dirtier, but much more potential
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The IR-resummed
Effective Theory of Large Scale Structure

The Lagrangian-space
Effective Theory of Large Scale Structure

The Effective Theory of
Large Scale Structure at 2-loops

The 2-loop power spectrum
and the IR safe integrand

The Effective Theory of
Large Scale Structure

Cosmological Non-linearities
as an Effective Fluid

with Zaldarriaga to appear

with Porto and Zaldarriaga 1311

with Carrasco, Foreman and Green 1310

with Carrasco, Foreman and Green 1304

with Carrasco and Hertzberg JHEP 2012

with Baumann, Nicolis and Zaldarriaga JCAP 2012
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A well defined perturbation theory

e Non-linearities at short scale

5
K PKk) ~ i

P

10}

——— K [h/Mpc]
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theory

A well defined perturbation

ties at short scale

1mneari

e Non-l

op

EP((k) ~

P

b

0.1

10}
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A well defined perturbation theory

e Standard perturbation theory is not well defined

e Standard techniques

_perfectfluid ~ p+ i (pv') =0,

;i
p

6 ~ /GreenFunction x Source™ [5(1),5(2), o 5(”_1)}

— expand 1n and solve iteratively

S (5262 ~ / 2 (50,00, (605D

e Perturbative equations break in the UV

0o~ ——>1 for k> knt |
kni Kiow U

— no perfect fluid if we truncate Knigh
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Idea of the
Effective Field Theory

Friday, January 31, 14



Consider a dielectric material

* Very complicated on atomic scales d,,i.

* On long distances d > datomic

— we can describe atoms with their gross characteristics

e polarizability dj; .. ~ o Eqeenic - @Verage response to electric field
— we are led to a uniform, smooth material, with just some macroscopic properties

e we simply solve Maxwell dielectric equations, we do not solve for each atom.

e The universe looks like a dielectric

Dielectric Fluid
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A well defined perturbation theory

 We will define a manifestly convergent perturbation theory

long modes short modes I
*
effective theory A kNt

— where the ingredient 1s

an fluid-like system with

5g, Uy, (I)g K 1

T ] A

long modes short modes

A
\ J

- [

ENL A

effective theory
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Bottom line result
e 2-loop in the EFT, with IR resummation
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e Data go as kf’n e factor of 200 more modes than naive
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Construction of the
Effective Field Theory
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Point-like Particle versus Extended Objects

* On short distances, we have point-like particles

— they move

PZGn) | o
dn? dn

. }
2(qn) _ —0;®[Z(q, )]

— induce overdensities

14 0(Z,n) /dgff 53(5 —Z(q,n))

[det (32;)]_1 = [det (1 + g—(‘;;)]_l

— Source gravity

3
O*D(Z,n) = 57—[297,26(5;’,77)
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Point-like Particle versus Extended Objects

* But we cannot describe point-like particles: we need to focus on long distances.

— We deal with Extended objects

* they move differently:

Z(Gm) |, o
dn? dn

3 B}
2qn) _ —0;®[Z(q. )]
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Point-like Particle versus Extended Objects

* But we cannot describe point-like particles: we need to focus on long distances.

— We deal with Extended objects

* they move differently:

d?Zr (G dz7.(q 1 = o 1 o o
d'(/é l)+H (g,j ! - O (I)L[:L(q”")]+§QU(‘1~"/)didi‘I’L[tL(q-"/)]+~° +as(q,n)

e the center of mass moves from force on center of mass, but also from tidal force

proportional to quadrupole of mass distribution

—there 1s also a force that comes when regions overlap.

r  Zilqr.m)

(g2, n)

Friday, January 31, 14



Point-like Particle versus Extended Objects

* But we cannot describe point-like particles: we need to focus on long distances.

— We deal with Extended objects

* they induce number over-densities and real-space multipole moments

/ d*q 0° (% — Z1(q,n))
Qiir(Z,n) = / d°q Q™'7(q,n)8° (& — ZL(q. m))

1+ 6p,.0(Z,1n)

e they source gravity with the overall mass

1

a HQQIH (5111.14(??- 7})

¢ :3 ‘ ~ — 1- ‘ 7 (= 3
();)(I)] — §H2Qm (()71.14(‘1’- '7) + 5()'().} Ql‘](;l"' ’]) E

()Idlc)leJk(T I]) + - ) = .

