On M5 Branes

Kimyeong Lee KIAS
KITP QFT14
April 2014

Hee-Cheol Kim, Seok Kim, Sung-Soo Kim, KM [arXiv:1307.7660] The general M5-brane superconformal Index Hee-Cheol Kim, KM [arXiv:1210.0853] M5 brane theories on R x CP2

Hee-Cheol Kim, Seok Kim, Eunkyung Ko, KM [arXiv:1110.2175] On instantons as KK modes of M5 branes
Stefano Bolognesi, KM [arXiv:1105.5073] 1/4 BPS string junctions and N3 problem in 6-dim conformal field theories

6d $(2,0)$ Superconformal Theories

* A, D, E type: type IIB on $\mathrm{R}^{1+5} \times \mathrm{C}^{2} / \Gamma_{\mathrm{ADE}}$
* $\quad A_{N-1}, D_{N}$ type on N M5 branes, N M5 (+OM5)
* superconformal symmetry: $\mathrm{OSp}(2,6 \mid 2) \supset \mathrm{O}(2,8) \times \operatorname{USp}(4)_{\mathrm{R}}$
* fields: $B, \Phi_{(l=1,2,3,4,5)}, \Psi: 3+5+8$ d.o.f.
* selfdual strength $\mathrm{H}=\mathrm{dB}=$ * H , purely quantum $\hbar=1$
* Weyl and symplectic-Majorana Ψ
* Nonabelian formulation?.
* Sorokin, Chu, Ho, Lambert, Papageorgakis, Samtleben et.al,
* Their 4d-reduction implies a local nonabelian field theory which has both electric and magnetic objects.
* N^{3} degrees of freedom

Outline

* Goal: Calculate Something Concrete!
* 5d Approach: R^{1+4}
* instantons
* 1/4 BPS webs
* index function of dyonic instantons
* DLCQ
* 6d approach: RxS^{5}
* Twisting
* $\quad \mathrm{Z}_{\mathrm{K}}$-moding
* 5d approach: $\mathrm{RxCP}{ }^{2}$
* Minkowski and Euclidean Lagrangian
* Index function
* Conclusion

5-dim Approach

* Douglas, Lambert-Papageorgakis-Schmidt-Sommerfeld
* $\quad x 5 \sim x 5+2 \pi R, \quad 5 d N=2 U(N) Y M$ Theory
* Instantons= Kaluza-Klein modes , $4 \pi / g^{2}=1 / R$
* threshold bound states of k instantons for Kaluza-Klein momentum k
* strong coupling limit is $6 \mathrm{~d}(2,0)$ theory
* perturbative approach: problem at 6-loop (Bern et.al. 1210): mysterious
* incomplete? (Need higher order operators to complete the theory?)

1/4 BPS String Junctions

* Monopole strings, self-dual strings in Higgs phase
* count $1 / 2$ BPS \& $1 / 4$ BPS objects: structure constants: fijk $f \alpha-a h$, faßץ

$$
\frac{N(N-1)}{2}+\frac{N(N-1)(N-2)}{6}=\frac{N\left(N^{2}-1\right)}{6}=h_{G} d_{G}
$$

Dyonic Instantons in 5d N=2 SYM

* Index for BPS states with k instantons

$$
\left.Q=Q_{\dot{+}}^{\dot{+}} \quad \begin{array}{c}
S U(2)_{2 R} \\
S U(2)_{1 R}
\end{array}\right\} \Rightarrow S U(2)_{R}
$$

$$
I_{k}\left(\mu^{i}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\operatorname{Tr}_{k}\left[(-1)^{F} e^{-\beta Q^{2}} e^{-\mu^{i} \Pi_{i}} e^{-i \gamma_{1}\left(2 J_{1 L}\right)-i \gamma_{2}\left(2 J_{2 L}\right)-i \gamma_{R}\left(2 J_{R}\right)}\right]
$$

- μ_{i} : chemical potential for $\mathrm{U}(1)^{\mathrm{N}} \subset \mathrm{U}(\mathrm{N})_{\text {color }}$
- $\gamma_{I}, \gamma_{2}, \gamma_{R}$: chemical potential for $S U(2)_{1 L}, S U(2)_{2 L}, S U(2)_{R}$
* calculate the index by the localization:

$$
I\left(q, \mu^{i}, \gamma_{1,2,3}\right)=\sum_{k=0}^{\infty} q^{k} I_{k}
$$

* 5d $N=2^{*}$ instanton partition function on $R^{4} \times S^{1}: \quad t \sim t+\beta$
* In $\beta \rightarrow 0$ and small chemical potential limit, the index becomes 4d Nekrasov instanton partition function :

Most striking aspect

* Additional States appearing in dyonic instanton calculations
* Can be regarded as the degenerate limit of junctions
* There is a threshold bound states of W-boson for 13 and instantons on 2nd M5 branes

High Temperature in Coulomb Phase

* Micro-canonical
* Massless on N M5 branes: O(N)
* Loops of self-dual strings excitations: $\mathrm{O}\left(\mathrm{N}^{2}\right)$
* Beyond the Hagedorn temperature
* Webs of junctions and anti-junctions: $\mathrm{O}\left(\mathrm{N}^{3}\right)$
* Higher order of junctions can be decomposed to elementary junctions
* Excitations of webs of tensionless strings with junctions act as atoms.
* N^{3} degrees of freedom

