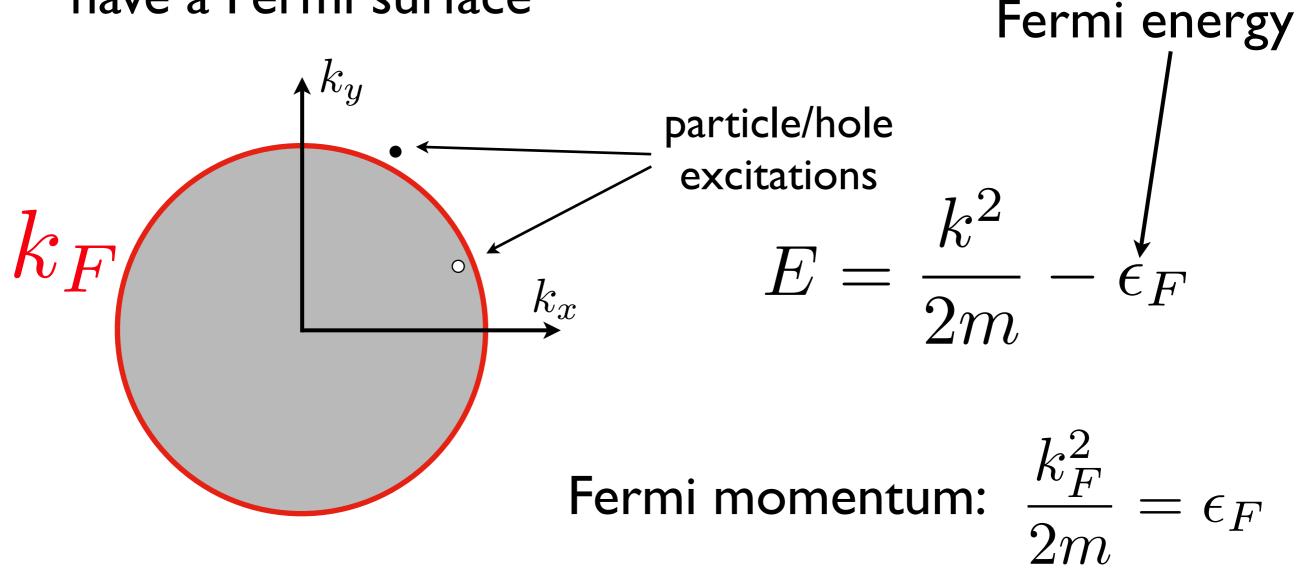
Wilsonian and Large N approaches to Non-Fermi Liquids

Liam Fitzpatrick Stanford University w/ Shamit Kachru, Jared Kaplan, Steve Kivelson, Sri Raghu 1307.0004, 1312.3321 and work in preparation

Introduction to Fermi Liquids

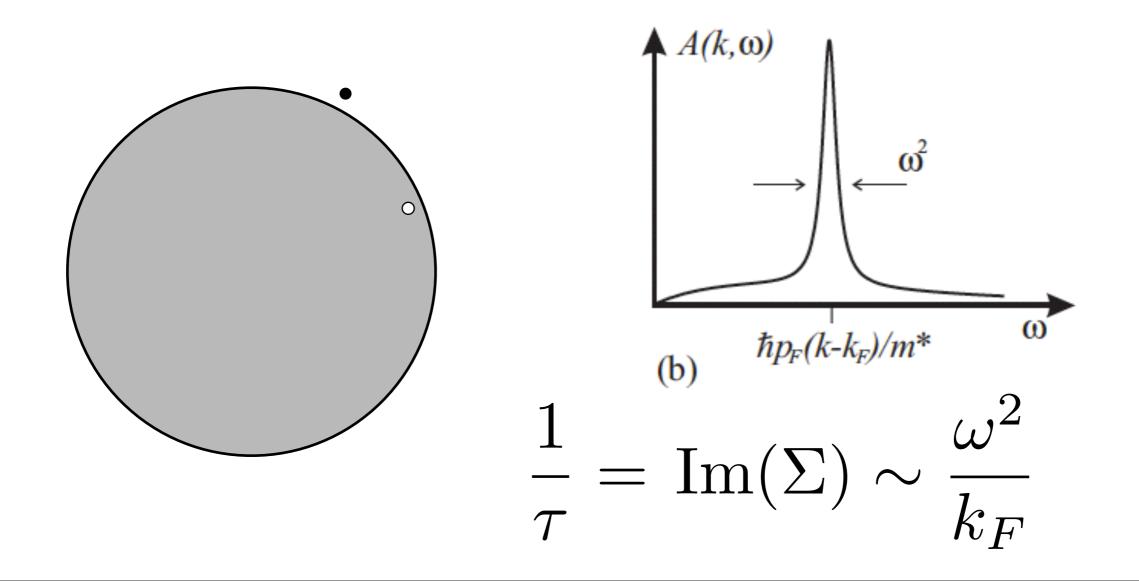
Fermions at finite density

have a Fermi surface



Landau Fermi Liquids

In simple metals, excitations are weakly coupled quasi-particles

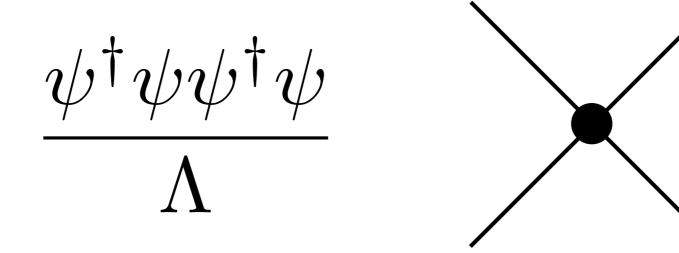


Landau Fermi Liquids

Why are emergent quasiparticles welldescribed by weak coupling?

Modern EFT description: Shar (almost) all interactions are irrelevant Polch

Shankar Polchinski

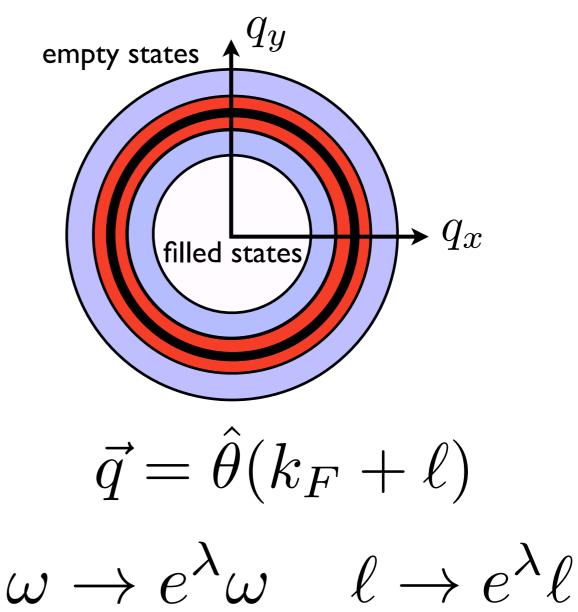


Landau Fermi Liquids Scaling:

Standard: q_y q_x

Fix angle and scale toward nearest point on Fermi surface:

Fermi Surface:



Landau Fermi Liquids

$$S_{2} = \int dS^{d-1} \left[\int d\omega d\ell \psi^{\dagger} (\omega - v_{F} \ell) \psi \right]$$

$$\ell \equiv |k| - k_{F}$$

$$\ell \rightarrow e^{\lambda} \omega$$

So we see that the fermions should scale as

$$\psi \to e^{-\frac{3}{2}\lambda}\psi$$

Landau Fermi Liquids

First interaction is four-fermion interaction

$$S_{4} = \int d^{d-1}S_{1}d\omega_{1}d\ell_{1}\dots d^{d-1}S_{4}d\omega_{4}d\ell_{4}\delta(\omega_{1}+\omega_{2}+\omega_{e}+\omega_{4})$$
$$V(\theta_{i})\psi_{1}^{\dagger}\psi_{2}^{\dagger}\psi_{3}\psi_{4} \ \delta^{d}(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3}+\vec{k}_{4})$$

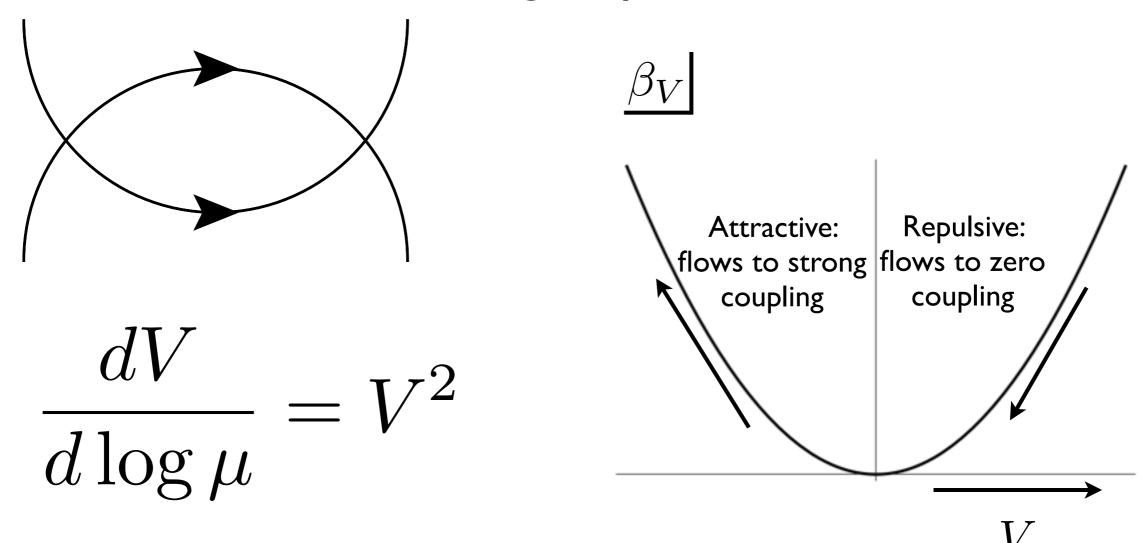
It naively scales like e^{λ} and is irrelevant

