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» From studying (cooo)
» Assuming only conformal invariance, unitarity, crossing
symmetry



A Conjecture

> Let's take seriously the idea: the 3d Ising Model lies on the
boundary of the allowed space of 3d CFTs.

» For this talk, we'll explore a stronger conjecture: (cooo) lies
on boundary of space of unitary, crossing symmetric 4-pt
functions.
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The Space of 4-pt Functions

Define Ca, to be the space of maps
(A,E) = DAL eR
such that
1. po,o =1 (the unit operator is present)

2. pay > 0 (unitarity)
3. pa, gives a crossing-symmetric conformal block expansion:

G(u,v) = ZijgA,g(u,U) = (E)AU G(v,u)

v
Al

(Think of pa ¢ as a squared OPE coefficient if A, ¢ is in the
spectrum, 0 otherwise.)



An Optimization Problem For the Spectrum

Some Properties of Ca,

» Ca, is Convex:
tpae+ (1 —t)pp, with ¢ e€]0,1]

also gives a unitary crossing symmetric 4-pt function.
» Ca, is nonempty
» Contains 4pt function for any CFT with scalar of dimension A,
» Contains 4pt function for Mean Field Theory (aka Generalized
Free Fields)

dimCa, = #(dimensions and spins (A,/))
— #(constraints from crossing symmetry)

= X — =0



A Picture of Ca
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Getting To the Boundary of Ca,

Points on the boundary of a convex space are extrema of some
linear function. So...

» The 3d Ising Spectrum Maximizes something.

Candidates:

» The 3d Ising Spectrum Maximizes A, (dimension of
lowest-dimension scalar in o x o)

» The 3d Ising Spectrum Maximizes pr = p3 o (coefficient of
stress-tensor conformal block)



pr Maximization = ¢ Minimization
The coefficient pr is fixed by Ward identities

(Twoo) o« Ag Aﬁ?,
(TwTpe) o<c — PrX c

Bounds support idea that Ising Model minimizes ¢
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Equivalence of c-minimization and A.-maximization

A(e) difference (105 comp.)

10

10°

107

108 ! ! !
0.516 0.517 0.518 0.519 0.520

Ao)

Cr




An Optimization Problem For the Spectrum

Precise Conjecture

Ag,paein 3d Ising = argmaxa, . ,eCs, [pr]

» Conceptually nice
» Conjecture is in terms of T},,,, which is present in every CFT
» lIsing is as far as possible from MFT (cypr = 00)
» Smallest ¢ = “simplest” theory
» Computationally nice
» pr is a linear function on Ca_, so we have a linear program for
each A,
» Solve with Dantzig's simplex method ('47)
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Simplex Algorithm

Making the Problem Finite

We first relax the crossing constraint to a finite set of constraints
u\ Ao
oroy (Guw) - (£) 7 Gl
v

for N pairs of derivatives (m,n). Recover Ca, as N — oc.

=0
u=v=1/4

N=100

» Optimum is achieved with NV nonzero pp y = N operators.

» Take N — oo to recover spectrum.



The Simplex Method

1. Start with N positive coefficients {pa, ¢,,---,PAxNLx }
satisfying the N crossing constraints.

2. Consider turning on some new pa, ¢,, adjusting the pa, ¢, to
preserve crossing symmetry. Choose A,, ¢, to maximize opr

N
opy
OPA L

AW
\

3. Turn on pa, ¢, as much as possible until some pa, ¢, goes to
zero, leaving N nonzero coefficients again.

4. Repeat.
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Spin-0 Spectrum

ncomp=231; spin =0
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Spin-2 Spectrum

ncomp=231; spin =2
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Spin-2 Spectrum in 2d (For Comparison)

ncomp=153; spin =2
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Conclusions

Results:

» Special value of A, emerges as N — oo

» Extremely precise determinations of critical exponents and
OPE coefficients

» A, = 0.518155(15)
» A, = 1.41268(12)
» c/cf'*® = 0.946533(10)

» Certain operators predicted by Exact RG methods not actually
present in spectrum.

Future Directions:

» Improve algorithm /precision
» Study optimization analytically

» Investigate other CFT constraints
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