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QFTs have a non-perturbative definition: path-integral

Z(t) =

∫
DΦ e−S[Φ,t]

Big progress on Euclidean path-integral of SUSY theories on compact manifolds

Technical tool: supersymmetric localization ⇒ compute exactly

Also compute VEVs of SUSY operators: local and non-local, order and disorder

ZM(t,O) =

∫
DΦO e−S[Φ,t]

Not new. [Witten 88]

New is connection with generic SUSY backgrounds (other than topological twist)



Various dimensions, amount of SUSY, compact manifolds, types of operators, . . .

• Examples: Sd partition functions

S5 with N = 1 SUSY [Hosomici, Seong, Terashima 12; Kallen, Qiu, Zabzine 12; Kim, Kim 12]

S4 with N = 2 SUSY [Pestun 07]

S3 with N = 2 SUSY [Kupustin, Willett, Yaakov 09; Jafferis 10; Hama, Hosomichi, Lee 11]

S2 with N = (2, 2) SUSY [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12; Doroud, Gomis 12]

• Generalizations: e.g. squashing of spheres
[Hama, Hosomichi, Lee 11; Imamura, Yokoyama 11; Hama, Hosomichi 12; Imamura 12]

• Other manifolds: e.g. Sd−1 × S1

Index: I(f) = Tr (−1)F e−βH fOi
i

5d with N = 1 SUSY [Kim, Kim, Lee 12]

4d with N = 1 SUSY [Römelsberger 05; Gadde, Gaiotto, Pomoni, Rastelli, Razamat, Yan]

3d with N = 2 SUSY [Kim 09; Imamura, Yokoyama 11]

2d with N = (0, 2) SUSY [FB, Eager, Hori, Tachikawa 13; Gadde, Gukov 13]

• Ω-backgrounds [Nekrasov 02; Nekrasov, Okounkov 03; Shadchin 06]



Two-dimensional theories

Interesting for many reasons:

interesting in their own right

avatars of 4d theories (χ symmetry breaking, dyn. generated gap, . . . )

relevant for string theory

directly connected with geometry, through non-linear sigma model (NLSM)

connected to 4-manifolds with surface defect through M5-branes
[Gadde, Gukov, Putrov 13]



Partition functions

Exact evaluation of Euclidean path-integral on compact manifolds, useful for:

Exact physical results (e.g. VEVs of operators)

Precision tests of non-perturbative dualities

Extract geometric information
(Gromov-Witten invariants, elliptic genera, cluster algebra structures, . . . )



Outline

Localization and SUSY backgrounds

S2 partition function

Elliptic genus (T 2 partition function, or 2d index)

Non-perturbative dualities



Localization and SUSY backgrounds



Localization

Path-integral of Euclidean SUSY theory on Md:

ZMd
(t) =

∫
DΦ e−S[Φ,t]

Parameters t: from flat space Lagrangian

controlling curvature couplings

from curved metric on Md

With enough SUSY, exactly computable with localization techniques. [Witten 88, 91]

• Compute VEVs of SUSY operators as well:

ZSd(t,O) =

∫
Sd

DΦ O e−S[Φ,t]

Both local and non-local, both order and disorder.



Localization

• Action S and operators O, supersymmetric w.r.t. supercharge Q:

[Q, S] = [Q,O] = 0

Q-exact terms do not affect the path-integral:

∂

∂u

∫
DΦ O e−S−u {Q,P} = 0

Z is sensitive only to Q-cohomology (in space of functionals).

• Choose Q-exact deformation action with positive definite bosonic part:

Sloc = u
∑

fermions ψ

Q
(

(Qψ)ψ
)

Sloc

∣∣
bos

= u
∑
ψ

∣∣Qψ∣∣2
u→∞ limit: only BPS configurations Qψ = 0 contribute

Z =
∑

Φ0 | Qψ=0

e−S[Φ0] Z1-loop[Φ0]
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Localization

Three tasks (after choosing Q):

Find space MBPS of BPS configurations (must be finite dimensional!)

Compute 1-loop determinant Z1-loop

Sum/integrate over MBPS

What is new? SUSY backgrounds!
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SUSY on curved manifolds

How do we preserve SUSY on a curved Md?

Past: topological twist [Witten 88; Vafa, Witten 94; . . . ]

Turn on background gauge field ARµ coupled to R-symmetry:

“ARµ = ωµ”

(embedding spin connection into R-symmetry)

−→ “scalar” supercharges are preserved

This probes chiral / holomorphic sector.