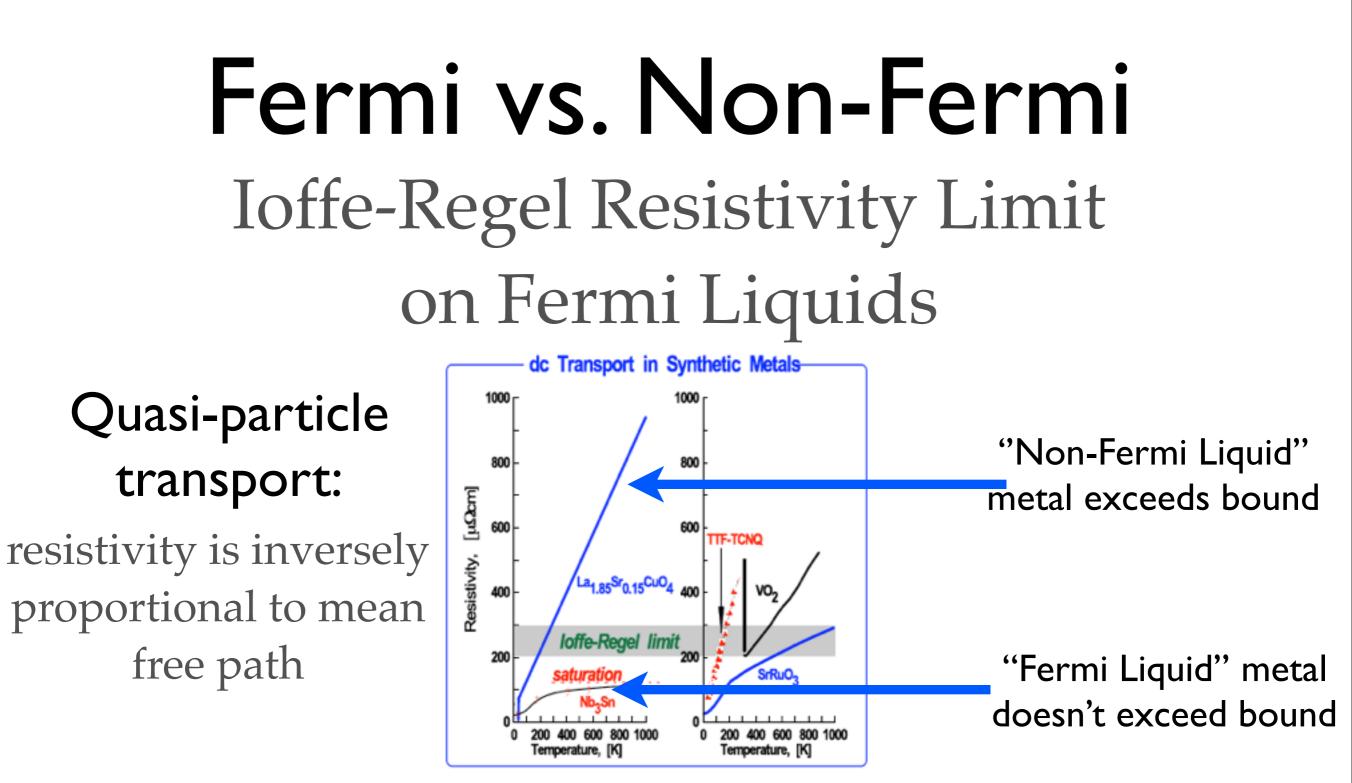
But for certain kinematic configurations, the delta function scales like $e^{-\lambda}$ and the interaction becomes marginal

Landau Fermi Liquids

BCS instability:

At one-loop, the interaction between antipodal points runs and becomes marginally relevant/irrelevant





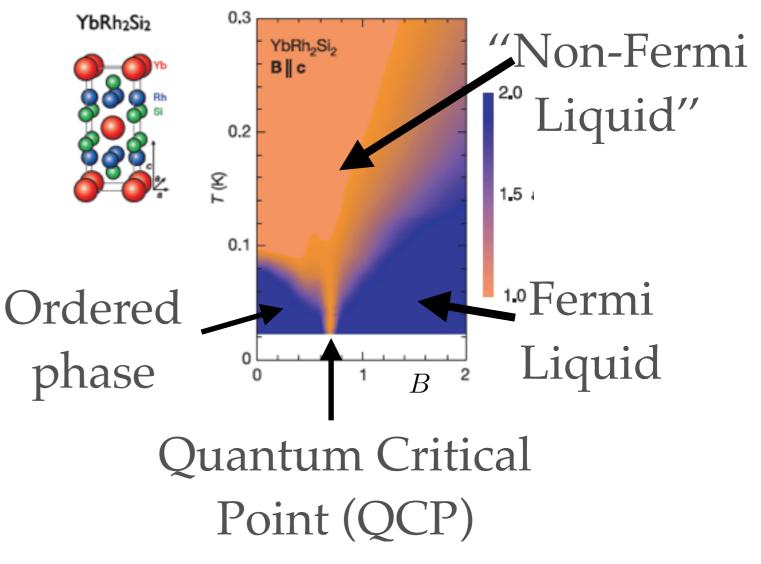
Courtesy of D. Basov (UCSD)

If resistivity is too large, then mean free path is shorter than lattice spacing, and quasi-particle description doesn't make sense

"Non-Fermi" Liquids

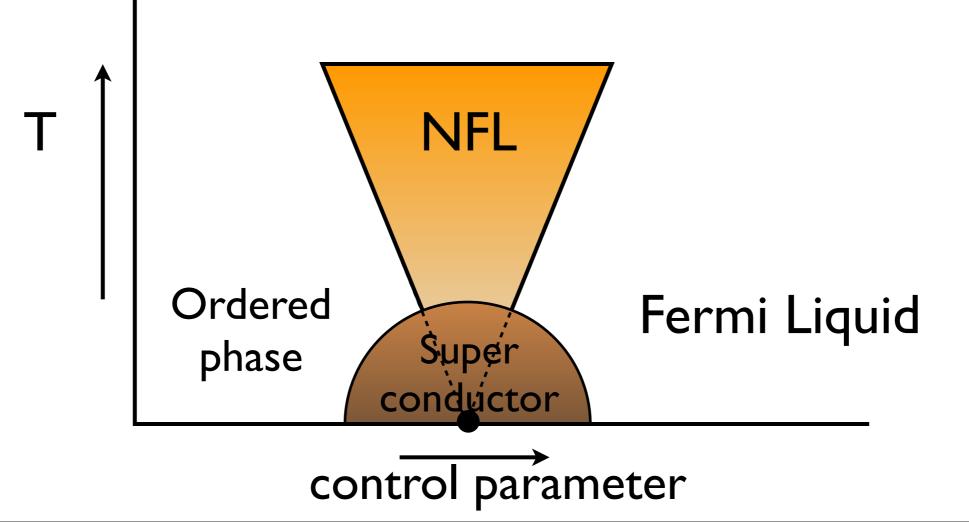
Many materials have fascinating new properties that make them fall outside of the Fermi Liquid description

- Resistivity Linear in T
- Violate Ioffe-Regel bound
- Superconductivity often occurs at high temperature
- Often Located near Quantum Critical Points



Quantum Critical Points

A Recurring theme: NFLs arise near Quantum Phase Transitions (Phase transition at zero temp)



Landau-Ginzburg-Wilson

Write down Lagrangian for the order parameter of the phase transition

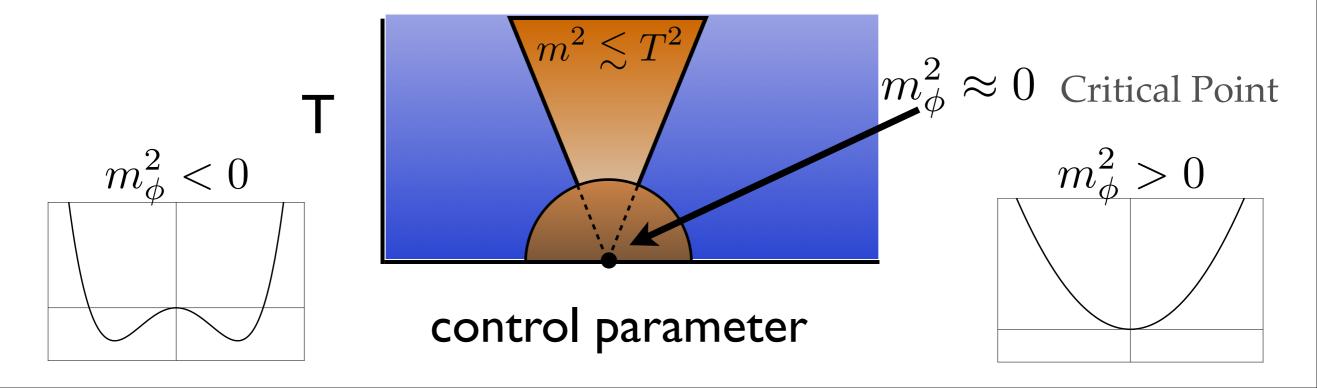
$$\mathcal{L} \sim \dot{\phi}^2 - (\nabla \phi)^2 - m^2 \phi^2 - \lambda \phi^4 + \dots$$

ansition

$$-\lambda\phi^4 + \dots$$

be symmetries it breaks)

(ϕ should transform according to the symmetries it breaks) Near critical point: ϕ is a nearly massless fluctuating boson



EFTs of Non-Fermi Liquids

As a high energy physicist, I will take some lessons from the study of QCD:

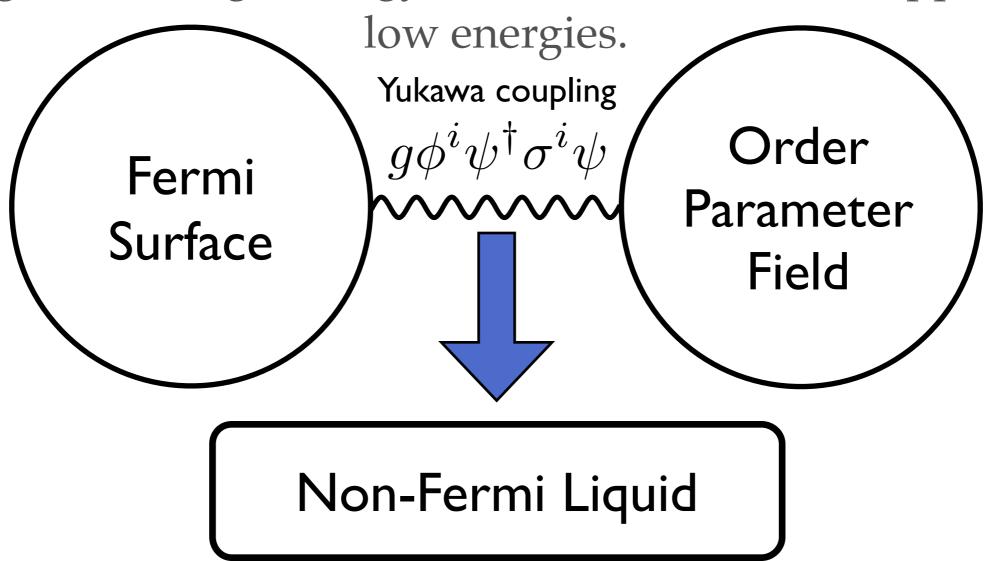
 I) It was hard to see a priori what QFTs (if any!) could explain deep inelastic scattering