* These equations can be derived from smoothing the point-particle equations

—but actually these are the assumption-less equations
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How do we treat the new terms?

e Similar to treatment of material polarizability: ci;hpole ~ d_i)ntrinsic +tak

e Take moments:

QY =(QY)s + Qs + Q%
e Expectation value

(Q7)s = 15(n)d;

e Response (non-local in time) ;%(cj' n) = / dn’ Aij’lk(n; 00,0k PL(ZL (7, 7))

e Stochastic noise

(@s) =0 (QsQs...) #0

e Overall

Qij =150 +110:0,Pr + ...+ Qijs

 In summary: we obtain an expression just in terms of long-wavelength variables
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This EFT 1s non-local 1in time

e For local EFT, we need hierarchy of scales.

— In space we are ok

with Carrasco, Foreman and Green 1310

Carroll, Leichenauer, Pollak 1310

* —> The EFT 1s local in space, non-local in time

— Technically it does not affect much because the linear propagator is local in space
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When do we stop?

 Similar to treatment for material polarizability: dy; o ~ o Ejectric S = ¢ EiE;
e Short distance physics 1s taken into account by expectation value, response, and noise
* Force equation breaks when &.[71(7,n)] ~ QY (7, n)0:0;®L[ZL(q,n)]
— force on center of mass ~ force from tidal forces
 Poisson equation breaks when 0,.(Z,n) ~ 8,0;Q7(%,n)
— gravitational potential from quadrupole moment ~ the one from center of mass
By dimensional analysis, this happens for distances shorter than a critical length
— the non-linear scale % 2 A

— on long distances, k < ki, write as many terms as precision requires.

e Manifestly convergent expansion in I
(L)<

kNL
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Connecting with the Eulerian Treatment

e In the universe, finite-size particles move

2(q,t) = ¢+ s(q,t) ;7,,
(x,,1) f

P

5
*s

.

.
-t c

-

e In Lagrangian space, we do not expand in S(q, t) % (x4 Ax, +AY)

e In Eulerian, we do: we describe particles from a fixed position
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Connecting with the Eulerian Treatment

—

 If we expand the exponential, we expand in . 5, < 1

— This means that we describe the motion of the extended object as seen from a fixed

point in space
* We get the Eulerian-point-of-view description of a continuum of particles
e The resulting equations are equivalent to Eulerian fluid-like equations
0
v2p = H22F

0
Op + Hp + 0;(pv') = 0
. . . . 1 )
?.}Z -+ H”UZ -+ Ujﬁj’Uz — —(9]-7'”
P

—here it appears a non trivial stress tensor for the long-distance fluid

Ti; = Po 57;3' —|—C§ 5@' 825,0—|— .
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A non-renormalization theorem

e (Can the short distance non-linearities change completely the overall expansmn rate of

the universe, possibly leading to acceleration without A 2

e In terms of the short distance perturbation, the effective stress tensor reads
pr = ps(v; + @)
pr = ps(2v; + D)
e when objects virialize, the induced pressure vanish
— ultraviolet modes do not contribute (like in SUSY)

* The backreaction 1s dominated by modes at the virialization scale

= Winduced ~ 107° with Baumann, Nicolis and Zaldarriaga JCAP 2012
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Perturbation Theory
with the EFT

Friday, January 31, 14



Perturbation Theory within the EFT

e In the EFT w% can solve iteratively (loop expansion) Oo, Vg, Dy < 1
V2h = H? op
p .
Op+ Hp+ 0i(pv*) =0

1.}2 -+ HUZ —+ Ujﬁj’UZ — —(93-7'”

0

Tij — Do 57;]‘ -+ Cg 52']' 82(5,0

e To estimate

— Approximate as piecewise scaling universe ' »

10}

/ 1 I —2.1 f k k o

or K > i
3 k3 (k: ) tr

Pll(k) B (27‘-) < TL ZL —LT 0.001
ARy (I;NL) for k < ki

1075}

0.01 0.1 1 7o & [B/Mpc]

knt, = 4.6 hMpc_1 ki, = 0.25 hMpc_1 /%NL — 1.8 hl\/[pc_1
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Perturbation Theory within the EFT

* Regularization and renormalization of loops (scaling universe) , .

