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Introduction to  
Fermi Liquids

Fermions at finite density 
have a Fermi surface 
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Landau Fermi Liquids
In simple metals, excitations are 
weakly coupled quasi-particles
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Landau Fermi Liquids
Why are emergent quasiparticles well-

described by weak coupling?

Modern EFT description: 	

(almost) all interactions are irrelevant
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Landau Fermi Liquids
Scaling:

Standard: Fermi Surface:
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empty states

filled states

Fix angle and scale toward	

nearest point on Fermi surface: 

~q = ✓̂(kF + `)
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Landau Fermi Liquids
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So we see that the fermions should scale as



Landau Fermi Liquids
First interaction is four-fermion interaction

 †
1 

†
2 3 4

�(!1 + !2 + !e + !4)

�d(~k1 + ~k2 + ~k3 + ~k4)

S4 =
Z

dd�1S1d!1d`1 . . . d
d�1S4d!4d`4

It naively scales like e� and is irrelevant

But for certain kinematic configurations, the delta function 
scales like         and the interaction becomes marginale��
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Landau Fermi Liquids
BCS instability:	


At one-loop, the interaction between antipodal points 
runs and becomes marginally relevant/irrelevant 

�V

V

Repulsive: 
flows to zero 

coupling

Attractive: 
flows to strong 

coupling

dV

d logµ
= V 2



If resistivity is too large, then mean free path is shorter than 
lattice spacing, and quasi-particle description doesn’t make sense 

Fermi vs. Non-Fermi

Quasi-particle 
transport:

‘‘Fermi Liquid’’ metal 
doesn’t exceed bound

Ioffe-Regel Resistivity Limit 
on Fermi Liquids

resistivity is inversely 
proportional to mean 

free path

‘’Non-Fermi Liquid’’ 
metal exceeds bound



‘‘Non-Fermi 
Liquid’’

Ordered 
phase

Fermi 
Liquid

Quantum Critical 
Point (QCP)

‘‘Non-Fermi’’ Liquids
Many materials have fascinating new properties that make 

them fall outside of the Fermi Liquid description

•Resistivity Linear in T!

•Violate Ioffe-Regel bound!

•Superconductivity often 
occurs at high temperature !

•Often Located near 
Quantum Critical Points

B



Quantum Critical 
Points

A Recurring theme: NFLs arise near Quantum Phase 
Transitions 	


(Phase transition at zero temp) 

control parameter

NFL

Fermi LiquidOrdered 
phase

T

Super	

conductor



control parameter

T

Landau-Ginzburg-Wilson
Write down Lagrangian for the order 

parameter of the phase transition

L ⇠ �̇2 � (r�)2 �m2�2 � ��4 + . . .

(        should transform according to the symmetries it breaks)�
Near critical point:       is a nearly massless fluctuating boson�

m2
� < 0 m2

� > 0

Critical Pointm2
� ⇡ 0

m2 . T 2



EFTs of Non-Fermi 
Liquids

As a high energy physicist, I will take some lessons 
from the study of QCD:

2) Confinement especially was hard to 
tackle directly, and simplifying special cases 
(2d, large N, SUSY) played a crucial role in 

our qualitative understanding

1) It was hard to see a priori what QFTs (if any!) 
could explain deep inelastic scattering	


 	

The classification and study of local QFTs was 

wildly successful



EFTs and Non-Fermi 
Liquids

Fermi 
Surface

Order 
Parameter 

Field

Non-Fermi Liquid

Yukawa coupling

g�i †�i 

Now we have a great EFT problem:!
Choose our light degrees of freedom and add interactions.!
Integrate out high energy modes and see what happens at 

low energies.



EFTs of Non-Fermi 
Liquids

Wilsonian approach: start with local action in 
UV and integrate out high energy modes

We will not add by hand any terms like 

�
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Quantum Critical 
Points

Fermi 
Liquid

S�� 

���
4

S 

S = S + S� + S�� 

:

S� :

:
Yukawa coupling

Scalar 

IR 
theoryg�i †�i 

Hertz, Millis, 
Sachdev, Metlitski, 

Belitz, Todadri!
Chubukov, Lee, Xu



Marriage of  Landau’s 
Two Great Frameworks

Bosons can decay to 
particle/hole pairs: 
‘‘Landau damping’’
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Fermions can decay: 
Non-Fermi Liquid

  

�



Titanic Struggle
Fermions renormalize bosons and vice versa 

Who wins?