The classification and study of local QFTs was wildly successful

2) Confinement especially was hard to tackle directly, and simplifying special cases (2d, large N, SUSY) played a crucial role in our qualitative understanding

EFTs and Non-Fermi Liquids

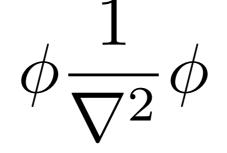
Now we have a great EFT problem: Choose our light degrees of freedom and add interactions. Integrate out high energy modes and see what happens at

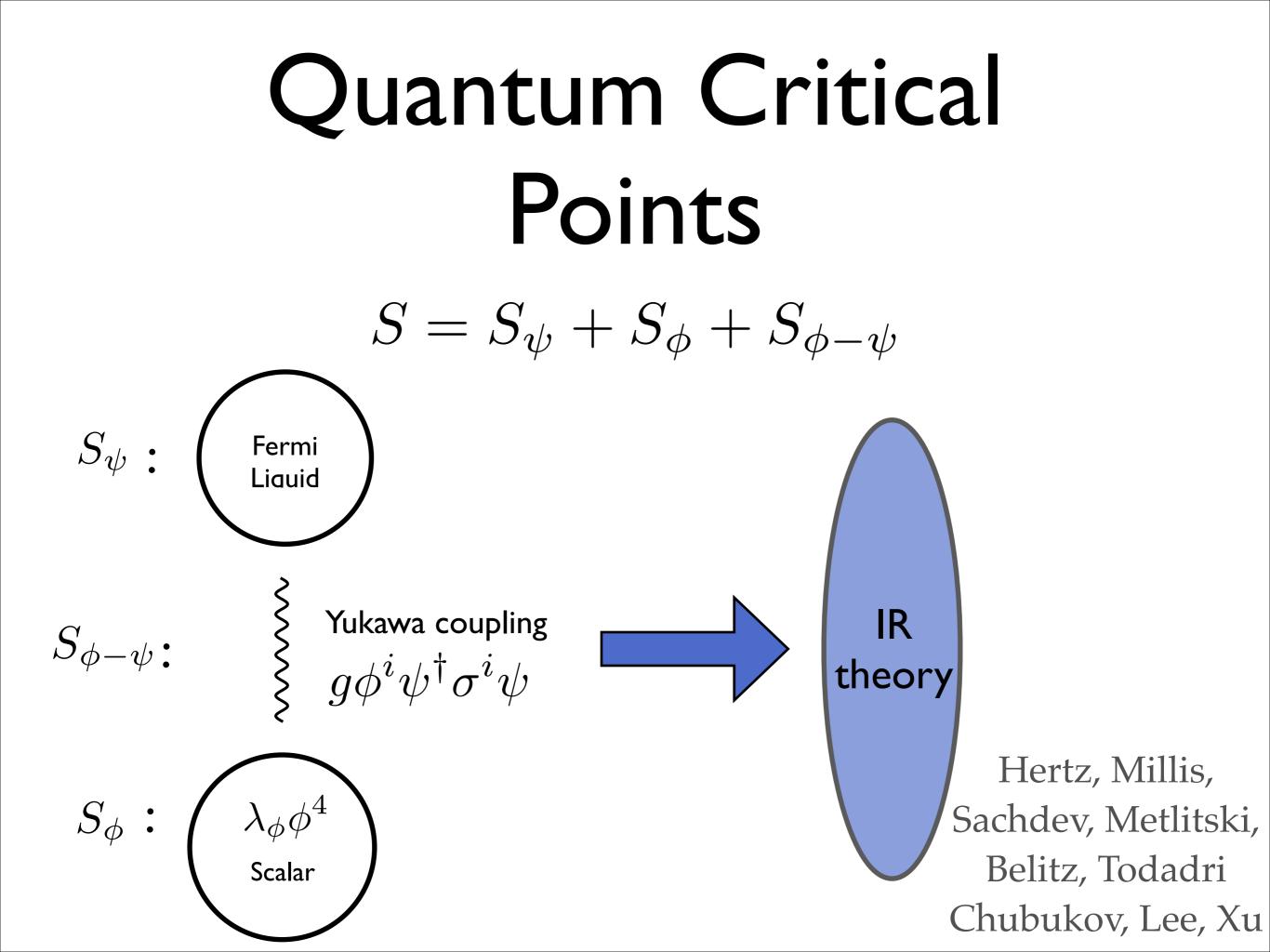


EFTs of Non-Fermi Liquids

Wilsonian approach: start with *local* action in UV and integrate out high energy modes

We will not add by hand any terms like



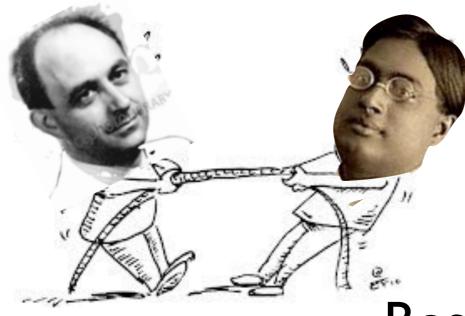


Marriage of Landau's Two Great Frameworks

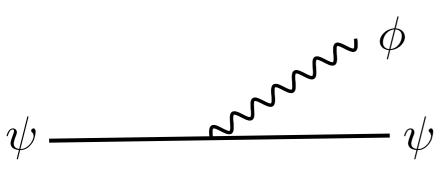
Bosons can decay to Fermions can decay: particle/hole pairs: Non-Fermi Liquid "Landau damping" srr ¢

Titanic Struggle

Fermions renormalize bosons and vice versa Who wins?



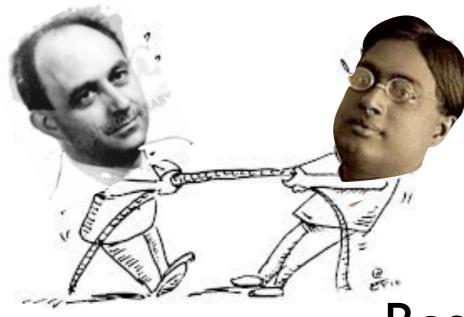
Fermions can decay: Non-Fermi Liquid



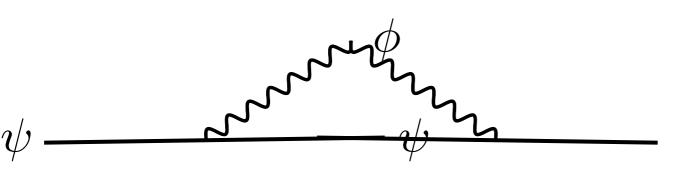
Bosons can decay to particle/hole pairs: "Landau damping" $\phi \qquad \qquad \psi$

Titanic Struggle

Fermions renormalize bosons and vice versa Who wins?



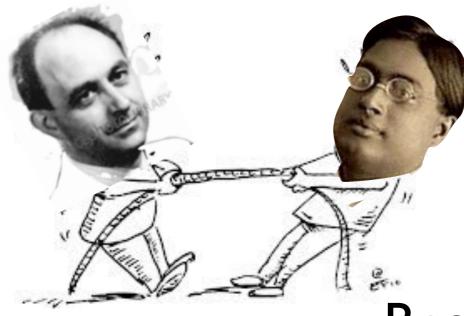
Fermions can decay: Non-Fermi Liquid



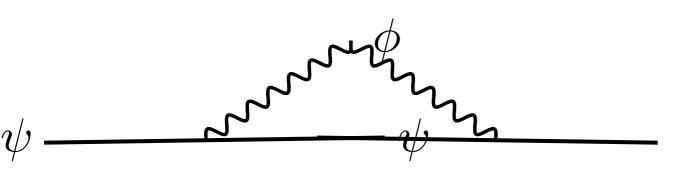
Bosons can decay to particle/hole pairs: "Landau damping" \$\phi\$

Titanic Struggle

Fermions renormalize bosons and vice versa Who wins?