— evaluate with cutoff. By dim analysis: kne® \ s

AN/ k! AN/ kN
I A A
Paroop = (21 {CO (kNL) (kNL> frta (kNL> (kNL> i

k E\° | E\°
A finite
+c, log (_A> <_kNL> P+ <_]€NL> P

o (RN kY k
+c; (—) ( ) P11 + subleading finite terms in —

A knt, A
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Perturbation Theory within the EFT

* Regularization and renormalization of loops (scaling universe) , .

— evaluate with cutoff. By dim analysis: kne® \ s

A ! AN kN
Py = (27) |ch (— Py +ct (—> <—> P
2-loop ( ){0 . ket 11 1 kit kit 11

—|—CA lOg _k : P —|— Cﬁnite —k : P
2 N 11 1 I 11
k

EN' [k’
+ci//\ (K) (k_NL> P11 4 subleading finite terms in n

— absence of counterterm  Ti; = po di; + . 8;; 07p
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Perturbation Theory within the EFT

* Regularization and renormalization of loops (scaling universe)

1 RN
. . . Py = —
— evaluate with cutoff. By dim analysis: U ke kNL)

A 1 A 1 2
Py = (27) |c) (— Py + c? (—> <—> P
2-loop ( ){0 . ket 11 1 kit kit 11

—I—CA lOg _k : P —|— Cﬁnite —k : P
2 N 11 1 I 11
k

EN' [k’
+ci//\ (K) (k_NL> P11 + subleading finite terms in n

— absence of counterterm  Ti; = po di; + . 8;; 07p

A B\’
— One divergent term =—=>  2-loop counter = (27 ) Covunter ( ) <—> Py

A

k
A A NL
Ceounter — — €1 + 5CCOUH13€Y ( A

—Sumupand A — .

]{7 2 . k 3
PQI_loop + P2—loop counter — (27-‘-)5Ccounter (k_NL> Pll + (QW)C?mte (k_NL> P11
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Calculable terms 1n the EFT

 Has everything being lost?

E\? | Lo\ 3
P2I—loop =+ P2—loop counter — (zﬂ)éccounter <_) Pll =+ (27-‘_)011%01te (_> Pll

/ kNL kNL

— to make result finite, we need to add a counterterm with finite part

* need to fit to data (like a coupling constant), but cannot fit the power
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Calculable terms 1n the EFT

 Has everything being lost?

]C 2 . ]‘C 3
P2I_100p + P2—loop counter — (27T)6Ccounter (k_NL) Pll + (27_‘_>C§in1te (k_NL> P11

— to make result finite, we need to add a counteyterm with finite part

* need to fit to data (like a coupling constant), but cannot fit the power
— the subleading finite term is not degenerate with a counterterm.

e it cannot be changed

e it is calculable by the EFT

—so it predicts an observation  ¢j™'*® = (.044
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I .esson

e Each loop-order L. contributed a finite, calculable term of order

. R NETR R VT
L-loops finite kNL kNL

— each higher-loop is smaller and smaller

e This happen after canceling the divergencies with counterterms

1 A\ BFL-=2 N2/ B \"
P i ~ | T — — bleading di
L-loops diverg. ( kNL) ( kNL) < kNL) + subleading divergences

— at each higher loop one needs to adjust the lower order counterterms

* by this is not a new fit, this 1s calculable
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Example

e At 1-loop, we add a counterterm

]{72

PEFT-l—loop = P11 -+ Pl-loop — 2 (27T) 8(1) k2

=

* <) is chosen by fitting to data so that

1 kNI ’
Prioop(k = Fren)a—oo = Pi(kien) = ¢ (kren) = number = (=3.36 £ 0.020) x ( AT )

* At 2-loop, there 1s a divergency that requires the same counterterm.

A 1 L 2 L 3
PI 9 P finite P
Hoor (W){ () () P () 7

— Adjust 1y — )t inaknown way (without looking again at the data)

2 (cs)
2 oy = Treonthen) + Sy e Pl ) R
8(2) ( ren/k )Pll( ren) 8(1) kIQ\TL

e Up to 2-loops no additional counterterm is needed
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Summary of Procedure

* Do 1-loop calculation L2

PEFT-I—loop — Pll + Pl—loop — 2 (27‘-) 3(1 k2 Pll
e Fit ci(l)
— we fit in the range & ~ 0.15 — 0.25 h Mpc™"
1 k ?
2y = (1.62 £0.033) x ( —— )
2m \_h Mpc
* Do 2-loop calculation with no additional fitting
J= _ . 2 2 k? (¢s,p) 2 4 k_4
o T-2100p = Pr1+ Paoop + Potoop =2 (27)(¢0) + €)7o~ Pra 4 (2m) 5y Py, + (27)° ¢y 7~ P
NL NL

