Leonardo Senatore (Stanford)

The Effective Field Theory of

Cosmological Large Scale Structures

What has Planck done to theory?

- Planck improve limits wrt WMAP by a factor of ~ 3.
- We can think of Inflation as being characterized by higher dimension opt.s $\frac{\dot{\pi}^{3}}{\Lambda_{U}^{2}}$
- Since $\mathrm{NG} \sim \frac{H^{2}}{\Lambda_{U}^{2}} \Rightarrow \Lambda_{U}^{\text {min, Planck }} \simeq \sqrt{3} \Lambda_{U}^{\text {min, WMAP }}$
- Given the absence of known or nearby threshold, this is not much.
- Planck is great
- but Planck is not good enough
- not Plank's fault, but Nature's faults
- Please complain with Nature
- Planck was an opportunity for a detection, not much an opportunity to change the theory in absence of detection
- On theory side, little changes
- contrary for example to LHC, which was crossing thresholds
- Any result from LHC is changing the theory

What has Planck done to theory?

- In order to increase our knowledge of Inflation, we need more modes.
- Large Scale Structures offer the ideal place for hunting for more modes
- I will show results that, if verified and extended to all observable, can increase limits to

$$
f_{\mathrm{NL}}^{\text {equil, orthog, loc. }} \lesssim 1
$$

- We can argue that absence of detection of NG up to this level implies observational proof of slow-roll inflation
- This is learning even without detection
- This also offers us a way to study the large scale structures of the univrse
- which are nice
- Implications for dark energy, neutrinos, light species, etc.

What is next in Cosmology?

- Plank will increase by a factor of less than 2 .
- Next are Large Scale Structures
- Like moving from LEP to LHC:
- much dirtier, but much more potential

Leonardo Senatore (Stanford)

The Effective Field Theory

 of
Cosmological Large Scale Structures
 The IR-resummed
 with Zaldarriaga to appear

Effective Theory of Large Scale Structure
The Lagrangian-space

The Effective Theory of
Large Scale Structure at 2-loops
The 2-loop power spectrum
and the IR safe integrand
with Carrasco, Foreman and Green 1310

The Effective Theory of
Large Scale Structure
with Porto and Zaldarriaga 1311

Effective Theory of Large Scale Structure

with Carrasco, Foreman and Green 1304
with Carrasco and Hertzberg JHEP 2012
Cosmological Non-linearities as an Effective Fluid

A well defined perturbation theory

- Non-linearities at short scale
$k^{3} \mathbf{P}(\mathbf{k}) \sim \frac{\delta \rho}{\rho}$

A well defined perturbation theory

- Non-linearities at short scale

$$
k^{3} \mathbf{P}(\mathbf{k}) \sim \frac{\delta \rho}{\rho}
$$

A well defined perturbation theory

- Standard perturbation theory is not well defined
- Standard techniques
- perfect fluid $\quad \dot{\rho}+\partial_{i}\left(\rho v^{i}\right)=0$,
- expand in $\delta \sim \frac{\delta \rho}{\rho}$ and solve iteratively

$$
\begin{gathered}
\delta^{(n)} \sim \int{\text { GreenFunction } \times \text { Source }^{(n)}\left[\delta^{(1)}, \delta^{(2)}, \ldots, \delta^{(n-1)}\right]}_{\Rightarrow \quad\left\langle\delta_{k}^{(2)} \delta_{k}^{(2)}\right\rangle \sim \int d^{3} k^{\prime}\left\langle\delta_{k-k^{\prime}}^{(1)} \delta_{k-k^{\prime}}^{(1)}\right\rangle\left\langle\delta_{k^{\prime}}^{(1)} \delta_{k^{\prime}}^{(1)}\right\rangle} .
\end{gathered}
$$

- Perturbative equations break in the UV
- $\delta \sim \frac{k}{k_{N L}} \gg 1$ for $k \gg k_{N L}$
- no perfect fluid if we truncate