Present: more general backgrounds [Pestun 07; . . . ]

E.g.: probe real = holomorphic× holomorphic sector

Systematics explained by [Festuccia, Seiberg 11] [Adams, Jockers, Kumar, Lapan 11]
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SUSY on curved manifolds [Festuccia, Seiberg 11]

Couple FT to external off-shell supergravity multiplet,
turn on bosonic fields (including auxiliary) such that δψµα = 0

Take limit GN → 0 to decouple dynamical gravity
but retain couplings to background.

δψµα = 0 → generalized Killing spinor equation

δSUGRA(matter) → δSUSY
curved(matter)

LSUGRA → LSUSY
curved

This includes the topological twist, but gives much more!

• There exist different SUGRA multiplets
E.g. FZ multiplet, R-multiplet, S-multiplet −→ different curved SUSYs

• SUSY algebra on Md might be quite different from flat space



S2 partition function



2d N = (2, 2) SUSY with vector-like U(1)R

FT: R-multiplet Tµν , Sµα, Rµ, J , J̃ [Dumitrescu, Seiberg 11]

SUGRA: “new minimal” gµν , ψαµ , ARµ , H, H̃

Killing spinor equations:
(∇µ − iARµ ) ε = − 1

2Hγµε−
i
2H̃γµγ3ε

(∇µ + iARµ ) ε̄ = − 1
2Hγµε+ i

2H̃γµγ3ε̄
[Klare, Tomasiello, Zaffaroni 12; Closset, Dumitrescu, Festuccia, Komargodski 12]

ARµ = ±ωµ, H = H̃ = 0: topological twist (1/2 BPS)

Round S2: ARµ = 0, H = − i
r , H̃ = 0 no twist (1 BPS)

Killing spinors:
∇µε = i

2r
γµε

∇µε̄ = i
2r
γµε̄

[FB, Cremonesi 12]

[Doroud, Gomis, Le Floch, Lee 12]
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2d N = (2, 2) SUSY with vector-like U(1)R

• Two-dimensional N = (2, 2) theories with a vector-like U(1)R R-symmetry
can be placed supersymmetrically on S2 (2 complex supercharges)

Superalgebra: su(2|1) ⊃ su(2)× u(1)R

[δε, δε̄] = LAξ + i
2rαR ξµ = iε̄γµε

[δε1 , δε2 ] = [δε̄1 , δε̄2 ] = 0 α = iε̄ε

• Vector multiplet: V = (Aµ, λ, λ̄, σ + iη,D)

Chiral multiplet: Φ = (φ, φ̄, ψ, ψ̄, F, F̄ )

On S2 freedom to choose R-charges R[Φ] of chiral multiplets → couplings



Class of theories

Gauge theories of vector and chiral multiplets

Actions:

kinetic terms – Q-exact (no dependence on gauge couplings)

superpotential W – Q-exact (dependence on R-charges!)

twisted superpotential W (includes cplx FI term) – full dependence

masses and ext fluxes (ext vector multiplets) – full dependence

Include Landau-Ginzburg models

At low energy: realize NLSM! (Käher and CY)



(Coulomb branch) localization formula

The S2 partition function is: [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12]

ZS2 =
1

|W|
∑
m

∫ (∏
j

dσj
2π

)
Zclass(σ,m) Zgauge(σ,m)

∏
Φ

ZΦ(σ,m;M, n)

The one-loop determinants are:

Zgauge =
∏

α∈G ,α>0

(α(m)2

4
+ α(σ)2

)

ZΦ =
∏
ρ∈RΦ

Γ
(R[Φ]

2
− iρ(σ)− ifa[Φ]Ma −

ρ(m) + fa[Φ]na
2

)
Γ
(

1− R[Φ]

2
+ iρ(σ) + ifa[Φ]Ma −

ρ(m) + fa[Φ]na
2

)
The classical action is:

Zclass = e−4πiξTrσ−iθTrm exp
{

8πirRe W̃
(
σ
r + i m2r

)}
We isolated the linear piece in W̃ (Fayet-Iliopoulos term)



What is it good for?

Precision tests of dualities

Seiberg-like: U(Nc) with Nf fund ↔ U(Nf −Nc) with Nf fund

Mirror symmetry (Hori-Vafa): gauge theory
with charged
matter

↔ gauge theory
axially coupled (W̃ )
to neutral LG model

[Gomis, Lee 12]

AGT: S2-partition function ↔ Liouville correlators with degenerate fields
[Doroud, Gomis, Le Floch, Lee 12]

VEVs of operators (e.g. Wilson line operators)

ZS2(loop) =
1

|W|
∑
m

∫ (∏
j

dσj
2π

)
Tr(e2πσ−iπm) Zclass Z1-loop
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What is it good for?