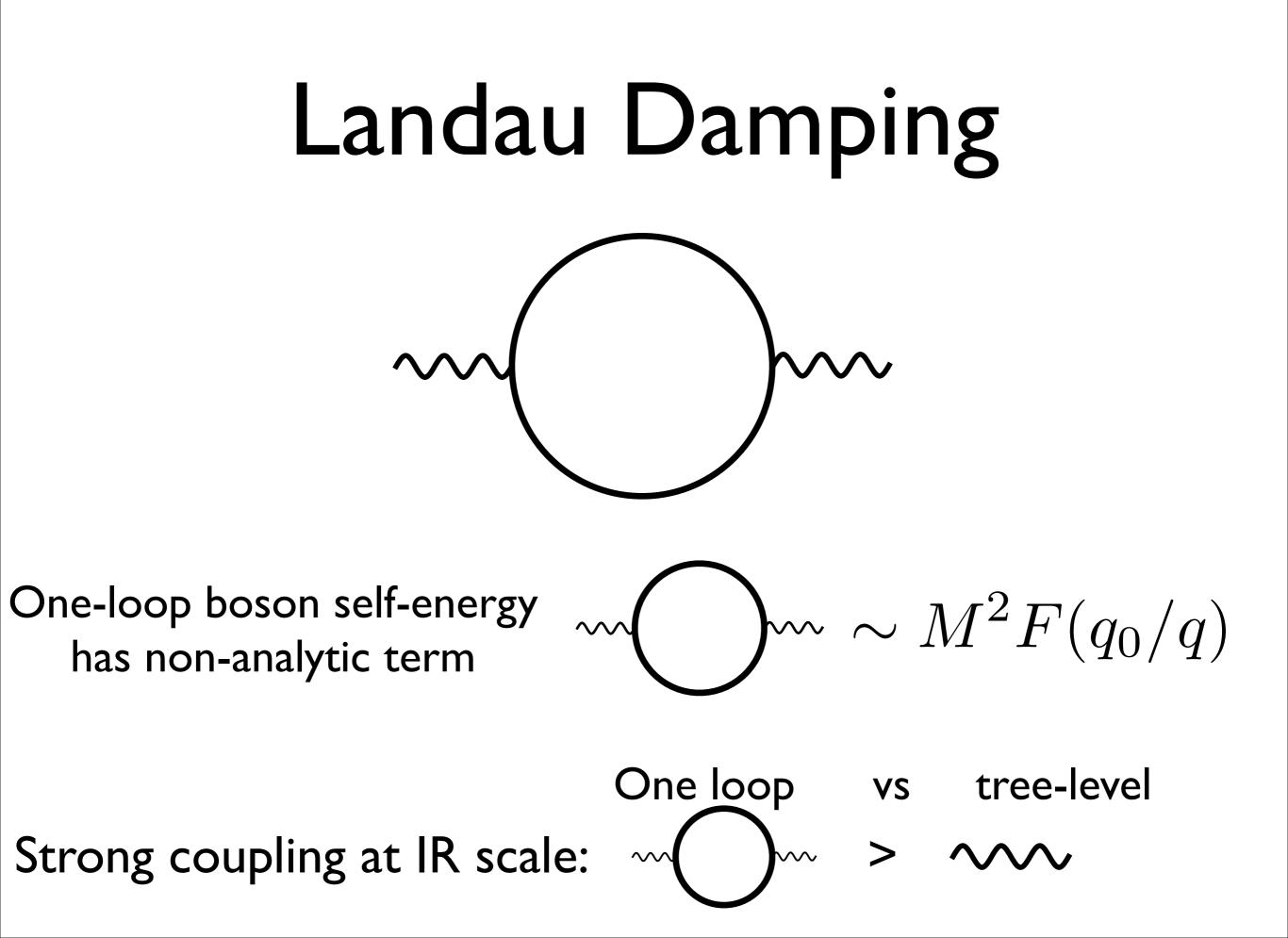


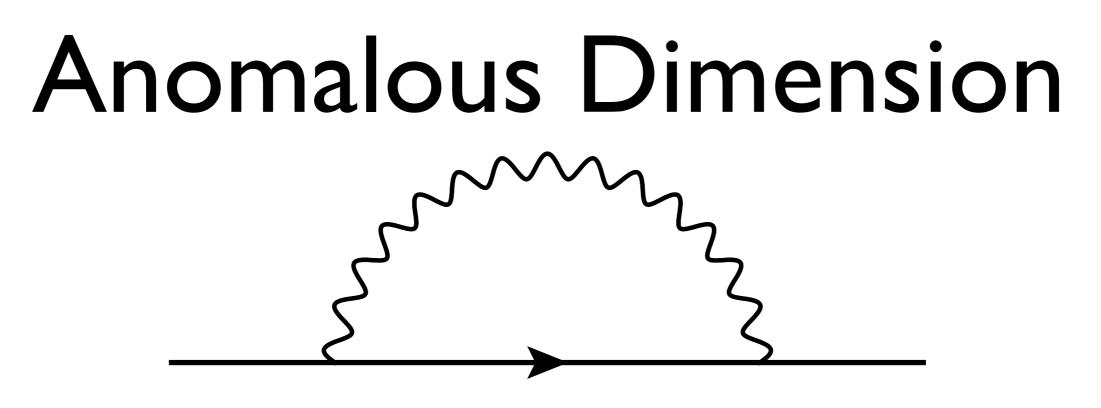
Fermions can decay: Non-Fermi Liquid



Bosons can decay to particle/hole pairs: "Landau damping"

 ϕ





Wavefunction renormalization

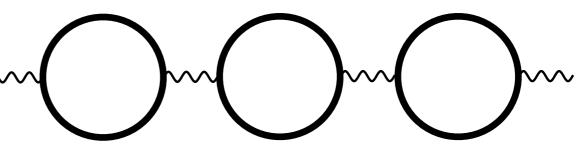
This is a more familiar effect from a particle physicist's point of view:

The log divergent piece changes the scaling dimension of the fermion field

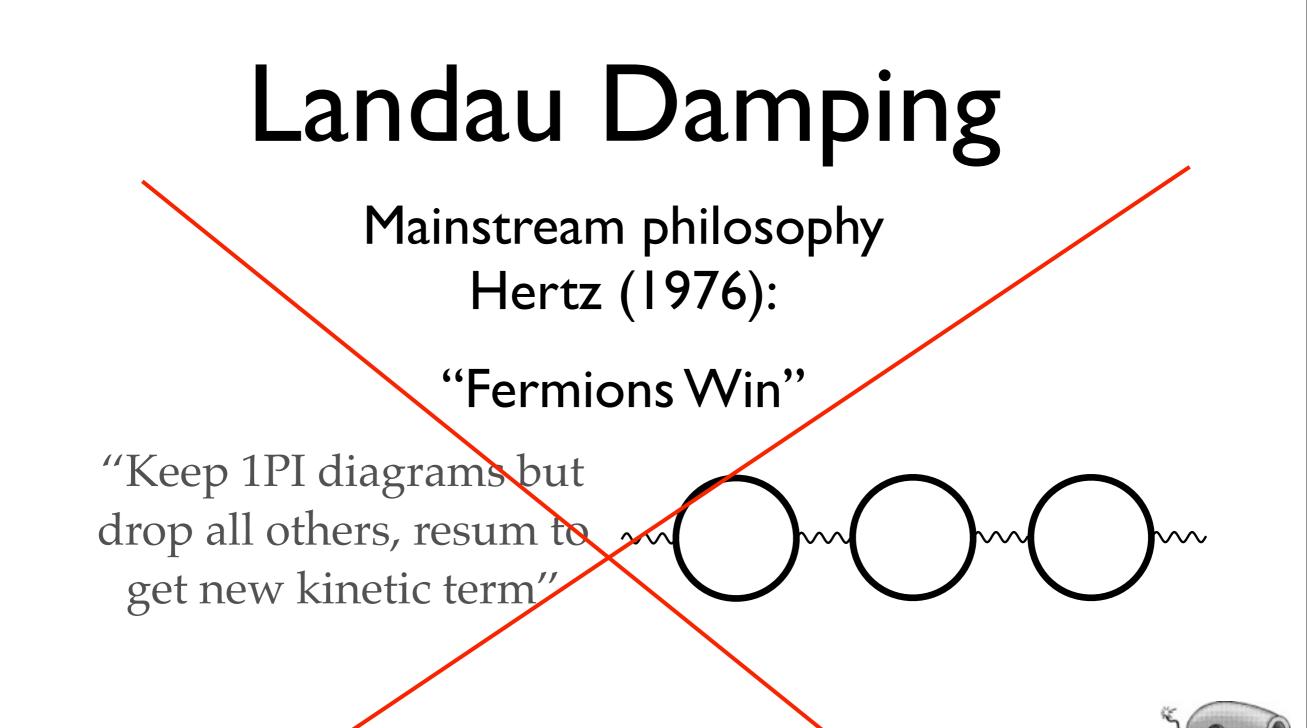
Mainstream philosophy Hertz (1976):

"Fermions Win"

"Keep 1PI diagrams but drop all others, resum to get new kinetic term"



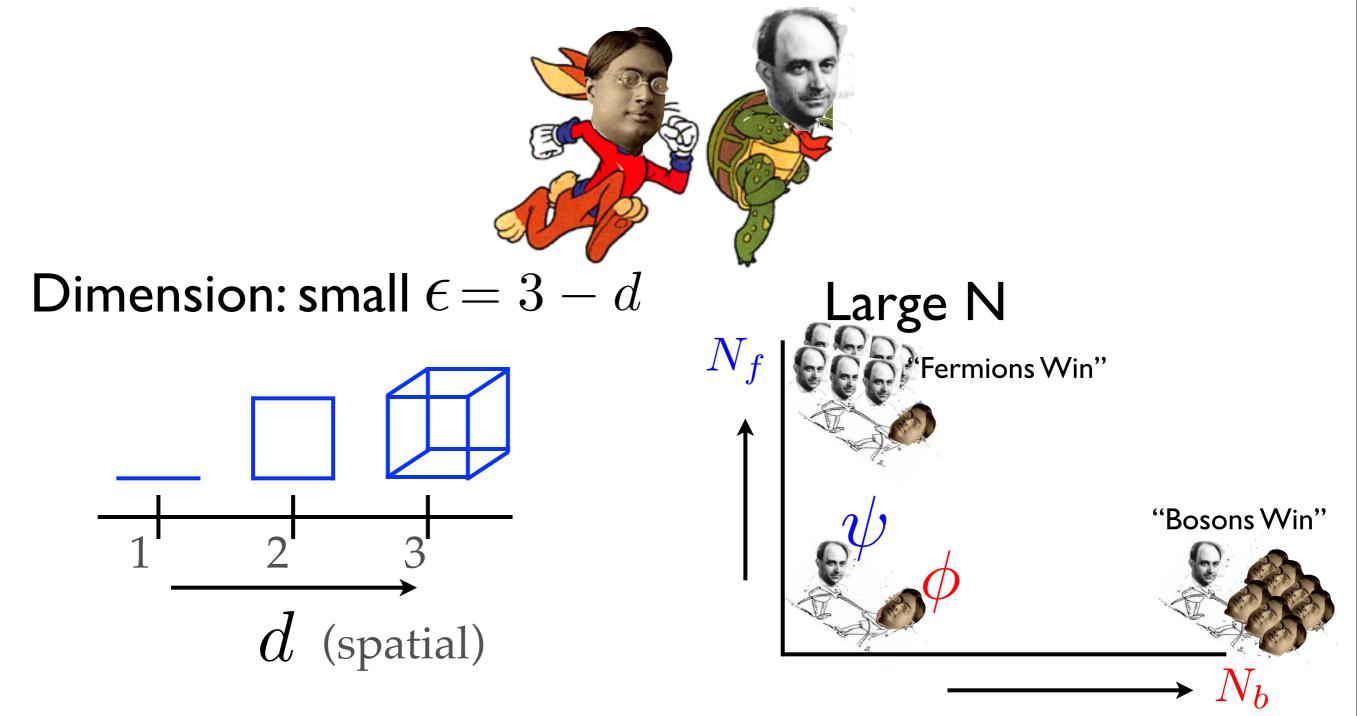
"Then feed this back into corrections to fermion"



"Then feed this back into corrections to fermion"