Idea of the
 Effective Field Theory

Consider a dielectric material

- Very complicated on atomic scales $d_{\text {atomic }}$
- On long distances $d \gg d_{\text {atomic }}$
- we can describe atoms with their gross characteristics
- polarizability $\vec{d}_{\text {dipole }} \sim \alpha \vec{E}_{\text {electric }}:$ average response to electric field
- we are led to a uniform, smooth material, with just some macroscopic properties
- we simply solve Maxwell dielectric equations, we do not solve for each atom.
- The universe looks like a dielectric

Dielectric Fluid

Consider a dielectric material

- Very complicated on atomic scales $d_{\text {atomic }}$
- On long distances $d \gg d_{\text {atomic }}$
- we can describe atoms with their gross characteristics
- polarizability $\vec{d}_{\text {dipole }} \sim \alpha \vec{E}_{\text {electric }}:$ average response to electric field
- we are led to a uniform, smooth material, with just some macroscopic properties
- we simply solve Maxwell dielectric equations, we do not solve for each atom.
- The universe looks like a dielectric

Dielectric Fluid

Dielectric Fluid

A well defined perturbation theory

- We will define a manifestly convergent perturbation theory

- where the ingredient is an fluid-like system with

$$
\delta_{\ell}, v_{\ell}, \Phi_{\ell} \ll 1
$$

Bottom line result

- 2-loop in the EFT, with IR resummation

- Data go as $k_{\max }^{3}$: factor of 200 more modes than naive

Construction of the Effective Field Theory

Point-like Particle versus Extended Objects

- On short distances, we have point-like particles
- they move

$$
\frac{d^{2} \vec{z}(\vec{q}, \eta)}{d \eta^{2}}+\mathcal{H} \frac{d \vec{z}(\vec{q}, \eta)}{d \eta}=-\vec{\partial}_{x} \Phi[\vec{z}(\vec{q}, \eta)]
$$

- induce overdensities

$$
\begin{aligned}
1+\delta(\vec{x}, \eta) & =\int d^{3} \vec{q} \delta^{3}(\vec{x}-\vec{z}(\vec{q}, \eta)) \\
& =\left[\operatorname{det}\left(\frac{\partial z^{i}}{\partial q^{j}}\right)\right]^{-1}=\left[\operatorname{det}\left(1+\frac{\partial s^{i}}{\partial q^{j}}\right)\right]^{-1}
\end{aligned}
$$

- Source gravity

$$
\partial_{x}^{2} \Phi(\vec{x}, \eta)=\frac{3}{2} \mathcal{H}^{2} \Omega_{m} \delta(\vec{x}, \eta)
$$

Point-like Particle versus Extended Objects

- But we cannot describe point-like particles: we need to focus on long distances.
- We deal with Extended objects
- they move differently:

$$
\frac{d^{2} \vec{z}(\vec{q}, \eta)}{d \eta^{2}}+\mathcal{H} \frac{d \vec{z}(\vec{q}, \eta)}{d \eta}=-\vec{\partial}_{x} \Phi[\vec{z}(\vec{q}, \eta)]
$$

Point-like Particle versus Extended Objects

- But we cannot describe point-like particles: we need to focus on long distances.
- We deal with Extended objects
- they move differently:

$$
\frac{d^{2} \vec{z}_{L}(\vec{q}, \eta)}{d \eta^{2}}+\mathcal{H} \frac{d \vec{z}_{L}(\vec{q}, \eta)}{d \eta}=-\vec{\partial}_{x}\left[\Phi_{L}\left[\vec{z}_{L}(\vec{q}, \eta)\right]+\frac{1}{2} Q^{i j}(\vec{q}, \eta) \partial_{i} \partial_{j} \Phi_{L}\left[\vec{z}_{L}(\vec{q}, \eta)\right]+\cdots\right]+\vec{a}_{S}(\vec{q}, \eta)
$$

- the center of mass moves from force on center of mass, but also from tidal force proportional to quadrupole of mass distribution
-there is also a force that comes when regions overlap.

