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QFTs have a non-perturbative definition:  path-integral

Z(t) = /D(I) e 512t

Big progress on Euclidean path-integral of SUSY theories on compact manifolds

Technical tool: supersymmetric localization = compute exactly

Also compute VEVs of SUSY operators: local and non-local, order and disorder
Zpm(t,0) = /D@Oe*SM

Not new. [witten 88]
New is connection with generic SUSY backgrounds (other than topological twist)



Various dimensions, amount of SUSY, compact manifolds, types of operators, ...
e Examples: S¢ partition functions

S% with A/ = 1 SUSY [Hosomici, Seong, Terashima 12; Kallen, Qiu, Zabzine 12; Kim, Kim 12]

54 with N =2 SUSsY [Pestun 07]

53 Wlth N =2 SUSY [Kupustin, Willett, Yaakov 09; Jafferis 10; Hama, Hosomichi, Lee 11]

S2 Wlth N = (2, 2) SUSY [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12; Doroud, Gomis 12]

e Generalizations: e.g. squashing of spheres

[Hama, Hosomichi, Lee 11; Imamura, Yokoyama 11; Hama, Hosomichi 12; Imamura 12]

e Other manifolds: e.g. S9! x S?

Index: I(f) =Tr (—1)F e PH O

5d with A/ = 1 SUSY [Kim, Kim, Lee 12]

4C| Wlth N =1 SUSY [Rbmelsberger 05; Gadde, Gaiotto, Pomoni, Rastelli, Razamat, Yan]
3d Wlth N = 2 SUSY [Kim 09; Imamura, Yokoyama 11]

2d with N = (0, 2) SUSY [FB, Eager, Hori, Tachikawa 13; Gadde, Gukov 13]

(] Q—backgrounds [Nekrasov 02; Nekrasov, Okounkov 03; Shadchin 06]



Two-dimensional theories

Interesting for many reasons:

@ interesting in their own right

avatars of 4d theories (x symmetry breaking, dyn. generated gap, ...)

relevant for string theory

directly connected with geometry, through non-linear sigma model (NLSM)

connected to 4-manifolds with surface defect through Mb5-branes
[Gadde, Gukov, Putrov 13]



Partition functions

Exact evaluation of Euclidean path-integral on compact manifolds, useful for:
@ Exact physical results (e.g. VEVs of operators)
@ Precision tests of non-perturbative dualities

@ Extract geometric information
(Gromov-Witten invariants, elliptic genera, cluster algebra structures, . ..)



Outline

@ Localization and SUSY backgrounds
@ 52 partition function

Elliptic genus (72 partition function, or 2d index)

Non-perturbative dualities



Localization and SUSY backgrounds



Localization

Path-integral of Euclidean SUSY theory on My:
I, (t) = /D@ e~ S

Parameters t: o from flat space Lagrangian
@ controlling curvature couplings

@ from curved metric on My
With enough SUSY, exactly computable with localization techniques. [witten 88, 91]

e Compute VEVs of SUSY operators as well:

Zsi(t,0) = [ Dd O e S®1
Sd

Both local and non-local, both order and disorder.



Localization

e Action S and operators O, supersymmetric w.r.t. supercharge Q:
[QvS] = [Qa O] =0

Q-exact terms do not affect the path-integral:
9 —S—u{Q,P}
— | D®Oe =0
ou

Z is sensitive only to Q-cohomology (in space of functionals).



Localization

e Action S and operators O, supersymmetric w.r.t. supercharge Q:
[QvS] = [Qa O] =0

Q-exact terms do not affect the path-integral:
9 —S—u{Q,P}
— | D®Oe =0
ou

Z is sensitive only to Q-cohomology (in space of functionals).

e Choose Q-exact deformation action with positive definite bosonic part:

— 2
Sloc = U Z Q((Q’L/))'Qb) Sloc’bOS:UZ’Qw‘
fermions P
u — oo limit: only BPS configurations Qi = 0 contribute . o
Z= Y ezl /

Qy=0
g | Q=0 e



Localization

Three tasks (after choosing Q):

o Find space Mpgps of BPS configurations (must be finite dimensional!)
o Compute 1-loop determinant Zi.jo0p

@ Sum/integrate over Mpgps



Localization

Three tasks (after choosing Q):

o Find space Mpgps of BPS configurations (must be finite dimensional!)
o Compute 1-loop determinant Zi.jo0p

@ Sum/integrate over Mpgps

What is new? SUSY backgrounds!