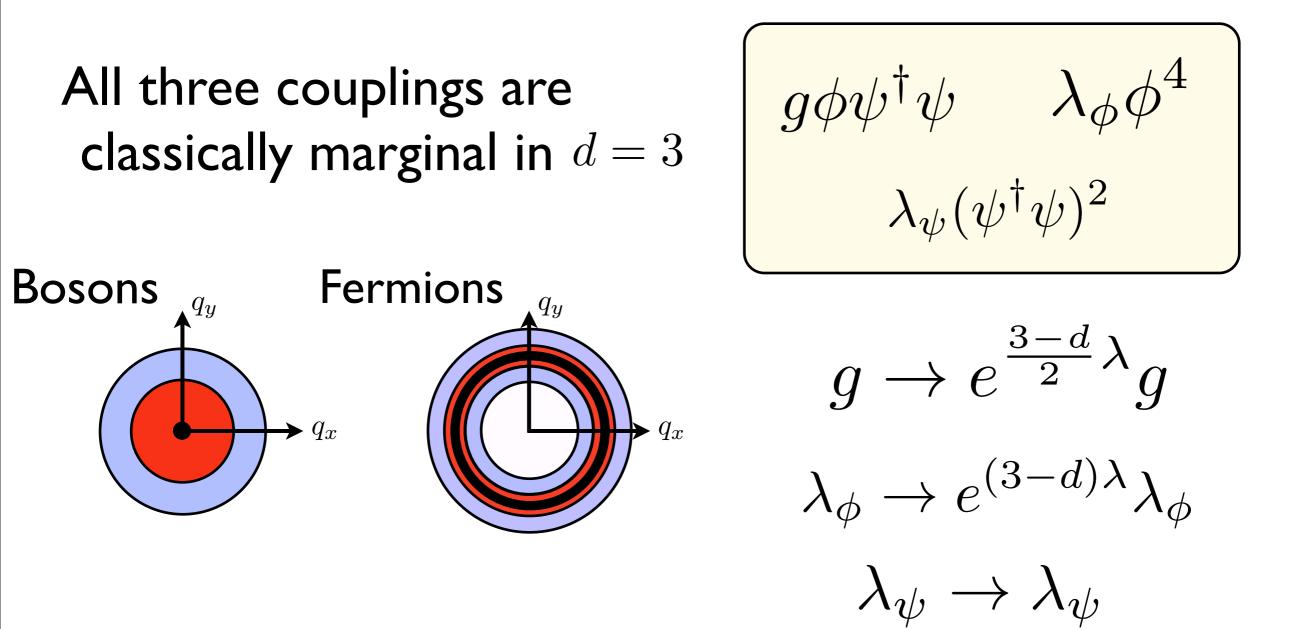
Looking for Controlled Limits

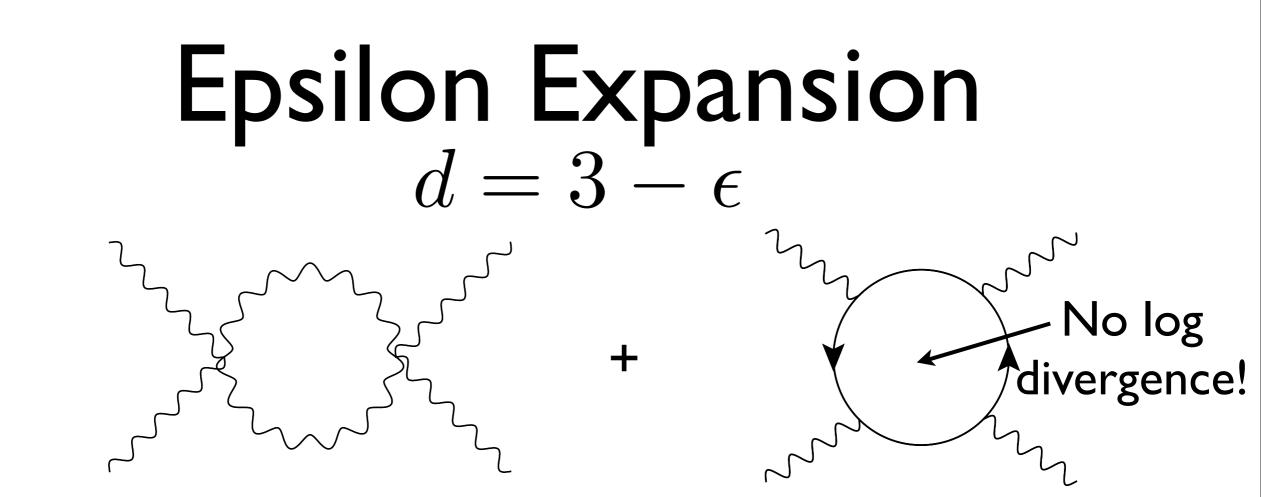
Speed of fermions vs bosons



Epsilon Expansion

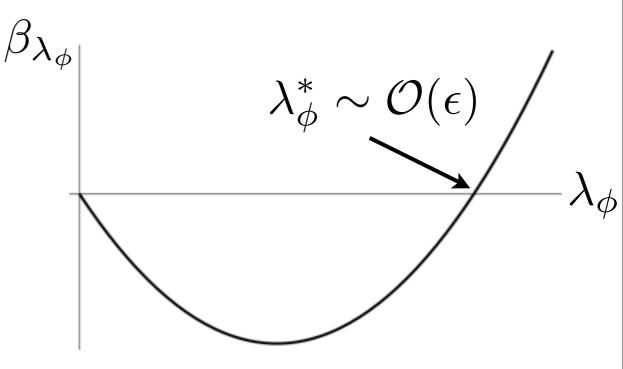
Work near upper critical dimension to find a scale-invariant fixed point at weak coupling

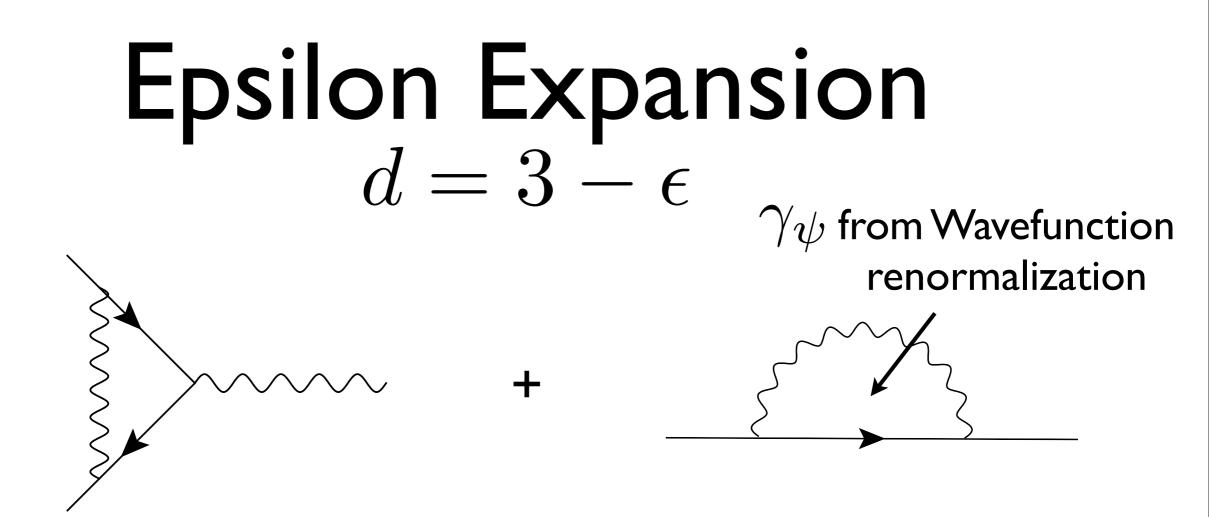




Scalar quartic running is the same as in Wilson Fisher

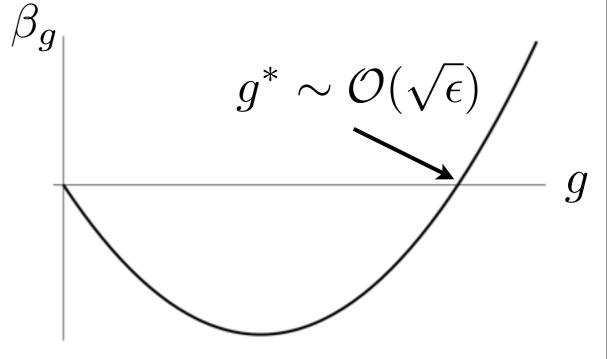
$$\frac{d}{d\log\mu}\lambda_{\phi} = -\epsilon\lambda_{\phi} + a_{\lambda_{\phi}}\lambda_{\phi}^2$$

