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Three hints that entanglement entropy and geometry are deeply related:
1. EE basics and some quantum information  (review)

2. Calculations in 2d CFT

3. Reconstruction of bulk geometry
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Entanglement entropy
H=HisQHB
pA =1trp p

Sa = —tr palogpa

Example: thermal entropy
A=system, B=bath, state=equilibrium

Example: 2 spins
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Bell state: S; = log?2
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Entanglement entropy encodes the organization of quantum information.

Ex: 1+1d spins

O Y] o3 B S
|

Y/ Spins
In general,

0) = Z Gg, .5, |51) - -+ [sk) ~ 2% complex numbers
1si}

Sy ~ ¢  “Volume law”
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Groundstates of local Hamiltonians are very special, occupying only a
tiny corner of this enormous Hilbert space.

For a gapped Hamiltonian,

Sy ~ constant “Area law”
This implies

“Matrix product

I I I I_I_I IR!.I I I I I I states”
|

A
T{P x P matrices
Qg N My, - My, -+ M

Sk

kP? complex numbers < 2F

To see 1f this 1s a good representation of the wavefunction, we ask how
much entanglement 1t can encode:

Se < log P ~ const.
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At a critical point,

c
Sy = §log€

This suggests an efficient tensor network representation as a tree:

Vo

| A 1
How much entanglement can the tree encode?

Sg SJ logﬁ

“Tensor networks”
“MERA”

Vidal 06

<
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Connection to holography

The entanglement entropy of a holographic CFT can be computed by the
Ryu-Takayanagi formula:

Area(minimal surface)
4G N

Sy =

This generalizes the
Bekenstein-Hawking entropy
to other types of surfaces,
including Rindler horizons.

Ryu & Takayanagi *06
Lewkowycz & Maldacena *13

>
holographic radial direction
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“Cutting” the tensor network to compute entanglement entropy
resembles the Ryu-Takayanagi minimal surface: Swingle;

Van Raamsdonk;
A'OVA‘A l‘
0 1
A —1

Maldacena;
Susskind

l

| |

&)

The MERA relation is qualitative. Each tensor 1s “AdS-radius-sized”.
It provides another perspective on the statement that the radial direction is
RG flow.

e [t suggests that entanglement entropy plays a fundamental role in
understanding how the bulk geometry emerges.
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“Cutting” the tensor network to compute entanglement entropy
resembles the Ryu-Takayanagi minimal surface: Swingle;

Maldacena;
Susskind

Extra entanglement requires extra “wormhole” lines

connecting distant points

&)
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QOutline
1. EE basics and some quantum information

2. Calculations in 2d CFT

3. Reconstruction of bulk geometry

In 1+1 dimensions:
Space 1s a line, so A consists of one or more intervals:
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The Replica Method
We want to compute the entanglement entropy

Sa=—Tr palogpa
First compute the Renyi/replica partition functions for n=2,3,...

ZM = Tr pn

and use

SA — _anZ(n) ’nzl

This is useful because Z (™) can be computed by a Euclidean path
integral (for the groundstate and some other special states).

Calabrese & Cardy ’04
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These partition functions can be computed analytically in CFT in (at
least) 4 situations:

e “A”1s aconnected region (single interval)  Holzhey, Larsen, Wilczek *94

Calabrese & Cardy ’04
c /
Sy = —log | —— | universal!

3 €UV

e Multiple intervals:
» free field theory
» In a small-interval expansion

» In a limit of large central charge
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Multiple Intervals

> II. 2d CFT calculations

II1. Reconstructing the bulk

Casini, Fosco, Huerta;
Cardy, Calabrese, Tonni

Example where A 1s 2 intervals, replica number=3:
<« — .

Trpil:Z(

A

A
/7\
-

~—

/\A

—~——

This 1s a Riemann surface with nontrivial topology.

This example (2 slits, 3 replicas) has genus 2:

zz(

LA

> )
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Eree Fields
This partition function has been evaluated exactly in free field theory.

Casini, Fosco, Huerta;

Free fermion i
4 €C Iermio Cardy, Calabrese, Tonni

» Free compact boson

e Replica partition function 1s known, but the analytic
continuation to n=1 is in general unsolved.

Two interacting cases where we can calculate analytically

1. Small-interval expansion
P Headrick; Cardy, Calabrese, Tonni; T.H.

2. Large-c expansion
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Twist operators

The replica partition function can be viewed as a correlation function of
“twist operators” that glue the sheets together.

o, b P P

Tr ply = (219D, D _)oprn

Dixon, Friedan, Martinec & Shenker ’87
Calabrese, Cardy, Tonni *04 -’13
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2pt functions are fixed by conformal invariance (single interval).

4pt functions are not fixed, but are constrained to have the form

(®,0 B, D )= >£<
A

=) AF(A Hy, 2)F(A Hy, 2)

A¢\

Virasoro Conformal Blocks
OPE coefticient

C

H, = —(
24

n —1/n) = dimension of twist operator

First applied 1n this context by
Headrick *10
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Two ways to proceed:

1. Expand in z: Small-interval expansion Headrick; Cardy, Calabrese, Tonn;

— Cardy
I >
A A

2. Expand in 1/c (¢ = central charge) T.H.
® Also assume: small number of low-dimension operators

e This is the class of theories that could plausibly have a
(semiclassical) holographic dual.