Point-like Particle versus Extended Objects

- But we cannot describe point-like particles: we need to focus on long distances.
- We deal with Extended objects
- they induce number over-densities and real-space multipole moments

$$
\begin{aligned}
1+\delta_{n, L}(\vec{x}, \eta) & \equiv \int d^{3} \vec{q} \delta^{3}\left(\vec{x}-\vec{z}_{L}(\vec{q}, \eta)\right) \\
\mathcal{Q}^{i_{1} \ldots i_{p}}(\vec{x}, \eta) & \equiv \int d^{3} \vec{q} Q^{i_{1} \ldots i_{p}}(\vec{q}, \eta) \delta^{3}\left(\vec{x}-\vec{z}_{L}(\vec{q}, \eta)\right)
\end{aligned}
$$

- they source gravity with the overall mass

$$
\partial_{x}^{2} \Phi_{L}=\frac{3}{2} \mathcal{H}^{2} \Omega_{m}\left(\delta_{n, L}(\vec{x}, \eta)+\frac{1}{2} \partial_{i} \partial_{j} \mathcal{Q}^{i j}(\vec{x}, \eta)-\frac{1}{6} \partial_{i} \partial_{j} \partial_{k} \mathcal{Q}^{i j k}(\vec{x}, \eta)+\cdots\right) \equiv \frac{3}{2} \mathcal{H}^{2} \Omega_{m} \delta_{m, L}(\vec{x}, \eta)
$$

- These equations can be derived from smoothing the point-particle equations
-but actually these are the assumption-less equations

How do we treat the new terms?

- Similar to treatment of material polarizability: $\vec{d}_{\text {dipole }} \sim \vec{d}_{\text {intrinsic }}+\alpha \vec{E}$
- Take moments:

$$
Q^{i j}=\left\langle Q^{i j}\right\rangle_{S}+Q_{\mathcal{S}}^{i j}+Q_{\mathcal{R}}^{i j}
$$

- Expectation value

$$
\left\langle Q^{i j}\right\rangle_{\mathcal{S}}=l_{S}^{2}(\eta) \delta_{i j}
$$

- Response (non-local in time) $Q_{\mathcal{R}}^{i j}(\vec{q}, \eta)=\int d \eta^{\prime} A^{i j, l k}\left(\eta ; \eta^{\prime}\right) \partial_{l} \partial_{k} \Phi_{L}\left(\vec{z}_{L}\left(\vec{q}, \eta^{\prime}\right)\right)$
- Stochastic noise

$$
\left\langle Q_{\mathcal{S}}\right\rangle=0 \quad\left\langle Q_{\mathcal{S}} Q_{\mathcal{S}} \ldots\right\rangle \neq 0
$$

- Overall

$$
Q_{i j}=l_{0}^{2} \delta_{i j}+l_{1}^{2} \partial_{i} \partial_{j} \Phi_{L}+\ldots+Q_{i j, \mathcal{S}}
$$

- In summary: we obtain an expression just in terms of long-wavelength variables

This EFT is non-local in time

- For local EFT, we need hierarchy of scales.
- In space we are ok

- In time we are not ok: all modes evolve with time-scale of order Hubble

with Carrasco, Foreman and Green 1310
Carroll, Leichenauer, Pollak 1310
- \Rightarrow The EFT is local in space, non-local in time

[^0]
When do we stop?

- Similar to treatment for material polarizability: $\vec{d}_{\text {dipole }} \sim \alpha \vec{E}_{\text {electric }}, Q_{i j}^{\text {electric }}=c E_{i} E_{j}, \ldots$
- Short distance physics is taken into account by expectation value, response, and noise
- Force equation breaks when $\Phi_{L}\left[\vec{z}_{L}(\vec{q}, \eta)\right] \sim Q^{i j}(\vec{q}, \eta) \partial_{i} \partial_{j} \Phi_{L}\left[\vec{Z}_{L}(\vec{q}, \eta)\right]$
- force on center of mass \sim force from tidal forces
- Poisson equation breaks when $\delta_{n, L}(\vec{x}, \eta) \sim \partial_{i} \partial_{j} \mathcal{Q}^{i j}(\vec{x}, \eta)$
- gravitational potential from quadrupole moment \sim the one from center of mass
- By dimensional analysis, this happens for distances shorter than a critical length
- the non-linear scale $k \gtrsim k_{\mathrm{NL}}$
- on long distances, $k \ll k_{\mathrm{NL}}$, write as many terms as precision requires.
- Manifestly convergent expansion in