Geometry of Kähler moduli space, (equivariant) GW invariants of CYs:

ZS2 = 〈0̄|0〉RR = e−KKähler

[Jockers, Kumar, Lapan, Morrison, Romo 12]

[Bonelli, Sciarappa, Tanzini, Vasko 13]

Calabi-Yau 3-fold:

e−KKähler(t,t̄) = − i
6
κlmn(tl − t̄l)(tm − t̄m)(tn − t̄n) +

ζ(3)

4π3
χ(Y3) +O(e2πit)

Central charges of D-branes (D2 partition function)
[Hori, Romo 13; Honda, Okuda 13; Kim, Lee, Yi 13]
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Elliptic genera



Definition

• Hamiltonian definition (index, only HR = 0 states):

with N = (2, 2) : I(τ, z, ua) = TrRR(−1)F qHL q̄HRyJL
∏
a

xKa
a

with N = (0, 2) : I(τ, ua) = TrRR(−1)F qHL q̄HR

∏
a

xKa
a

Parameters: q = e2πiτ , y = e2πiz , xa = e2πiua

Superconformal theory: HL = L0 −
cL
24

, HR = L̄0 −
cR
24

, JL = J0

• Lagrangian definition:
path integral on T 2 with ext flat connections

z =

∮
t

AR − τ
∮

s

AR , ua =

∮
t

Aa-th flavor − τ
∮

s

Aa-th flavor
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Definition

• Geometric definition for NLSM on M — case N = (2, 2):

Eq,y =
⊗
n≥1

[∧•
−y−1qn

TM ⊗
∧•
−yqn−1

T ∗M ⊗ S•qn(TM ⊗ T ∗M )

]

where
∧•

t
V =

∞∑
i=0

ti
∧i

V and S•t V =

∞∑
i=0

tiSiV .

Holomorphic Euler characteristic (Hirzebruch-Riemann-Roch):

χ(M ; τ, z) = y−
d
2

∫
M

ch(Eq,y) Td(M) =

∫
M

d∏
j=1

θ1(τ |ξj − z)
θ1(τ |ξj)

ξj



Elliptic genus

Physics:

information about the spectrum of the theory

Mathematics:

information about the elliptic cohomology of target

provide examples of modular forms



Elliptic genus

We use Lagrangian definition: ZT 2(τ, z, ua)

• N = (2, 2) and N = (0, 2) gauge theories of

vector + chiral ( + Fermi) multiplets:

All action terms are Q-exact!
Expected: it is a supersymmetric index

Dependence on ext flat connections (R-symmetry, flavor)



Phases of 2d gauge theories

Different “phases” as we vary FI:

• Classic example [Witten 93] : the quintic

U(1) gauge theory + chirals + W = P f(X1...5)

ξ � −1 ξ � 1

LG Z5-orbifold quintic CY

In general: symplicial cones, secondary fan [Aspinwall, Greene, Morrison 93]

• Elliptic genus does not depend on FI

⇒ Gauge theory formula should unify known formulas



1) BPS space

• Flat gauge connections (modulo gauge trans.):

MBPS = {Aµ|Fµν = 0}

Flat flavor and R-symmetry connections are fixed!

• With Abelian and simply-connected factors:

MBPS = M/W M = hC/(Γ + τΓ) ' T 2r

1

τ



2) 1-loop: Matter sector

Easy in Hamiltonian formulation — case N = (2, 2):

Chiral multiplet :

φ ψR ψL

JL
R
2

R
2

R
2 − 1

K Q Q Q

Putting everything together:

ZΦ,Q(τ, z, u) =
θ1(q, y

R
2 −1xQ)

θ1(q, y
R
2 xQ)

in terms of the Jacobi theta function

θ1(q, y) = −iq 1
8 y

1
2

∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn−1)

Can also be written as plethystic exponential.



2) 1-loop: Matter sector

• ZΦ,Q all we need for Landau-Ginzburg models [Witten 93]

W fixes R-charges

E.g.: A-series N = (2, 2) minimal models: W = Φk, R = 2
k .

• Bosonic zero-modes for special values of the flat connections:

R

2
z +Qu = 0 (mod Z + τZ)

Rank 1: poles on the torus

Higher rank: singular hyperplanes on the Jacobian M

Part of the symmetry is gauged ⇒ potential problem
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2) 1-loop: Gauge sector

Vector multiplet:
σ λR λL

JL −1 −1 0
Ga α α α

Vectors in the Cartan: LM gaugino has fermionic zero-mode! Removing it:

ZV,G(τ, z, u) =

(
2πη(q)3

θ1(q, y−1)

)rankG ∏
α∈G

θ1(q, xα)

θ1(q, y−1xα)

rankG∏
a=1

dua

Define: Z1-loop(τ, z, ua, ξa) = ZV,G
∏

i
ZΦi



3) Integration

We should integrate over M: poles of ZΦ,Q!