» In holographic CFTs, ¢ >> 1 1s the AdS radius in Planck units.
» Not assuming AdS/CFT.
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QOutline of the large-c calculation
Virasoro blocks have a nice form at large central charge: Zamolodchikov *87

éan)

F(A, Hp, 2) eI

From this we can evaluate the 4pt function of heavy operators to leading
order in 1/c:

Hnp
TI- pﬁ ~ G_ZCf(OaTaz)

Comments:
e This contribution 1s universal (independent of CFT details)
e Valid at leading order in 1/c (but all orders in OPE!)
e Also assumed low operator multiplicities

e [t 1s the Virasoro block for the vacuum rep, which includes the
operators

1,7 .,0T ,T? ,ToT ,---

e Heavy correlators are exponentially dominated by exchange of
operators built from the stress tensor. (Dual: 3d graviton)
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The “‘semiclassical block” fy can be computed in Liouville CFT using a
null-state decoupling equation. In general this can be solved
numerically; in the limit n-->1, 1t 1s easy to solve analytically.

SA — _&nTr pZ|n:1

s-channel OPE: t-channel OPE:
A A A A

C C
Sa = zlog(Ly) + g log(La) S = 5 log(Ls) + 5 log(La)

Agrees with holographic Ryu-Takayanagi formula
(assuming no other non-perturbative contributions, ie non-geometric saddles)
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The replica partition functions also agree with AdS/CFT: Solving the
Liouville-like equation that appears in Zamolodchikov’s computation of
fo 1s identical, step by step to constructing a 3d geometry satisfying the

Einstein equations.

® |[quick explanation: Zamoldchikov computes f by constructing a
particular SL(2,C) connection on the Riemann surface. 3d gravity 1s
classically equivalent to SL(2,C) Chern-Simons theory, and
Zamoldchikov’s construction can be interpreted as a smooth geometry. ]

The large-c vacuum block corresponding to the replica manifold

1s the Einstein action of the “filled in” 3-manifold

Faulkner ’13
2CfO — SEinstein( ) LH.13
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Overview
1. EE basics and some quantum information

2. Calculations in 2d CFT

3. Reconstruction of bulk geometry

e Hint #1: RT formula; MERA geometry and Hyperbolic geometry

e Hint #2: In the 2d CFT calculation, the 3d geometries pop out
automatically from the CFT calculation of Renyi entropy at large c.

e Now I will work 1n d dimensions and describe a direct relation
between fluctuations in geometry and fluctuations in entanglement

entropy.
pY Blanco, Casini, Hung, Myers *13

Lashkari, McDermott, Van Raamsdonk ’13
Faulkner, Guica, TH, Myers, Van Raamsdonk 13
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Jacobson 95

. Guedens, Jacobson, Sarkar "11
Apply the Ist law of thermodynamics to local Rindler horizons:

TdS = dF A

Jacobson

S = area

This Ist law implies the Einstein equation.

e This suggests the Einstein equations are “thermodynamic” in nature

e However, microscopic definitions of 7, S, E are not clear

The aim (only partly successful) is to make this precise in AAS/CFT.

e [f geometry comes from entanglement, then the Einstein equations
should govern fluctuations of entanglement.
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Fluctuations in Entanglement Entropy
Define the “modular Hamiltonian” A by

e~ Ha
PA= it e Ha
H 1s a state-dependent operator.
Varying both sides gives
5Sa = 6(H )

This 1s the “first law” of entanglement entropy.
® In general, this 1s a tautology

e However, in certain contexts /4 is a conserved charge that can be
defined independently; then it is useful.

e Example: Thermofield double --> ordinary 1st law
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For a half-plane in Lorentz-invariant QFT,
H 1s the charge associated to boosts:

ngoundsta,te — /dz'u T/M/CV

In a CFT, this can be conformally mapped to a ball-shaped region:

ngoundstate — /dEM T,W/CV

RZ —7“2
:/ 'R Ttt
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Consider perturbations above the groundstate in a CFT.

The 1st law of entanglement entropy,
05(R, %) = 6(H(R, Zo))

gives an equation for every ball (centered at X with radius R)

So far this discussion is general. Now consider a holographic CFT.

Claim:

In a holographic CFT, this infinite set of relations 1s (an integral
transform of) the linearized Einstein equation,

OEOM (r,z) =0

and similarly in an arbitrary higher-derivative theory of gravity.
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A ball-shaped region in CFT is associated to an AdS-Rindler horizon:

Fluctuations in
entanglement entropy

Fluctuations in the area
of the AdS-Rindler horizon
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On the gravity side, the 1st law
0S(R,Zy) = 0(H(R,Zy))

1s an equation for the linearized field perturbation of the form:

[ s = T
RTsur face bdry

where s 1s entropy density and 7 is modular energy density.

This infinite set of integral equations (one for every R , I() can be
transformed to the linearized gravitational equations of motion.

“Set of all horizons through

yperbolic space a point gives local info.”




I. EE basics and EE geometry II. 2d CFT calculations > II1. Reconstructing the bulk

Comparison to Jacobson

® Jacobson’s 1st law
» Local Rindler horizons
» Full nonlinear equations

» Microscopic definitions of S, £, T not clear

e |stlaw of entanglement entropy
» Global AdS-Rindler horizons

» Every quantity involved has a precise microscopic definition in
the dual

» However, we get only the equations linearized about the
vacuum.

» The obstacle is that the “1st law” 1s (apparently) not useful
applied to excited states.
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Recap & Some Open Questions

Three hints for a deep relationship between entanglement entropy and
geometry:

1. Tensor networks and the Ryu-Takayanagi formula

» Can this be made quantitative?

2. Large-c calculations 1in 2d CFT automatically “produce” 3d
geometries

» How far can we push the 1/c expansion?

3. The 1st law of entanglement entropy allows us to reconstruct the bulk
geometry in AdS/CFT, to linearized level about the vacuum

» Nonlinear gravity?