$$
\left(\frac{k}{k_{\mathrm{NL}}}\right) \ll 1
$$

Connecting with the Eulerian Treatment

- In the universe, finite-size particles move

$$
\vec{z}(\vec{q}, t)=\vec{q}+\vec{s}(\vec{q}, t)
$$

- In Lagrangian space, we do not expand in $\vec{s}(\vec{q}, t)$

- In Eulerian, we do: we describe particles from a fixed position

Connecting with the Eulerian Treatment

- If we expand the exponential, we expand in $\vec{k} \cdot \vec{s}_{L} \ll 1$
- This means that we describe the motion of the extended object as seen from a fixed point in space
- We get the Eulerian-point-of-view description of a continuum of particles
- The resulting equations are equivalent to Eulerian fluid-like equations

$$
\begin{aligned}
& \nabla^{2} \phi=H^{2} \frac{\delta \rho}{\rho} \\
& \partial_{t} \rho+H \rho+\partial_{i}\left(\rho v^{i}\right)=0 \\
& \dot{v}^{i}+H v^{i}+v^{j} \partial_{j} v^{i}=\frac{1}{\rho} \partial_{j} \tau^{i j}
\end{aligned}
$$

- here it appears a non trivial stress tensor for the long-distance fluid

$$
\tau_{i j}=p_{0} \delta_{i j}+c_{s}^{2} \delta_{i j} \partial^{2} \delta \rho+\ldots
$$

A non-renormalization theorem

- Can the short distance non-linearities change completely the overall expansion rate of the universe, possibly leading to acceleration without Λ ?
- In terms of the short distance perturbation, the effective stress tensor reads

$$
\begin{aligned}
& \rho_{L}=\rho_{s}\left(v_{s}^{2}+\Phi_{s}\right) \\
& p_{L}=\rho_{s}\left(2 v_{s}^{2}+\Phi_{s}\right)
\end{aligned}
$$

- when objects virialize, the induced pressure vanish
- ultraviolet modes do not contribute (like in SUSY)
- The backreaction is dominated by modes at the virialization scale

$$
\Rightarrow \quad w_{\text {induced }} \sim 10^{-5}
$$

Perturbation Theory with the EFT

Perturbation Theory within the EFT

- In the EFT we can solve iteratively (loop expansion) $\delta_{\ell}, v_{\ell}, \Phi_{\ell} \ll 1$

$$
\begin{aligned}
& \nabla^{2} \phi=H^{2} \frac{\delta \rho}{\rho} \\
& \partial_{t} \rho+H \rho+\partial_{i}\left(\rho v^{i}\right)=0 \\
& \dot{v}^{i}+H v^{i}+v^{j} \partial_{j} v^{i}=\frac{1}{\rho} \partial_{j} \tau^{i j}
\end{aligned}
$$

- To estimate
- Approximate as piecewise scaling universe

$$
P_{11}(k)=(2 \pi)^{3} \begin{cases}\frac{1}{k_{\mathrm{NL}}^{3}}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{-2.1} & \text { for } k>k_{\mathrm{tr}}, \\ \frac{1}{\bar{k}_{\mathrm{NL}}^{3}}\left(\frac{k}{\hat{k}_{\mathrm{NL}}}\right)^{-1.7} & \text { for } k<k_{\mathrm{tr}},\end{cases}
$$

$k_{\mathrm{NL}}=4.6 h \mathrm{Mpc}^{-1} \quad k_{\text {tr }}=0.25 h \mathrm{Mpc}^{-1} \quad \tilde{k}_{\mathrm{NL}}=1.8 h \mathrm{Mpc}^{-1}$

Perturbation Theory within the EFT

- Regularization and renormalization of loops (scaling universe)
- evaluate with cutoff. By dim analysis:

$$
\begin{aligned}
P_{2-\mathrm{loop}}^{\mathrm{I}}=(2 \pi)[& c_{0}^{\Lambda}\left(\frac{\Lambda}{k_{\mathrm{NL}}}\right)^{2}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{1} P_{11}+c_{1}^{\Lambda}\left(\frac{\Lambda}{k_{\mathrm{NL}}}\right)^{1}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{2} P_{11} \\
& +c_{2}^{\Lambda} \log \left(\frac{k}{\Lambda}\right)\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}+c_{1}^{\text {finite }}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11} \\
& \left.+c_{1}^{1 / \Lambda}\left(\frac{k}{\Lambda}\right)^{1}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}+\text { subleading finite terms in } \frac{k}{\Lambda}\right]
\end{aligned}
$$