SUSY on curved manifolds

How do we preserve SUSY on a curved M ?

@ Past: topological twist [Witten 88; Vafa, Witten 94; . ..

Turn on background gauge field Aff coupled to R-symmetry:
W AR "
A =wy,
(embedding spin connection into R-symmetry)
— “scalar” supercharges are preserved

This probes chiral / holomorphic sector.



SUSY on curved manifolds

How do we preserve SUSY on a curved M ?

@ Past: topological twist [Witten 88; Vafa, Witten 94; . ..

Turn on background gauge field Aff coupled to R-symmetry:
W AR "
A =wy,
(embedding spin connection into R-symmetry)
— “scalar” supercharges are preserved

This probes chiral / holomorphic sector.

@ Present: more general backgrounds [Pestun 07; ...

E.g.. probe real = holomorphic x holomorphic  sector

Systematics explained by [Festuccia, Seiberg 11] [Adams, Jockers, Kumar, Lapan 11]



SUSY on Curved man|f0|d5 [Festuccia, Seiberg 11]

@ Couple FT to external off-shell supergravity multiplet,
turn on bosonic fields (including auxiliary) such that  d¢% =0

o Take limit Gy — 0 to decouple dynamical gravity
but retain couplings to background.

oYk =0 — generalized Killing spinor equation
5SUCRA (matter) — 62USY (matter)
[SUGRA N £8UsY,

This includes the topological twist, but gives much more!

e There exist different SUGRA multiplets
E.g. FZ multiplet, R-multiplet, S-multiplet — different curved SUSYs

e SUSY algebra on My might be quite different from flat space



S? partition function



2d N = (2,2) SUSY with vector-like U(

g
FT: J

R-multiplet T

v Sg, RM, J, [Dumitrescu, Seiberg 11]
SUGRA:  “new minimal”

g, VS, AR H, H
(Vi — iAff) €=—1Hy,e— %f']’}/ﬂ’)gé
Killing spinor equations:

(Vu+ iAf) €= —%H%ﬁ + %FI’}/N’)BE

[Klare, Tomasiello, Zaffaroni 12; Closset, Dumitrescu, Festuccia, Komargodski 12]



2d N = (2,2) SUSY with vector-like U(

FT: R-multiplet T

Dr
e SELORM T, T

[Dumitrescu, Seiberg 11]

SUGRA:  “new minimal" g, %, A H H
. _ ' (Vi — iAE) €= —%H'y#e — %g")/ﬂ’)/3€
Killing spinor equations:

(Vu+ iAf) €= —%H%ﬁ + %FI’}/N’)BE

[Klare, Tomasiello, Zaffaroni 12; Closset, Dumitrescu, Festuccia, Komargodski 12]

° Aﬁ =+4w,, H=H =0: topological twist (1/2 BPS)

@



2d N = (2,2) SUSY with vector-like U(

1)R
FT: J

R-multiplet Ty, Sk, R*J,
SUGRA:  “new minimal”

[Dumitrescu, Seiberg 11]
G VS, AR H, H

. _ ' (Vi — iAE) €= —%H'y#e — %f[’yﬂ’yge
Killing spinor equations:

AR = 1 i T =
(Vu+iAy) e = —5Hyue+ 5Hy,v3€
[Klare, Tomasiello, Zaffaroni 12; Closset, Dumitrescu, Festuccia, Komargodski 12]

° Aﬁ =+4w,, H=H =0: topological twist (1/2 BPS)

e Round S2: Aff =0, H= —7’—;, H=0 no twist (1 BPS)
\Y% =21 FB, Cremonesi 12
Killing spinors: me 2ir7ui [ |
V€= 5=7u€

[Doroud, Gomis, Le Floch, Lee 12]

"




2d N = (2,2) SUSY with vector-like U(1)g

e Two-dimensional ' = (2, 2) theories with a vector-like U(1)r R-symmetry
can be placed supersymmetrically on S? (2 complex supercharges)

