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Three hints that entanglement entropy and geometry are deeply related:

1. EE basics and some quantum information

2. Calculations in 2d CFT

3. Reconstruction of bulk geometry

(review)
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Example: 2 spins

H = HA ⌦HB

⇢A = trB ⇢

SA = �tr ⇢A log ⇢A

s1 s2 = ±1
| i =

X

s1,s2

as1s2 |s1i ⌦ |s2i
a

Bell state: S1 = log 2

Entanglement entropy

Example: thermal entropy
A=system, B=bath, state=equilibrium

A

B
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Entanglement entropy encodes the organization of quantum information.

Ex: 1+1d spins

In general,

k spins

` spins

| i =
X

{si}

as1···sk |s1i · · · |ski ⇠ 2

k
complex numbers

S` ⇠ ` “Volume law”
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Groundstates of local Hamiltonians are very special, occupying only a 
tiny corner of this enormous  Hilbert space.

For a gapped Hamiltonian,

This implies
S` ⇠ constant “Area law”

as1···sk ⇡ Ms1 ·Ms2 · · ·Msk

P ⇥ P matrices

kP 2
complex numbers ⌧ 2

k

“Matrix product
 states”

A

S` . logP ⇠ const.

To see if this is a good representation of the wavefunction, we ask how 
much entanglement it can encode:
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At a critical point,

This suggests an efficient tensor network representation as a tree:

How much entanglement can the tree encode?

S` =
c

3

log `

S` . log `

“Tensor networks”
“MERA”

Vidal ’06 

A
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Connection to holography
The entanglement entropy of a holographic CFT can be computed by the 
Ryu-Takayanagi formula:

A

B

holographic radial direction

SA =
Area(minimal surface)

4GN

This generalizes the 
Bekenstein-Hawking entropy 

to other types of surfaces, 
including Rindler horizons.

Ryu & Takayanagi ’06
Lewkowycz & Maldacena ’13
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“Cutting” the tensor network to compute entanglement entropy 
resembles the Ryu-Takayanagi minimal surface:

A

A

• The MERA relation is qualitative. Each tensor is “AdS-radius-sized”.
• It provides another perspective on the statement that the radial direction is 

RG flow. 
• It suggests that entanglement entropy plays a fundamental role in 

understanding how the bulk geometry emerges.

Swingle;
Van Raamsdonk;
Maldacena;
Susskind
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“Cutting” the tensor network to compute entanglement entropy 
resembles the Ryu-Takayanagi minimal surface:

A

A

“ER=EPR”

Swingle;
Van Raamsdonk;
Maldacena;
Susskind

Extra entanglement requires extra “wormhole” lines 
connecting distant points
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Outline
1. EE basics and some quantum information

2. Calculations in 2d CFT

3. Reconstruction of bulk geometry

In 1+1 dimensions:
Space is a line, so A consists of one or more intervals:

A A A · · ·
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The Replica Method
We want to compute the entanglement entropy

First compute the Renyi/replica partition functions for n=2,3,...

and use

This is useful because             can be computed by a Euclidean path 
integral (for the groundstate and some other special states).

SA = �Tr ⇢A log ⇢A

Z(n) = Tr ⇢nA

SA = �@nZ
(n)|n=1

Z(n)

Calabrese & Cardy ’04
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These partition functions can be computed analytically in CFT in (at 
least) 4 situations:

• “A” is a connected region (single interval)

• Multiple intervals: 

‣ free field theory 

‣ In a small-interval expansion

‣ In a limit of large central charge

Calabrese & Cardy ’04
Holzhey, Larsen, Wilczek ’94

S` =
c

3

log

✓
`

✏UV

◆
universal!
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Multiple Intervals

Example where A is 2 intervals, replica number=3:

Tr ⇢3A = Z
� �

This is a Riemann surface with nontrivial topology. 
This example (2 slits, 3 replicas) has genus 2:

= Z
� �

A A

Casini, Fosco, Huerta;
Cardy, Calabrese, Tonni
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Free Fields
This partition function has been evaluated exactly in free field theory.