Perturbation Theory within the EFT

- Regularization and renormalization of loops (scaling universe)
- evaluate with cutoff. By dim analysis:

$$
P_{11}=\frac{1}{k_{\mathrm{NL}}{ }^{3}}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{-3 / 2}
$$

$$
\begin{aligned}
P_{2-\mathrm{loop}}^{\mathrm{I}}=(2 \pi) & {[\underbrace{}_{c_{0}^{\Lambda}\left(\frac{\Lambda}{k_{\mathrm{NL}}}\right)^{2}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{1} P_{11}+c_{1}^{\Lambda}\left(\frac{\Lambda}{k_{\mathrm{NL}}}\right)^{1}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{2} P_{11}}+c_{2}^{\Lambda} \log \left(\frac{k}{\Lambda}\right)\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}+c_{1}^{\text {finite }}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}} \\
& \left.+c_{1}^{1 / \Lambda}\left(\frac{k}{\Lambda}\right)^{1}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}+\text { subleading finite terms in } \frac{k}{\Lambda}\right]
\end{aligned}
$$

- absence of counterterm $\quad \tau_{i j}=p_{0} \delta_{i j}+c_{s}^{2} \delta_{i j} \partial^{2} \delta \rho$

Perturbation Theory within the EFT

- Regularization and renormalization of loops (scaling universe)
- evaluate with cutoff. By dim analysis:

$$
\begin{aligned}
P_{2-\text {-loop }}^{\mathrm{I}}=(2 \pi) & {[\underbrace{}_{c_{0}^{\Lambda}\left(\frac{\Lambda}{k_{\mathrm{NL}}}\right)^{2}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{1} P_{11}+c_{1}^{\Lambda}\left(\frac{\Lambda}{k_{\mathrm{NL}}}\right)^{1}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{2} P_{11}}+c_{2}^{\Lambda} \log \left(\frac{k}{\Lambda}\right)\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}+c_{1}^{\text {finite }}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}} \\
& \left.+c_{1}^{1 / \Lambda}\left(\frac{k}{\Lambda}\right)^{1}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}+\text { subleading finite terms in } \frac{k}{\Lambda}\right]
\end{aligned}
$$

- absence of counterterm $\quad \tau_{i j}=p_{0} \delta_{i j}+c_{s}^{2} \delta_{i j} \partial^{2} \delta \rho$
- One divergent term $\Rightarrow \quad P_{2 \text {-loop counter }}=(2 \pi) c_{\text {counter }}^{\Lambda}\left(\frac{\Lambda}{k_{\mathrm{NL}}}\right)\left(\frac{k}{k_{\mathrm{NL}}}\right)^{2} P_{11}$

$$
c_{\text {counter }}^{\Lambda}=-c_{1}^{\Lambda}+\delta c_{\text {counter }}\left(\frac{k_{\mathrm{NL}}}{\Lambda}\right)
$$

- Sum up and $\Lambda \rightarrow \infty$.

$$
P_{2-\text { loop }}^{\mathrm{I}}+P_{2-\text {-lop counter }}=(2 \pi) \delta c_{\text {counter }}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{2} P_{11}+(2 \pi) c_{1}^{\text {finite }}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}
$$

Calculable terms in the EFT

- Has everything being lost?

$$
P_{2 \text {-loop }}^{\mathrm{I}}+P_{2 \text {-loop counter }}=(2 \pi) \delta c_{\text {counter }}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{2} P_{11}+(2 \pi) c_{1}^{\text {finite }}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}
$$

- to make result finite, we need to add a counterterm with finite part
- need to fit to data (like a coupling constant), but cannot fit the power

Calculable terms in the EFT

- Has everything being lost?
$P_{2 \text {-loop }}^{\mathrm{I}}+P_{2 \text {-loop counter }}=(2 \pi) \delta c_{\text {counter }}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{2} P_{11}+(2 \pi) c_{1}^{\text {finite }}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}$
- to make result finite, we need to add a countepterm with finite part
- need to fit to data (like a coupling constaht), but cannot fit the power
- the subleading finite term is not degenerate with a counterterm.
- it cannot be changed
- it is calculable by the EFT
-so it predicts an observation $\quad c_{1}^{\text {finite }}=0.044$