Bosons can decay to 
particle/hole pairs: 
‘‘Landau damping’’
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Fermions can decay: 
Non-Fermi Liquid

  

�



Titanic Struggle
Fermions renormalize bosons and vice versa 

Who wins?

Bosons can decay to 
particle/hole pairs: 
‘‘Landau damping’’
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Non-Fermi Liquid

  

�



Titanic Struggle
Fermions renormalize bosons and vice versa 

Who wins?

Bosons can decay to 
particle/hole pairs: 
‘‘Landau damping’’

�
 

 

Fermions can decay: 
Non-Fermi Liquid

  

�



Landau Damping

One-loop boson self-energy 
has non-analytic term

Strong coupling at IR scale: >

⇠ M2F (q0/q)

One loop      vs     tree-level



Anomalous Dimension

Wavefunction 
renormalization

This is a more familiar effect from a particle 
physicist’s point of view:	


!

The log divergent piece changes the scaling 
dimension of the fermion field



Landau Damping
Mainstream philosophy 	


Hertz (1976):

‘‘Fermions Win’’
‘‘Keep 1PI diagrams but 
drop all others, resum to 

get new kinetic term’’

‘‘Then feed this back into corrections to fermion’’



Landau Damping
Mainstream philosophy 	


Hertz (1976):

‘‘Fermions Win’’
‘‘Keep 1PI diagrams but 
drop all others, resum to 

get new kinetic term’’

‘‘Then feed this back into corrections to fermion’’



Looking for Controlled Limits

Dimension: small

d

✏

1 2 3

(spatial)

Large N
Nf

 

Nb

�

‘‘Fermions Win’’

‘‘Bosons Win’’

Speed of fermions vs bosons

= 3� d



Epsilon Expansion
Work near upper critical dimension to find a 
scale-invariant fixed point at weak coupling

All three couplings are 
classically marginal in d = 3
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Epsilon Expansion

Scalar quartic running is the 
same as in Wilson Fisher

No log 
divergence!

d

d logµ
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Epsilon Expansion

Yukawa runs to IR fixed point

d = 3� ✏

+

from Wavefunction 
renormalization

� 

d

d logµ
g = �g
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+O(g2✏)
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g

g⇤ ⇠ O(
p
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Results from RG Flow
Non-trivial scale-invariant fixed 

point in d<3

fermion velocity v =
kF
m

v

g

fixed point

Coupling

ALF, Kachru, 
Kaplan, Raghu

d = 2.98



Epsilon Expansion
d = 3� ✏

from Wavefunction 
renormalization

� 

Scale-invariant fixed point with non-vanishing anomalous dimension

Fermion Green’s function at fixed point must take the form

G(!, `) =
1

!1�2� 
f(

!

`
)

2� ⇠ ✏

2



Epsilon Expansion

Furthermore, Landau damping pushed to very low scale

Landau damping has no 
effect on RG

No log 
divergence!

⇧(q0, q) ⇠ g2M2F (q0/q)



Epsilon Expansion
Landau damping pushed to very low scale



BCS Instability

O(g4) = O(✏2)

BCS instability is a higher 
order effect and happens only 
at exponentially lower scales 

(if at all)

�2
 � g

2 = � O(✏)



Large N Dials
SU(Nb) SU(Nf )

�j
i

 A
i

Adj 1

⇤ ⇤̄
Now we will look at simplifications in large N limits	


We will find qualitatively different dependence at large      as compared with large	

This indicates a rich phase diagram of such theories 

Nb Nf

Nf

 

Nb

�

‘‘Fermions Win’’

‘‘Bosons Win’’



Large N Dials
SU(Nb) SU(Nf )