Superalgebra: su(2]1) O su(2) xu(l)g
[0c,0d) = L& + LR M = ieyte
[5617562] = [5&,552] =0 o = i€
e Vector multiplet: V = (Au, A\ A 0 +in, D)
Chiral multiplet: ® = (¢,¢,,¢,F, F)

On S? freedom to choose R-charges R[®] of chiral multiplets —  couplings



Class of theories

Gauge theories of vector and chiral multiplets

Actions:
@ kinetic terms - Q-exact (no dependence on gauge couplings)
@ superpotential W - Q-exact (dependence on R-charges!)
o twisted superpotential W (includes cplx FI term) - full dependence
@ masses and ext fluxes (ext vector multiplets) - full dependence

Include Landau-Ginzburg models

At low energy: realize NLSM! (K&her and CY)



(Coulomb branch) localization formula

The 52 partition function is: [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12]

do*
Lg2 = |W| Z/ ] class(0'7 m) Zgauge(o'a m) HZ@(O’, m; M, n)

P

The one-loop determinants are:

F(@ —ip(o) — ifo[®] M, — p(m) +2Jca[q)]na>

peita T (1 - RO () + ife (o] M, — W)

The classical action is:

Lelass = 6747%5 Tro—ifTrm exp {87TiT Re W(% —+ Z%)}

We isolated the linear piece in % (Fayet-lliopoulos term)



What is it good for?

@ Precision tests of dualities

o Seiberg-like: U(N.) with Ny fund  +  U(Ny — N.) with Ny fund
e Mirror symmetry (Hori-Vafa): gauge theory > gauge theory
with charged axially coupled (W)
matter to neutral LG model

[Gomis, Lee 12]

o AGT: S%-partition function <«  Liouville correlators with degenerate fields
[Doroud, Gomis, Le Floch, Lee 12]



What is it good for?

@ Precision tests of dualities
o Seiberg-like: U(N.) with Ny fund  +  U(Ny — N.) with Ny fund

e Mirror symmetry (Hori-Vafa): gauge theory

with charged
matter

< gauge theory
axially coupled (W)
to neutral LG model

[Gomis, Lee 12]

o AGT: S%-partition function <«  Liouville correlators with degenerate fields

[Doroud, Gomis, Le Floch, Lee 12]

@ VEVs of operators (e.g. Wilson line operators)

dO' —aT
ZSZ(loop |W‘ Z/ J r(e%a m) Zclass Z1-loop



What is it good for?

o Geometry of Kahler moduli space, (equivariant) GW invariants of CYs:
Zg» = <6|O>RR — ¢ Kxhler

[Jockers, Kumar, Lapan, Morrison, Romo 12]
[Bonelli, Sciarappa, Tanzini, Vasko 13] @

Calabi-Yau 3-fold:

e~ Kianier (t,8) — _éﬁlmn(tl _ F)(tm — (" — ) + %?)S)X(Y?)) + O(eQM't)



What is it good for?

o Geometry of Kahler moduli space, (equivariant) GW invariants of CYs:
Zg» = <6|O>RR — ¢ Kxhler

[Jockers, Kumar, Lapan, Morrison, Romo 12]
[Bonelli, Sciarappa, Tanzini, Vasko 13] @

Calabi-Yau 3-fold:

e~ Kianier (t,8) — _éﬁlmn(tl _ F)(tm — (" — ) + %?)S)X(Y?)) + O(eQM't)

@ Central charges of D-branes (D; partition function)
[Hori, Romo 13; Honda, Okuda 13; Kim, Lee, Yi 13]



Elliptic genera



Definition

e Hamiltonian definition (index, only Hp = 0 states):

with N = (2,2) : I(1, 2,uq) = Trrr(—1)F ¢gHrgtry/r Hmf“
with ' = (0,2) : I(7,uq) = Trrp(—1)F ¢fegtn Hmf“
Parameters: q =i, y = 2™z 1z, = e2Tia
Superconformal theory:  Hp = Ly — L , Hp=1Lo— ‘n Jr, = Jo