Lesson

- Each loop-order L contributed a finite, calculable term of order

$$
P_{\mathrm{L}-\text { loops finite }}^{\mathrm{I}} \sim\left(\frac{k}{k_{\mathrm{NL}}}\right)^{(3+n) L}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{n}
$$

- each higher-loop is smaller and smaller
- This happen after canceling the divergencies with counterterms

$$
P_{\mathrm{L}-\text { loops diverg. }}^{\mathrm{I}} \sim\left(\frac{\Lambda}{k_{\mathrm{NL}}}\right)^{(3+n) L-2}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{2}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{n}+\text { subleading divergences }
$$

- at each higher loop one needs to adjust the lower order counterterms
- by this is not a new fit, this is calculable

Example

- At 1-loop, we add a counterterm

$$
P_{\text {EFT-1-loop }}=P_{11}+P_{1 \text {-loop }}-2(2 \pi) c_{s(1)}^{2} \frac{k^{2}}{k_{\mathrm{NL}}^{2}} P_{11}
$$

- $c_{s(1)}^{2}$ is chosen by fitting to data so that

$$
P_{1-\mathrm{loop}}\left(k=k_{\mathrm{ren}}\right)_{\Lambda \rightarrow \infty}=P_{\mathrm{NL}}\left(k_{\mathrm{ren}}\right) \quad \Rightarrow \quad c_{s(1)}^{2}\left(k_{\mathrm{ren}}\right)=\text { number }=(-3.36 \pm 0.020) \times \frac{1}{2 \pi}\left(\frac{k_{\mathrm{NL}}}{h \mathrm{Mpc}^{-1}}\right)^{2}
$$

- At 2-loop, there is a divergency that requires the same counterterm.

$$
P_{2-\text { loop }}^{\mathrm{I}}=(2 \pi)\left[c_{1}^{\Lambda}\left(\frac{\Lambda}{k_{\mathrm{NL}}}\right)^{1}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{2} P_{11}+c_{1}^{\text {finite }}\left(\frac{k}{k_{\mathrm{NL}}}\right)^{3} P_{11}\right]
$$

- Adjust $c_{s(1)}^{2} \rightarrow c_{s(1)}^{2}+c_{s(2)}^{2}$ in a known way (without looking again at the data)

$$
c_{s(2)}^{2}\left(k_{\text {ren }}\right)=\frac{P_{2 \text {-loop }}\left(k_{\text {ren }}\right)+c_{s(1)}^{2}\left(k_{\text {ren }}\right) P_{1 \text {-loop }}^{\left(c_{s}\right)}\left(k_{\text {ren }}\right)}{\left(k_{\text {ren }}^{2} / k_{\mathrm{NL}}^{2}\right) P_{11}\left(k_{\text {ren }}\right)}+\left[c_{s(1)}^{2}\left(k_{\text {ren }}\right)\right]^{k_{\text {ren }}^{2}} \frac{k_{\mathrm{NL}}^{2}}{k_{2}^{2}}
$$

- Up to 2-loops no additional counterterm is needed

Summary of Procedure

- Do 1-loop calculation

$$
P_{\text {EFT-1-loop }}=P_{11}+P_{1 \text {-loop }}-2(2 \pi) c_{s(1)}^{2} \frac{k^{2}}{k_{\mathrm{NL}}^{2}} P_{11}
$$

- Fit $c_{s(1)}^{2}$
- we fit in the range $k \sim 0.15-0.25 h \mathrm{Mpc}^{-1}$

$$
c_{s(1)}^{2}=(1.62 \pm 0.033) \times \frac{1}{2 \pi}\left(\frac{k_{\mathrm{NL}}}{h \mathrm{Mpc}^{-1}}\right)^{2}
$$