�j
i

 A
i

Adj 1

⇤ ⇤̄
At Nb ! 1 Nf fixed

‘‘Bosons Win’’

gp
Nb

gp
Nb

Landau Damping is a non-planar diagram	

and has no effect at infinite Nb



Large N Dials
SU(Nb) SU(Nf )
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At Nb ! 1 Nf fixed
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Large N Dials
SU(Nb) SU(Nf )

�j
i
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Adj 1

⇤ ⇤̄
At Nb ! 1 Nf fixed

One can set                  naturally (in the ‘t Hooft sense) 

�(1)
�

8Nb
tr[�4]
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�

8N2
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(tr[�2])2

�(1)
� = 0

Then the    sector is isomorphic to the SO(Nb2) 	

Wilson-Fisher fixed point

�



Large N Dials
SU(Nb) SU(Nf )

�j
i

 A
i

Adj 1

⇤ ⇤̄
At Nb ! 1 Nf fixed

The only contribution to four-fermi running is 
wavefunction renormalization

d� 
d logµ

= 4� � 

are all O(
1

Nb
)



Large N Dials
SU(Nb) SU(Nf )

�j
i

 A
i

Adj 1

⇤ ⇤̄
At Nb ! 1 Nf fixed

The only contribution to four-fermi running is 
wavefunction renormalization

d� 
d logµ

= 4� � 

are all O(
1

Nb
)

�� 

� Stable against superconductivity



Large N Dials

Scale-invariant fixed point 
even for 2� =

✏

2

At Nb ! 1 Nf fixed

is O(
1p
Nb

)

So all running of g is through 
wavefunction renormalization:  

d

d logµ
g = �g

⇣ ✏

2

� 2� (g)
⌘

✏ ⇠ O(1)

The fermion Green’s function 
therefore takes the form

G(!, `) =
1

!1�2� 
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Large N Dials

Actually, we can even calculate 
the scaling function 

f
⇣!
`

⌘
At Nb ! 1 Nf fixed

Gap equation for fermion Green’s function

=
⌃(!, `)

=
G�1(!, `)
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Large N Dials
At Nb ! 1 Nf fixed

=
Solution: f
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Large N Landau 
Damping

Now we can look at 1/N correction to boson

d = 2 :

Very different from the boson self-energy in the original 
‘‘Hertz’’ treatment!

⇧(q0, q) ⇠
g2

Nb
q0kF log(q0/⇤)



Large N Dials

‘‘Fermions Win’’

SU(Nb) SU(Nf )

�j
i

 A
i

Adj 1

⇤ ⇤̄
At Nf ! 1 Nb fixed

Hertz’s theory is exact: G�(q0, q) =
1

q20 + c2sq
2 +⇧(q0, q)

=



1/N Issues
SU(Nb) SU(Nf )

�j
i

 A
i

Adj 1

⇤ ⇤̄

S.S. Lee

If we look at subleading orders in 1/N, non-
planar diagrams dominate deep in the IR

1

Nf

1

Nb

� at

at ! . g2m

Nb
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d = 2
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1/N Issues
SU(Nb) SU(Nf )

�j
i

 A
i

Adj 1

⇤ ⇤̄
If we look at subleading orders in 1/N, non-

planar diagrams dominate deep in the IR

1

Nf

1

Nb

at

at ! . g2m

Nb

Complicated effects arise 
as we leave the regime of 

small parameters

S.S. Lee

d = 2

! . g4

mN3
f



Slow Fermions

Small fermion velocity is similar to large N:	

no Landau damping as velocity goes to zero

Essentially a kinematic effect: 	

Bosons cannot decay to very slow fermions

�
 

 



Slow Fermions
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Advantages over large N:	

a) velocity is a more generic physical parameter	

b) velocity runs to zero under RG flow, so there is a “basin of 

attraction” for zero velocity



Conclusion
Non-Fermi liquids have new dynamics in 

need of a theoretical description

We are looking for local EFTs of the Fermi surface 
(plus light states) that exhibit similar dynamics

A rich structure of such theories exists depending on 
various parameters of the theory

In some limits (large N, small   , small v) the theory 
can be solved and leads to new fixed points

✏



The End