— just adjust counterterm as calculable

1 k :
2 NL

= (—3.36 = 0.020
Cs(2) ( ) % 2T (hMpc1 )
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IR-effects
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The Effect of Long-modes on Shorter ones

e In Eulerian treatment

0 Pshort wavelength

L Eulerian
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The Effect of Long-modes

 Add along "trivial’ force (trivial by GR)

e This tells you that one can resum the IR modes: this 1s the Lagrangian treatment

VCI)lomg wavelenght

to
6pshort wavelength

AN AN ~

T \/ \
LEulerian

time

Big “trivial’ Perturbation

5pshort wavelength

A /‘\ ~
~__" \

LEulerian
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Results
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EFT of Large Scale Structures

1.04;

0.98¢

0.96

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
k [h/Mpc]

L
 Well defined and manif. converg. (ﬁ)
e Every perturbative order improves the agreement as it should

e We know when we should fail, and we fail when we should
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EFT of Large Scale Structures

1.04¢

1| ——————— R

0.98¢

0.96

00 01 02 03 0.4 05 06 07

e The lines with oscillations are obtained without resummation in the IR

with Carrasco, Foreman and Green 1310
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EFT of Large Scale Structures

k [h/Mpc]

e wefituntil k . ~ 0.6hMpc~! ,aswhere we should stop fitting

max —

— there are 200 more quasi linear modes than previously believed!
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EFT of Large Scale Structures

2000
1500

1000

e The function we are fitting is non-trivial, and made with non-trivial objects
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EFT of Large Scale Structures

0.961

00 01 02 03 04 05 06 07
k [h/Mpc]

e Comparison with Standard Treatment

e Fur the EFT, change from 1-loop to 2-loop predicted
P11—|—(27T> S(l)P( «:p) (27T)2C4

1 loop

PEFT—2—loop = Py _|_P1—loop_|_P2—loop —2 (27‘-)( Cs(1) _|_C s(2 ))

— the other new terms are clearly important

— they “conspire’ to the right answer
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Measuring parameters from N-body sims.

e The EFT parameters can be measured from small N-body simulations

— similar to what happens in QCD: lattice sims

* As you change smoothing scale, the result changes

_ 14x107%t

RS I

O i

o> 12x107%

] R < 1.x107%
C L I
= | &Pk Pk 5 .

dA dA,/ 1s(#) «° 8.x1077]
6.x 10~ 7L

e Perfect agreement with fitting at low energies

Running of ¢comp(A) at kex=01, a=1
s o= .1 AMpc~! (CAMB)

weses TUNNINE from Consuelo

A = 1/6 (h/Mpe) from Consuelo at A=1/3 (h/Mpc)

A =1/3 (h/Mpc) from Consuelo

s Ko = 18 A Mpc~! (CAMB)

04 06 08

A (h/Mpc)

02

— like measuring £ from lattice sims and =7 scattering

with Carrasco and Hertzberg JHEP 2012
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EFT of Large Scale Structures

0.96
00 0.1 02 03 04 05 06 07
k [h/Mpc]|
L
* A manifestly convergent perturbation theory ( kﬁL)
e we fituntil k... ~ 0.6hMpc' ,as where we should stop fitting
— there are 200 more quasi linear modes than previously believed!
equil., ortho
— huge 1mpact on possibilities for L =g

e Can all of us handle 1t?! This 1s an opportunity and a challenge for us

— Primordial Cosmology can still have a bright near future!
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Conclusions

e Many (most?) of the features of QFT appear in the EFT of LSS:
— Loops, divergencies, counterterms and renormalization
— non-renormalization theorems
— Calculable and non-calculable terms
— Measurements in lattice and lattice-running
— IR-divergencies
 Many calculations and verifications to do:
— like 1f we just learned perturbative QCD, and LHC was soon turning on
e higher 7 -point functions
e Validation with simulation
e Bias, Redshift distortions (similar to hadronization in QCD)
 To me, what 1s at stake, in the 10 year future of primordial cosmology

* With a growing number of (young) collaborators
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EFT of Large Scale Structures

It would be fantastic to have
a perturbation theory that works”

Famous Cosmologist, Trieste, July 2013
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