24 247



Definition

e Hamiltonian definition (index, only Hp = 0 states):

with V' = (2,2) : I(1, 2,uq) = Trrr(—1)F ¢gHrgtry/r Hmf“
with ' = (0,2) : I(7,uq) = Trrp(—1)F ¢fegtn wa“
Parameters: q =i, y = 2™z 1z, = e2Tia
Superconformal theory: Hjp = Lo — ;—Z , Hp=1Lo— ;—}Z , Jr, = Jo

e Lagrangian definition:
path integral on T2 with ext flat connections [
y = %AR o TfAR , Uy = an—th flavor 7_‘%Aa—th flavor
t s t s



Definition

e Geometric definition for NLSM on M — case N = (2,2):

Eqy =& { /\:y_lqn T ® /\:yqn_l Ty ® Sgu(Tns ® Tiy)

n>1

where  \"V = iti TN itiS’V
1=0 1=0

Holomorphic Euler characteristic (Hirzebruch-Riemann-Roch):

_d 01 (7
x(M;T,z) =1y 2/ ch ) Td(M / ;
(M7, 2) | ch(Eqy) MH |€j &



Elliptic genus

@ Physics:

information about the spectrum of the theory

@ Mathematics:

e information about the elliptic cohomology of target

e provide examples of modular forms



Elliptic genus

We use Lagrangian definition: Zp2 (T, 2, uq)

e N =(2,2) and N = (0,2) gauge theories of
vector + chiral ( + Fermi) multiplets:

@ All action terms are Q-exact!
Expected: it is a supersymmetric index

@ Dependence on ext flat connections (R-symmetry, flavor)



Phases of 2d gauge theories

% FI
Different “phases” as we vary Fl: ybrid geometric
&
. . . LG orbifold
e Classic example [witten 93] : the quintic
U(1) gauge theory + chirals + W = P f(X;..5)
E< -1 A& > 1
LG Zs-orbifold quintic CY
In general: symplicial cones, secondary fan [Aspinwall, Greene, Morrison 93]

e Elliptic genus does not depend on FlI

= Gauge theory formula should unify known formulas



1) BPS space

e Flat gauge connections (modulo gauge trans.):
Meps = {A,|F, = 0}

Flat flavor and R-symmetry connections are fixed!

e With Abelian and simply-connected factors:

Meps = M/W M = he/(T +10) ~ T



2) 1-loop: Matter sector

Easy in Hamiltonian formulation — case N = (2,2):

| ¢ Yr YL
Chiral multiplet : Jr, % g % -1
Kl @ @
Putting everything together:
01(q,y* 12
Z@,Q(T, 2, u) _ l(qa Yy 25 € )
01(q,y=29)
in terms of the Jacobi theta function
01(q,y) = —igsy? [J(1 —¢M) (1 —yg") (A -y~ '¢" ")

n=1

Can also be written as plethystic exponential.



2) 1-loop: Matter sector

e Zgp o all we need for Landau-Ginzburg models [Witten 93]

W fixes R-charges

E.g.: A-series N' = (2,2) minimal models: W =20k R=2



2) 1-loop: Matter sector

e Zgp o all we need for Landau-Ginzburg models [Witten 93]

W fixes R-charges
E.g.: A-series N’ = (2,2) minimal models: W =20k R=2

e Bosonic zero-modes for special values of the flat connections:

gz—i—Qu:O (mod Z + 7Z)

Rank 1: poles on the torus 5

Higher rank: singular hyperplanes on the Jacobian 9t

Part of the symmetry is gauged = potential problem



2) 1-loop: Gauge sector

‘ o AR AL
Vector multiplet: Jp|-1 =1 0
Go|l o o «

Vectors in the Cartan: LM gaugino has fermionic zero-mode! Removing it:

2777]((1)3 rank G 01 q rank G
Zya(t,z,u) = (1)) H o : 1$a H dug
1

01(q,y vre

Define: Z1100p(Ts 2, Uas €0) = Zv.ca Hi Zs,




3) Integration

We should integrate over 9i:  poles of Zg !

Artifact of e = 0: poles are smoothed out at finite e (D-terms)

o Work at finite e (approx.) and with a cutoff e: cut tubular regions around
singularities 7 /

/,./

%

Eventually take scaling limit e — 0, ¢ — 0.