Artifact of e = 0: poles are smoothed out at finite e (D-terms)

Work at finite e (approx.) and with a cutoff ε: cut tubular regions around
singularities

Eventually take scaling limit e→ 0, ε→ 0.

Getting smooth limit requires choice of regularization parameter:

η ∈ h∗

Absorb fermionic zero-modes. Integral over M \∆ε becomes contour integral:

ZS2 =

∫
C(η)

Z1-loop(u) du cfr. [Grassi, Policastro, Scheidegger 07]

Result independent of η. Expression depends on ray of η.
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Rank one

For U(1): moduli space of flat connections

M = C/(Z + τZ) = T 2

Divide singularities into “positive” and “negative” poles:

Msing = M+
sing tM−sing

Formula:

ZT 2(τ, z, ξa) =
1

|W |
∑

u∗∈M+
sing

Res
u=u∗

Z1-loop(τ, z, u, ξa)

= − 1

|W |
∑

u∗∈M−
sing

Res
u=u∗

Z1-loop(τ, z, u, ξa)

Two expressions come from η = ±, and agree

U(1): two expr’s correspond to large ± FI term → CY/LG correspondence

Geometric phase: agrees with geometric definition (characteristic class)
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Example: the quintic

Example of CY/LG correspondence

U(1) gauge theory + chirals X1,...,5, P + W = P f5(X1,...,5)

Positive poles:

ZT 2(τ, z) =
iη(q)3

θ1(τ |z)

∮
u=0

du
θ1(τ | − 5u)

θ1(τ |z − 5u)

[
θ1(τ |u− z)
θ1(τ |u)

]5

Agrees with geometric formula for quintic CY3.

Negative poles:

ZT 2(τ, z) =
1

5

4∑
k,l=0

e−2πiz

[
θ1(τ |−4z+k+lτ

5 )

θ1(τ | z+k+lτ
5 )

]5

Landau-Ginzburg Z5-orbifold.



Higher rank

Space of flat connections: M/W with M = hC/(Γ + τΓ) ' T 2r

Singular hyperplanes:

Hi = {u |Qi(u) + shift = 0 (mod Γ + τΓ)}

Isolated intersection points: M∗sing

Integration contour is specified by the Jeffrey-Kirwan residue:

ZT 2(τ, z, ξ) =
1

|W |
∑

u∗ ∈M∗
sing

JK-Res
u=u∗

(
Q(u∗), η

)
Z1-loop(τ, z, u, ξ)

Depends on a choice of vector (ray) η ∈ h∗

Definition:

JK-Res
u=0

(Q∗, η)
dQj1 (u)

Qj1 (u)
∧ · · · ∧

dQjr (u)

Qjr (u)
=

{
sign det(Qj1 . . . Qjr ) if η ∈ Cone(Qj1 . . . Qjr )

0 otherwise



Non-perturbative dualities



Hori-Tong duality [Hori, Tong 06]

SU(k) with N fundamentals ↔ SU(N − k) with N fundamentals

Proved that:

S2 partition function agrees [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12]

elliptic genus agrees [FB, Eager, Hori, Tachikawa 13; Gadde, Gukov 13]

as functions of U(N) flavor symmetry parameters.



Seiberg-like dualities

More general Seiberg-like dualities: (Grassmannian dualities)

U(k) with Nf , Na ↔ U
(

max(Nf , Na)− k
)

with Na, Nf , singlets and

W = Q̃MQ

Proved that S2 partition function and elliptic genus agree.

ZS2 → precise map of parameters: e.g. FI term
contact terms in twisted superpotential W



Quivers and cluster algebra [FB, Park, Zhao, in progress]

When applied to quivers: FI’s transform as cluster algebra! [Fomin, Zelevinsky 01]

Na N Nf

NA

NB

NC

ND

Na max(Nf , Na)−N Nf

NA

NB

NC

ND

FI transformation rules: t′j =

{
t−1
k if j = k

tjt
[bkj ]+
k (1 + tk)−bkj otherwise

Quiver gauge theory → CY manifold → quantum Kähler moduli space

Ring of holomorphic functions on MKähler is a cluster algebra.

Implications for integrable systems, Pichard-Fucks equations, singularity theory. . .



Conclusions

Some interesting directions:

Higher genus and lower supersymmetry

Generalized Kähler geometry

More general dualities (e.g. Kutasov-Schwimmer-like)

Consequences for integrable systems



Thank you!