- Do 2-loop calculation with no additional fitting
$P_{\text {EFT-2-loop }}=P_{11}+P_{1 \text {-loop }}+P_{2-\text { loop }}-2(2 \pi)\left(c_{s(1)}^{2}+c_{s(2)}^{2} \frac{k^{2}}{k_{\mathrm{NL}}^{2}} P_{11}+(2 \pi) c_{s(1)}^{2} P_{1-\text { loop }}^{(s, p)}+(2 \pi)^{2} c_{s(1)}^{4} \frac{k^{4}}{k_{\mathrm{NL}}^{4}} P_{11}\right.$
- just adjust counterterm as calculable

$$
c_{s(2)}^{2}=(-3.36 \pm 0.020) \times \frac{1}{2 \pi}\left(\frac{k_{\mathrm{NL}}}{h \mathrm{Mpc}^{-1}}\right)^{2}
$$

IR-effects

The Effect of Long-modes on Shorter ones

- In Eulerian treatment

The Effect of Long-modes

- Add a long `trivial’ force (trivial by GR)
- This tells you that one can resum the IR modes: this is the Lagrangian treatment

Results

EFT of Large Scale Structures

- Well defined and manif. converg. $\left(\frac{k}{k_{\mathrm{NL}}}\right)^{L}$
- Every perturbative order improves the agreement as it should
- We know when we should fail, and we fail when we should

EFT of Large Scale Structures

- The lines with oscillations are obtained without resummation in the IR
with Carrasco, Foreman and Green 1310

EFT of Large Scale Structures

- we fit until $k_{\max } \simeq 0.6 h \mathrm{Mpc}^{-1}$, as where we should stop fitting
- there are 200 more quasi linear modes than previously believed!

EFT of Large Scale Structures

- The function we are fitting is non-trivial, and made with non-trivial objects

EFT of Large Scale Structures

- Comparison with Standard Treatment
- Fur the EFT, change from 1-loop to 2-loop predicted
$P_{\text {EFT-2-loop }}=P_{11}+P_{1-\text { loop }}+P_{2 \text {-loop }}-2(2 \pi)\left(c_{s(1)}^{2}+c_{s(2)}^{2}\right) \frac{k^{2}}{k_{\mathrm{NL}}^{2}} P_{11}+(2 \pi) c_{s(1)}^{2} P_{1-\text { loop }}^{\left(c_{s}, p\right)}+(2 \pi)^{2} c_{s(1)}^{4} \frac{k^{4}}{k_{\mathrm{NL}}^{4}} P_{11}$
- the other new terms are clearly important
- they `conspire' to the right answer

Measuring parameters from N-body sims.

- The EFT parameters can be measured from small N-body simulations
- similar to what happens in QCD: lattice sims
- As you change smoothing scale, the result changes

- Perfect agreement with fitting at low energies
- like measuring F_{π} from lattice sims and $\pi \pi$ scattering

EFT of Large Scale Structures

- A manifestly convergent perturbation theory $\left(\frac{k}{k_{\mathrm{NL}}}\right)^{L}$
- we fit until $k_{\max } \simeq 0.6 h \mathrm{Mpc}^{-1}$, as where we should stop fitting
- there are 200 more quasi linear modes than previously believed!
- huge impact on possibilities for $f_{\mathrm{NL}}^{\text {equil., orthog. }} \lesssim 1$
- Can all of us handle it?! This is an opportunity and a challenge for us
- Primordial Cosmology can still have a bright near future!

Conclusions

- Many (most?) of the features of QFT appear in the EFT of LSS:
- Loops, divergencies, counterterms and renormalization
- non-renormalization theorems
- Calculable and non-calculable terms
- Measurements in lattice and lattice-running
- IR-divergencies
- Many calculations and verifications to do:
- like if we just learned perturbative QCD, and LHC was soon turning on
- higher n-point functions
- Validation with simulation
- Bias, Redshift distortions (similar to hadronization in QCD)
- To me, what is at stake, in the 10 year future of primordial cosmology
- With a growing number of (young) collaborators

EFT of Large Scale Structures

'It would be fantastic to have
a perturbation theory that works"
Famous Cosmologist, Trieste, July 2013

EFT of Large Scale Structures

"It would be fantastic to have a perturbation theory that works"

Famous Cosmologist, Trieste, July 2013

[^0]: - Technically it does not affect much because the linear propagator is local in space