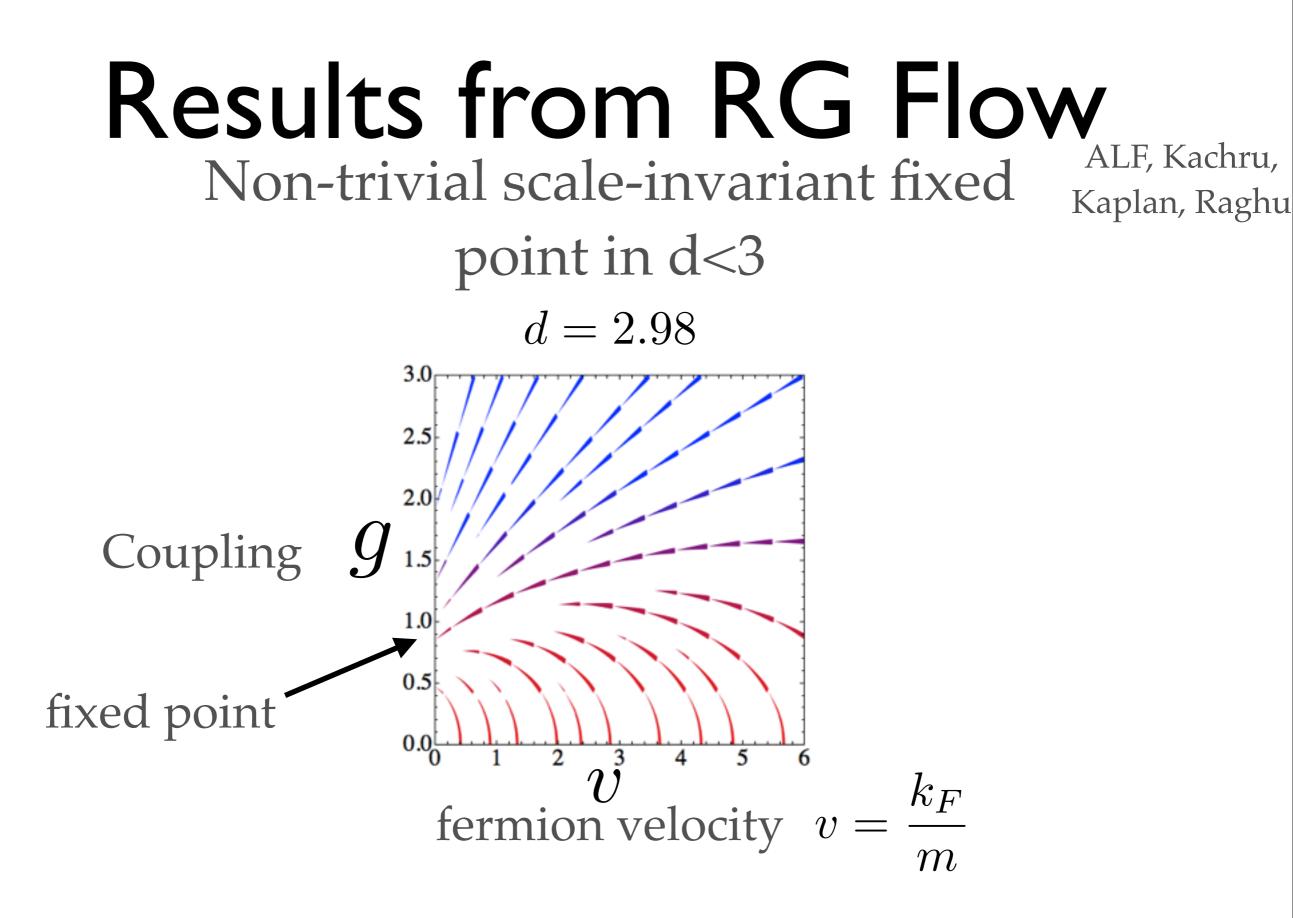


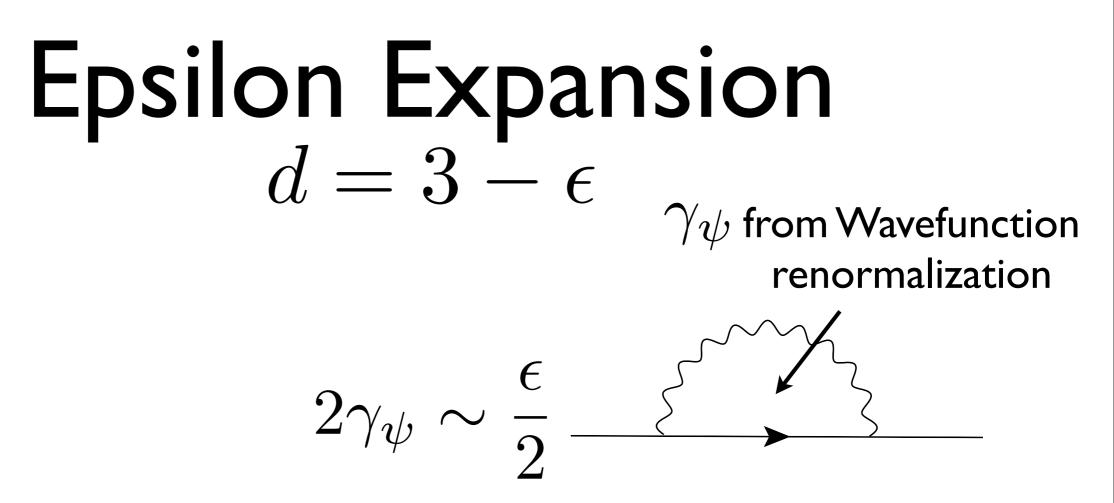


Yukawa runs to IR fixed point

$$\frac{d}{d\log\mu}g = -g\left(\frac{\epsilon}{2} - a_g g^2\right) + \mathcal{O}(g^2\epsilon)$$



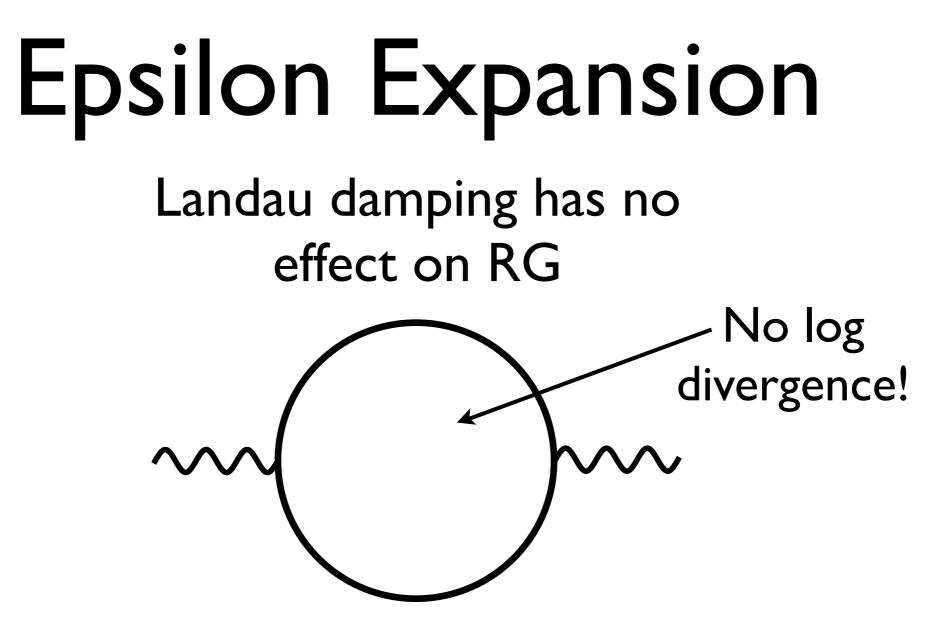




Scale-invariant fixed point with non-vanishing anomalous dimension

Fermion Green's function at fixed point must take the form

$$G(\omega, \ell) = \frac{1}{\omega^{1-2\gamma_{\psi}}} f(\frac{\omega}{\ell})$$

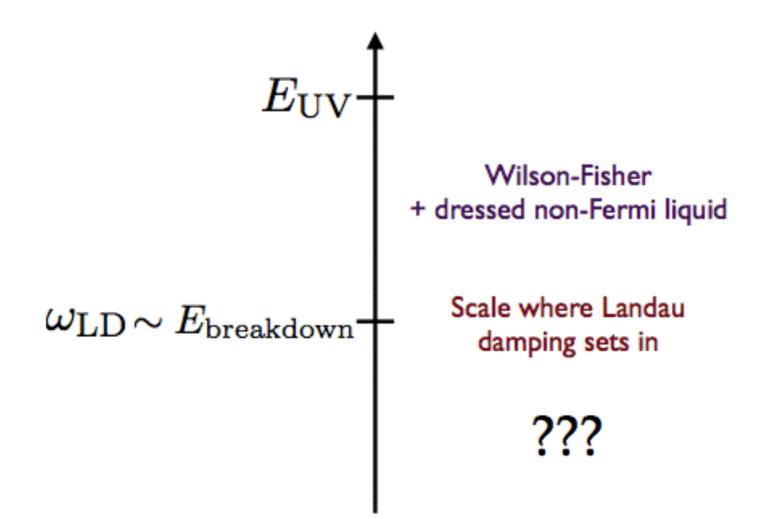


Furthermore, Landau damping pushed to very low scale

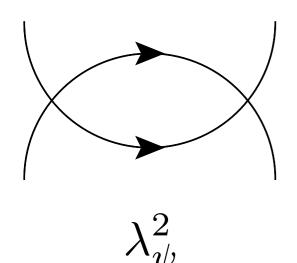
$$\Pi(q_0,q) \sim g^2 M^2 F(q_0/q)$$

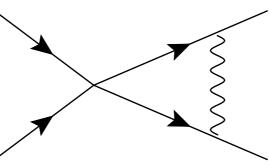
Epsilon Expansion

Landau damping pushed to very low scale

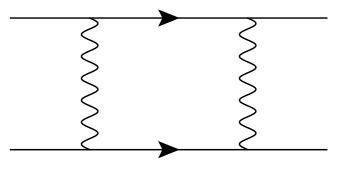


BCS Instability



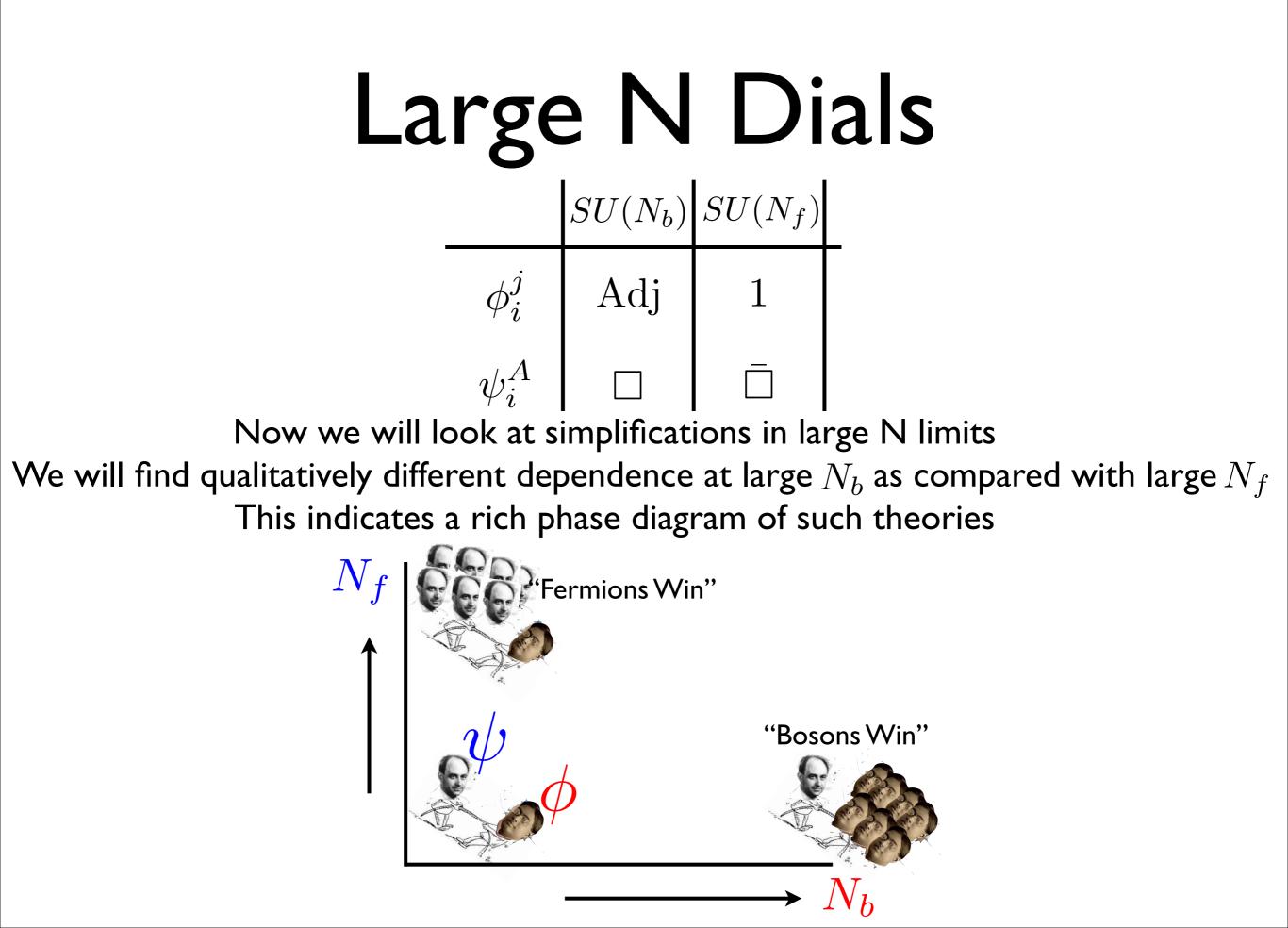


$$\lambda_{\psi}g^2 = \lambda_{\psi}\mathcal{O}(\epsilon)$$



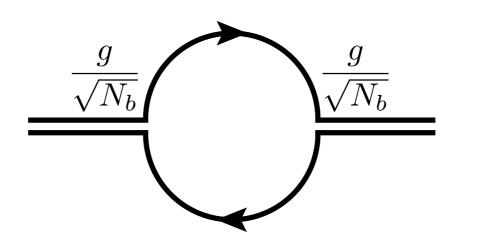
 $\mathcal{O}(q^4) = \mathcal{O}(\epsilon^2)$