‣ Free fermion

‣ Free compact boson

• Replica partition function is known, but the analytic 
continuation to n=1 is in general unsolved.

Two interacting cases where we can calculate analytically
1. Small-interval expansion
2. Large-c expansion

Casini, Fosco, Huerta;
Cardy, Calabrese, Tonni

Headrick; Cardy, Calabrese, Tonni; T.H.
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Twist operators
The replica partition function can be viewed as a correlation function of 
“twist operators” that glue the sheets together.

Tr ⇢nA = h�+���+��iCFTn

�+ �� ���+

Dixon, Friedan, Martinec & Shenker ’87
Calabrese, Cardy, Tonni ’04 - ’13
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2pt functions are fixed by conformal invariance (single interval).

4pt functions are not fixed, but are constrained to have the form

h�+���+��i =
X

�

�

OPE coefficient
Virasoro Conformal Blocks

First applied in this context by 
Headrick ’10

=
X

�

c2�F(�, Hn, z)F(�̄, Hn, z̄)

Hn =

c

24

(n� 1/n) = dimension of twist operator
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Two ways to proceed:

1. Expand in z: Small-interval expansion

2. Expand in 1/c  (c = central charge)

• Also assume: small number of low-dimension operators

• This is the class of theories that could plausibly have a 
(semiclassical) holographic dual.

‣ In holographic CFTs, c >> 1 is the AdS radius in Planck units.

‣ Not assuming AdS/CFT.

Headrick; Cardy, Calabrese, Tonni; 
Cardy

T.H.

A A

z
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Outline of the large-c calculation
Virasoro blocks have a nice form at large central charge:

From this we can evaluate the 4pt function of heavy operators to leading 
order in 1/c:

Comments:
• This contribution is universal (independent of CFT details)
• Valid at leading order in 1/c (but all orders in OPE!) 
• Also assumed low operator multiplicities
• It is the Virasoro block for the vacuum rep, which includes the 

operators

• Heavy correlators are exponentially dominated by exchange of 
operators built from the stress tensor. (Dual: 3d graviton)

1 , T , @T , T 2 , T@T , · · ·

Zamolodchikov ’87

F(�, Hn, z) ⇡ e�cf(�
c ,Hn

c ,z)

Tr ⇢nA ⇡ e�2cf(0,Hn
c ,z)
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The “semiclassical block” f0 can be computed in Liouville CFT using a 
null-state decoupling equation. In general this can be solved 
numerically; in the limit n-->1, it is easy to solve analytically.

SA = �@nTr ⇢n
A|n=1

s-channel OPE:

A A

SA =

c

3

log(L1) +

c

3

log(L2)

t-channel OPE:

A A

SA =

c

3

log(L3) +

c

3

log(L4)

Agrees with holographic Ryu-Takayanagi formula 
(assuming no other non-perturbative contributions, ie non-geometric saddles)
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The replica partition functions also agree with AdS/CFT: Solving the 
Liouville-like equation that appears in Zamolodchikov’s computation of 
f0 is identical, step by step to constructing a 3d geometry satisfying the 
Einstein equations.

• [quick explanation: Zamoldchikov computes f by constructing a 
particular SL(2,C) connection on the Riemann surface.  3d gravity is 
classically equivalent to SL(2,C) Chern-Simons theory, and 
Zamoldchikov’s construction can be interpreted as a smooth geometry.]

Faulkner ’13
T.H. ’132cf0 = SEinstein

� �

The large-c vacuum block corresponding to the replica manifold

is the Einstein action of the “filled in” 3-manifold
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Overview
1. EE basics and some quantum information

2. Calculations in 2d CFT

3. Reconstruction of bulk geometry

• Hint #1: RT formula; MERA geometry and Hyperbolic geometry

• Hint #2: In the 2d CFT calculation, the 3d geometries pop out 
automatically from the CFT calculation of Renyi entropy at large c. 