@ Getting smooth limit requires choice of regularization parameter:

neb”



3) Integration

We should integrate over 9i:  poles of Zg !

Artifact of e = 0: poles are smoothed out at finite e (D-terms)

o Work at finite e (approx.) and with a cutoff e: cut tubular regions around
singularities 7. /

/,.//

V.

Eventually take scaling limit e — 0, ¢ — 0.
@ Getting smooth limit requires choice of regularization parameter:
neb

@ Absorb fermionic zero-modes. Integral over 9\ A, becomes contour integral:

Zs2 = / Z1_|oop(u) du cfr. [Grassi, Policastro, Scheidegger 07]
C(n)

@ Result independent of 7. Expression depends on ray of 7.



Rank one

For U(1): moduli space of flat connections
M=C/(Z+717)=T?
Divide singularities into “positive” and “negative” poles:

Maing = M LIM,

sing sing



Rank one

For U(1): moduli space of flat connections
M=C/(Z+717)=T?
Divide singularities into “positive” and “negative” poles:

Maing = M LIM,

sing sing

Formula: )
ZT2(T,Z,§a) = Tt Z 1}1%5 Z1-|0°p(7-azvua ga)

W
L gt

1
=T 2 R Aree( ko)
ux €N

sing.
@ Two expressions come from n = =+, and agree

e U(1): two expr's correspond to large &+ Fl term — CY/LG correspondence

o Geometric phase: agrees with geometric definition (characteristic class)



Example: the quintic

Example of CY/LG correspondence

U(1) gauge theory + chirals X1 5, P + W =P f5(X1,. 5)

@ Positive poles:

@ Bl =) [Bulru— )]
Zratr2) = gy 4 01<T|z—5u>[ b, () ]

Agrees with geometric formula for quintic CY3.

@ Negative poles:

4 —4z+k+lr
1 O (7| —5F)
Zr2(1,2) = = e 2miz [ 5
5 k;_:o 0, (7_| z+k?5+l‘r)

Landau-Ginzburg Zs-orbifold.



Higher rank

Space of flat connections: m/w with M= bhc/(I' +71) ~

Singular hyperplanes:
H; = {u|Qi(u) +shift =0 (mod '+ 7I")}
Isolated intersection points: x

sing

Integration contour is specified by the Jeffrey-Kirwan residue:

1
ZTz(T,Z7£):W Z J%(;Ei*es(Q(u*),n) Z1t00p(T, 2,1, €)
uy €M

sing

Depends on a choice of vector (ray) n € h*

Definition:

JK-Res(Qx, 7) dQj, (u) A A dQj,. (u) _ {sign det(Qj, ... Qj,.) ifne ?one(Qj1
u=0 Qjy (u) Qj-(u) 0 otherwise

T2r

..Qj4)



Non-perturbative dualities



Hori-Tong duality [Hori, Tong 06]

SU(k) with N fundamentals “ SU(N — k) with N fundamentals

Proved that:

@ S? partition function agrees [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12]

) eIIiptic genus agrees [FB, Eager, Hori, Tachikawa 13; Gadde, Gukov 13]

as functions of U(N) flavor symmetry parameters.



Seiberg-like dualities

More general Seiberg-like dualities: (Grassmannian dualities)

U(k) with Ny, N, ~ U(max(Ny, N,) — k) with N,, Ny, singlets and
W =QMQ

Proved that S? partition function and elliptic genus agree.

Z g2 — precise map of parameters: e.g. Fl term
contact terms in twisted superpotential W



QUIVeI’S and CIUSter algebra [FB, Park, Zhao, in progress]

When applied to quivers: Fl's transform as cluster algebra! [Fomin, Zelevinsky 01]

t ifj=k
FI transformation rules: th = k (bs] b / .
tity, T (14 t) " otherwise

Quiver gauge theory —  CY manifold —  quantum Kahler moduli space
Ring of holomorphic functions on Mshier is a cluster algebra.

Implications for integrable systems, Pichard-Fucks equations, singularity theory. ..



Conclusions

Some interesting directions:
@ Higher genus and lower supersymmetry
@ Generalized Kahler geometry
@ More general dualities (e.g. Kutasov-Schwimmer-like)

o Consequences for integrable systems



Thank you!