BCS instability is a higher order effect and happens only at exponentially lower scales (if at all)



Large N Dials ϕ_i^j Adj 1 ψ_i^A \Box $\overline{\Box}$ At $N_b \to \infty$ N_f fixed

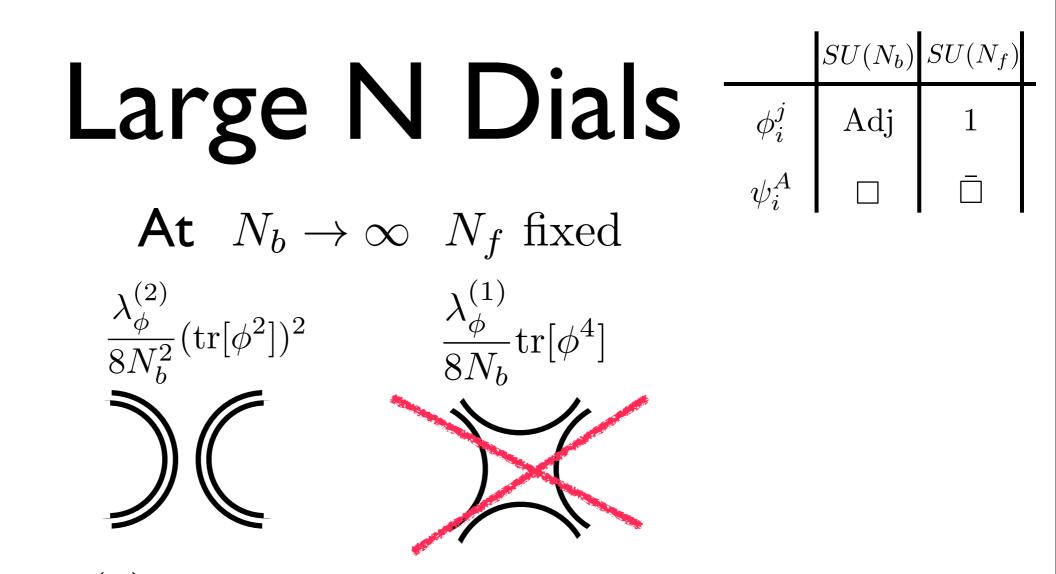
"Bosons Win"



Landau Damping is a non-planar diagram and has no effect at infinite N_b

Large N Dials ϕ_i^j Adj ψ_i^A \Box $SU(N_b) SU(N_f)$ At $N_b \to \infty$ N_f fixed $\frac{\lambda_{\phi}^{(2)}}{8N_b^2} (\operatorname{tr}[\phi^2])^2$ $\frac{\lambda_{\phi}^{(1)}}{8N_b} \mathrm{tr}[\phi^4]$

1

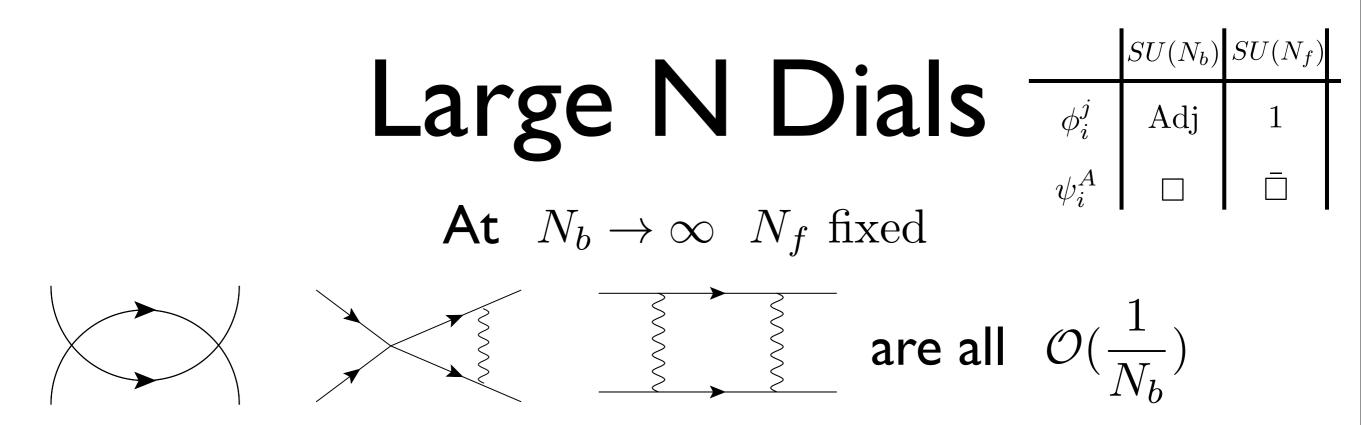


One can set $\lambda_{\phi}^{(1)} = 0$ naturally (in the 't Hooft sense)

Then the ϕ sector is isomorphic to the SO(N_b²) Wilson-Fisher fixed point

The only contribution to four-fermi running is wavefunction renormalization

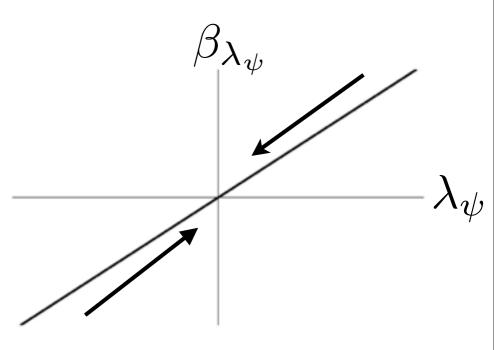
$$\frac{d\lambda_{\psi}}{d\log\mu} = 4\gamma_{\psi}\lambda_{\psi}$$

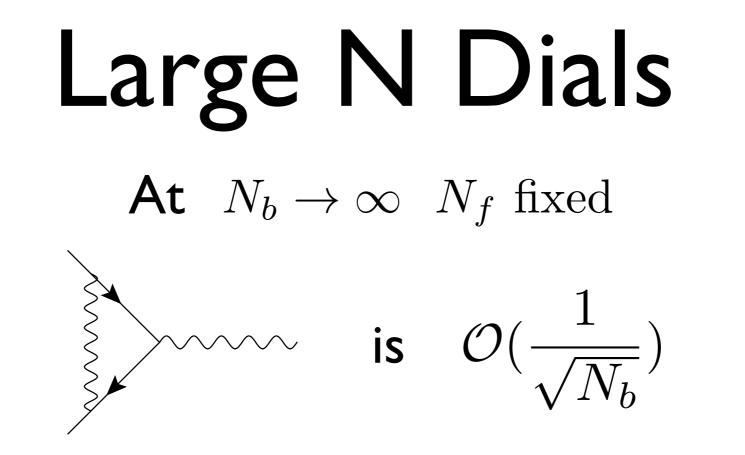


The only contribution to four-fermi running is wavefunction renormalization

$$\frac{d\lambda_{\psi}}{d\log\mu} = 4\gamma_{\psi}\lambda_{\psi}$$

Stable against superconductivity





So all running of g is through wavefunction renormalization:

$$\frac{d}{d\log\mu}g = -g\left(\frac{\epsilon}{2} - 2\gamma_{\psi}(g)\right)$$

 $G(\omega, \ell) = \frac{1}{\zeta_{\ell}, 1 - 2\gamma_{\psi}} f(\frac{\omega}{\ell})$