• Now I will work in d dimensions and describe a direct relation 
between fluctuations in geometry and fluctuations in entanglement 
entropy.

Blanco, Casini, Hung, Myers ’13
Lashkari, McDermott, Van Raamsdonk ’13
Faulkner, Guica, TH, Myers, Van Raamsdonk ’13
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Jacobson
Apply the 1st law of thermodynamics to local Rindler horizons:

This 1st law implies the Einstein equation.

• This suggests the Einstein equations are “thermodynamic” in nature

• However, microscopic definitions of T, S, E are not clear

The aim (only partly successful) is to make this precise in AdS/CFT.

• If geometry comes from entanglement, then the Einstein equations 
should govern fluctuations of entanglement.

TdS = dE

S = area

dE

Jacobson ’95
Guedens, Jacobson, Sarkar ’11
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Fluctuations in Entanglement Entropy
Define the “modular Hamiltonian” H by

H is a state-dependent operator.
Varying both sides gives

This is the “first law” of entanglement entropy.

• In general, this is a tautology

• However, in certain contexts HA is a conserved charge that can be 
defined independently; then it is useful.

• Example: Thermofield double --> ordinary 1st law

⇢A =
e�HA

tr e�HA

�SA = �hHAi
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H
groundstate

=

Z
d⌃µ T

µ⌫

⇣⌫
A

⇣

For a half-plane in Lorentz-invariant QFT,
H is the charge associated to boosts:

H
groundstate

=

Z
d⌃µ T

µ⌫

⇣⌫

=

Z
R2 � r2

2R
T
tt

A

In a CFT, this can be conformally mapped to a ball-shaped region:
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Consider perturbations above the groundstate in a CFT.

The 1st law of entanglement entropy,

gives an equation for every ball (centered at        with radius R)

�S(R, ~x0) = �hH(R, ~x0)i

~x0

So far this discussion is general. Now consider a holographic CFT.

Claim:

In a holographic CFT, this infinite set of relations is (an integral 
transform of) the linearized Einstein equation,

and similarly in an arbitrary higher-derivative theory of gravity.

�EOM(r, x) = 0
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A ball-shaped region in CFT is associated to an AdS-Rindler horizon:

B
B~Y

Fluctuations in 
entanglement entropy

=
Fluctuations in the area 

of the AdS-Rindler horizon
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On the gravity side, the 1st law

is an equation for the linearized field perturbation of the form:

where s is entropy density and T is modular energy density.

This infinite set of integral equations (one for every               )  can be 
transformed to the linearized gravitational equations of motion.

�S(R, ~x0) = �hH(R, ~x0)i

Z

RTsurface
s(�g) =

Z

bdry
T (�g)

R , ~x0

Hyperbolic space: *
“Set of all horizons through

a point gives local info.”
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Comparison to Jacobson

• Jacobson’s 1st law

‣ Local Rindler horizons

‣ Full nonlinear equations

‣ Microscopic definitions of S, E, T not clear

• 1st law of entanglement entropy

‣ Global AdS-Rindler horizons

‣ Every quantity involved has a precise microscopic definition in 
the dual

‣ However, we get only the equations linearized about the 
vacuum.

‣ The obstacle is that the “1st law” is (apparently) not useful 
applied to excited states.
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Recap & Some Open Questions

Three hints for a deep relationship between entanglement entropy and 
geometry:

1. Tensor networks and the Ryu-Takayanagi formula

‣ Can this be made quantitative?

2. Large-c calculations in 2d CFT automatically “produce” 3d 
geometries

‣ How far can we push the 1/c expansion?

3. The 1st law of entanglement entropy allows us to reconstruct the bulk 
geometry in AdS/CFT, to linearized level about the vacuum

‣ Nonlinear gravity?