 $2\gamma_{\psi} = \frac{\epsilon}{2}$

Scale-invariant fixed point even for $\epsilon \sim \mathcal{O}(1)$

The fermion Green's function therefore takes the form

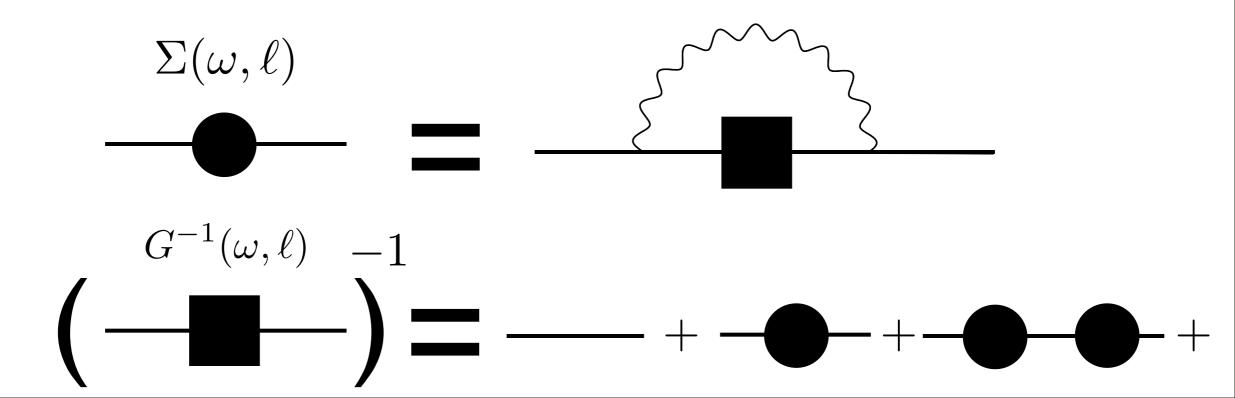
Large N Dials

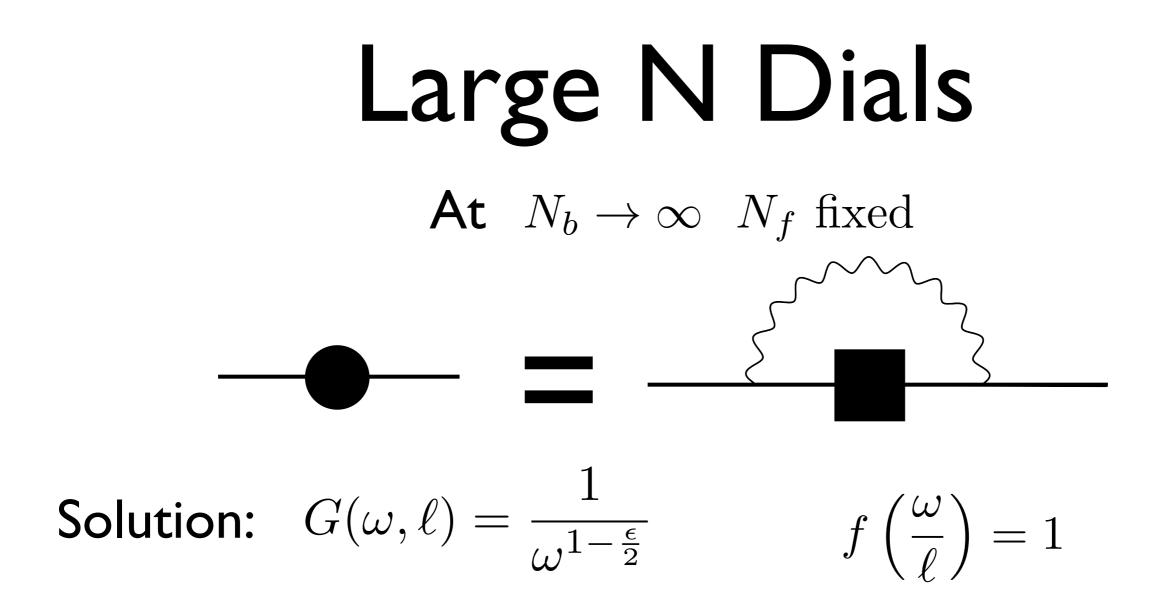
At $N_b \to \infty$ N_f fixed

Actually, we can even calculate the scaling function

$$f\left(\frac{\omega}{\ell}\right)$$

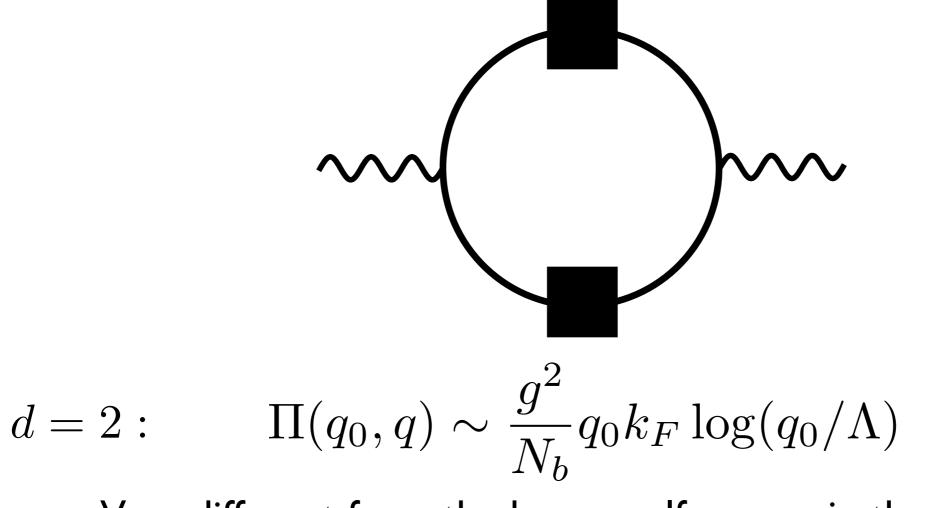
Gap equation for fermion Green's function





Large N Landau Damping

Now we can look at 1/N correction to boson



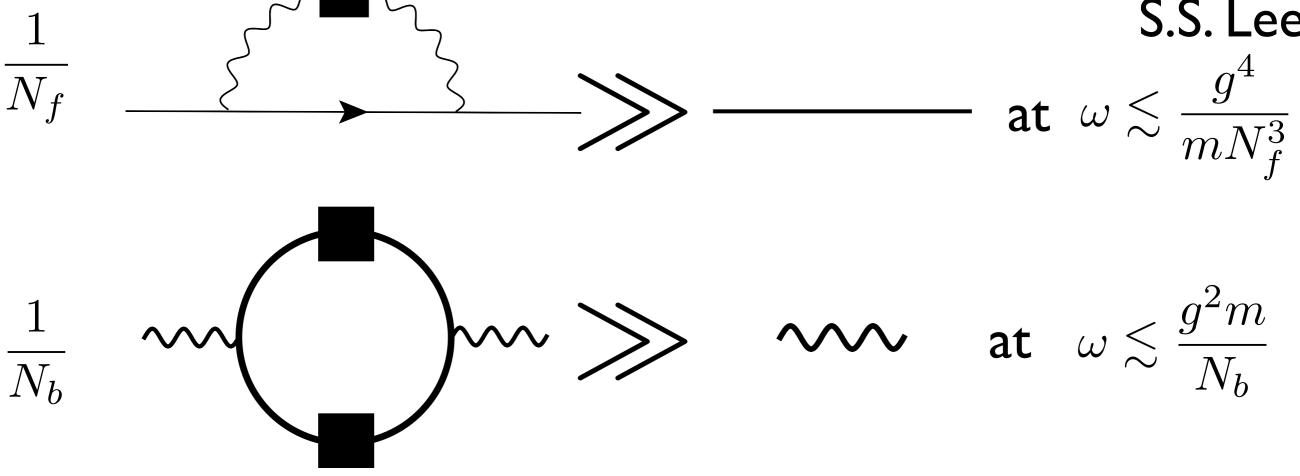
Very different from the boson self-energy in the original "Hertz" treatment!

Large N Dials
$$\frac{|SU(N_b)| |SU(N_f)|}{|\phi_i^d| ||Adj| ||1|}$$
At $N_f \to \infty$ N_b fixed
"Fermions Win"
 $\swarrow = \sim \bigcirc \sim \bigcirc \sim \bigcirc \sim \bigcirc \sim \bigcirc \sim \bigcirc \sim$
Hertz's theory is exact: $G_{\phi}(q_0, q) = \frac{1}{q_0^2 + c_s^2 q^2 + \Pi(q_0, q)}$

1/N Issues

If we look at subleading orders in 1/N, non-

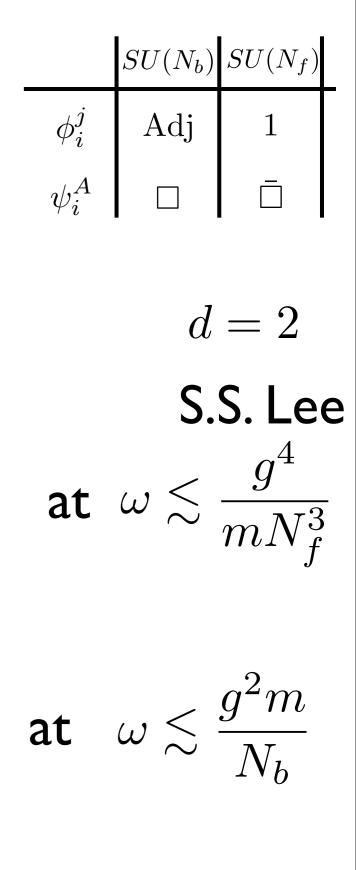
planar diagrams dominate deep in the IR

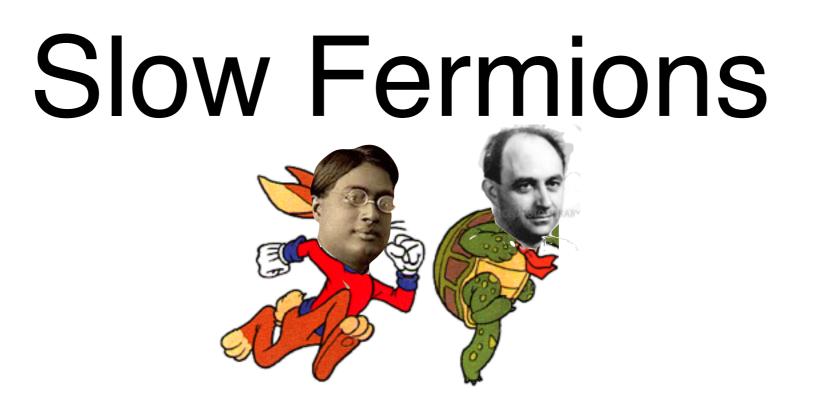


1/N Issues

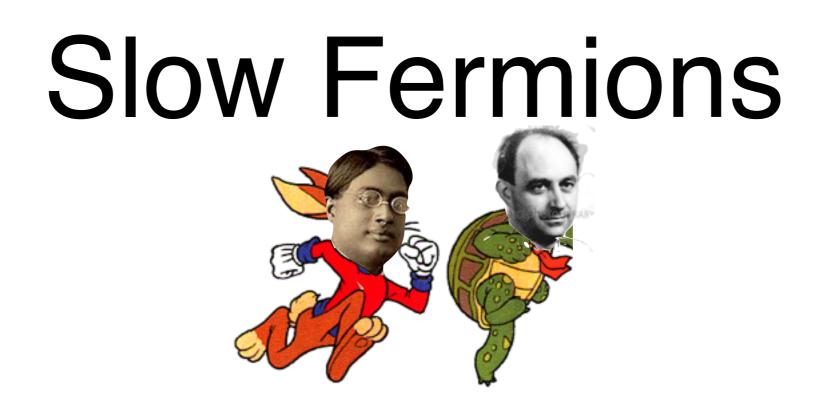
If we look at subleading orders in 1/N, nonplanar diagrams dominate deep in the IR

 N_f Complicated effects arise as we leave the regime of small parameters





Small fermion velocity is similar to large N: no Landau damping as velocity goes to zero Essentially a kinematic effect: Bosons cannot decay to very slow fermions



Advantages over large N: velocity is a more generic physical parameter velocity runs to zero under RG flow, so there is a "basin of attraction" for zero velocity

a)

b)

Conclusion

Non-Fermi liquids have new dynamics in need of a theoretical description

We are looking for local EFTs of the Fermi surface (plus light states) that exhibit similar dynamics

A rich structure of such theories exists depending on various parameters of the theory

In some limits (large N, small ϵ , small v) the theory can be solved and leads to new fixed points

The End