Nonzero Temperature in Symmetric Phase

* To get the index in symmetric phase, integrate over $\mu_{i}=i a_{i}$ with Haar measure
* DLCQ on null circle: Nonrelativistic superconformal symmetry
* \quad P. on the null circle $=$ instanton number
* Superalgebra: $\quad 2 i\{Q, S\}=i D \mp\left(4 J_{2 R}+2 J_{1 R}\right) \rightarrow i D \geq \pm\left(4 J_{2 R}+2 J_{1 R}\right)$
* Nonrelativistic superconformal index

$$
I_{S C}=\operatorname{Tr}\left[(-1)^{F} e^{-\beta\{\hat{Q}, \hat{S}\}} e^{-2 i i_{R} J_{R} J_{R}} e^{-2 i_{1} J_{1 L}-2 i_{2} J_{2 L}} e^{-i \alpha_{i} \Pi_{i}}\right]
$$

* In the limit $\beta \rightarrow 0$, this superconformal index becomes the integration over the Coulomb phases of our index.
* For single instanton with

$$
t=e^{-i \gamma_{R}}
$$

$$
I_{k=1}=\frac{e^{i \gamma_{2}}+e^{-i \gamma_{2}}-e^{i \gamma_{1}}-e^{-i \gamma_{1}}}{\left(1-t e^{i \gamma_{1}}\right)\left(1-t e^{-i \gamma_{1}}\right)}\left[t+\sum_{n=1}^{N-1}\left(e^{i n \gamma_{2}}+e^{-i n \gamma_{2}}\right) t^{n+1}-\chi_{\frac{N-2}{2}}\left(\gamma_{2}\right) t^{N+1}\right]
$$

* Large N

$$
I_{N \rightarrow \infty, k=1}=\frac{e^{i \gamma_{2}}+e^{-i \gamma_{2}}-e^{i \gamma_{1}}-e^{-i \gamma_{1}}}{\left(1-t e^{i \gamma_{1}}\right)\left(1-t e^{-i \gamma_{1}}\right)} \frac{t-t^{3}}{\left(1-t e^{i \gamma_{2}}\right)\left(1-t e^{-i \gamma_{2}}\right)}
$$

AdS7 x S4 calculation confirm it.

6d (2,0) Theories

* Difficulties with nonabelianization of the B field and its strength $H=d B$
* Generalize ABJM to M5 brane theory
* Mode out by $\mathrm{R}^{8} / \mathrm{Z}_{\mathrm{K}}$
* Weak coupling limit
* No fixed point
* R^{1+5} / Z_{K} has a fixed point
* Consider the 6d $(2,0)$ theory on $R x S^{5:}$ TheRadial Quantization
* $S^{5}=$ a circle fibration over $C P^{2}$
* $\quad d s^{2}{ }^{s} 5=d s^{2}$ cP2 $+(d y+V)^{2}, \quad d V=2 J, J=-* J, y \sim y+2 \pi$
* $\quad \mathrm{AdS}_{7} \times \mathrm{S}^{4} / Z_{k}$ (Tomasiello, 2013): 6d theory with D6 and D6 : still 6d theory with $\mathrm{H}={ }^{*} \mathrm{H}$

Index Function on $\mathrm{S}^{1} \times \mathrm{S}^{5}$

* Supercharge

$$
Q_{j_{1}, j_{2}, j_{3}}^{R_{1}, R_{2}} \Rightarrow Q=Q_{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}}^{\frac{1}{2}, \frac{1}{2}}, S=Q^{\dagger}
$$

* BPS bound:

$$
E=j_{1}+j_{2}+j_{3}+2\left(R_{1}+R_{2}\right)
$$

* 6-dim index function:

$$
I=\operatorname{Tr}\left[(-1)^{F} e^{-\beta^{\prime}\{Q, S\}} e^{-\beta\left(E-\frac{R_{1}+R_{2}}{2}-m\left(R_{1}-R_{2}\right)+a j_{1}+b j_{2}+c j_{3}\right)}\right], a+b+c=0
$$

* Euclidean Path Integral of $(2,0)$ Theory on $S^{1 x} S^{5}$
* $\quad S^{5}=S^{1}$ fiber over CP ${ }^{2}$: -i $\partial_{y}=K K$ modes

$$
k \equiv j_{1}+j_{2}+j_{3}
$$

* $\quad \mathrm{Z}_{\mathrm{k}}$ modding keeps only $\mathrm{k} / \mathrm{K}=$ integer modes

6d Abelian Theory (Fermion+ Scalar)

* on $\mathrm{R} \times \mathrm{S}^{5}, \ldots \ldots$. (Could Include $\mathrm{H}=\mathrm{dB}$)

$$
-\frac{i}{2} \bar{\lambda} \Gamma^{M} \hat{\nabla}_{M} \lambda-\frac{1}{2} \partial_{M} \phi_{I} \partial^{M} \phi_{I}-\frac{2}{r^{2}} \phi_{I} \phi_{I}
$$

* gamma matrices $\Gamma^{\mathrm{M}}, \rho^{\mathrm{a}}$
* Symplectic Majorana $\lambda=-B C \lambda^{*}, \varepsilon=B C \varepsilon^{*}$
* Weyl: $\Gamma^{7} \lambda=\lambda, \Gamma^{7} \varepsilon=-\varepsilon$
* 32 supersymmetry

$$
\begin{aligned}
\delta \phi_{I} & =-\bar{\lambda} \rho_{I} \epsilon=+\bar{\epsilon} \rho_{I} \lambda, \\
\delta \lambda & =+\frac{i}{6} H_{M N P} \Gamma^{M N P} \epsilon+i \partial_{M} \phi_{I} \Gamma^{M} \rho_{I} \epsilon-2 \phi_{I} \rho_{I} \tilde{\epsilon}, \\
\delta \bar{\lambda} & =-\frac{i}{6} H_{M N P} \bar{\epsilon} \Gamma^{M N P}+i \partial_{M} \phi_{I} \bar{\epsilon} \Gamma^{M} \rho_{I}-2 \overline{\tilde{\epsilon}} \rho_{I} \phi_{I} .
\end{aligned}
$$

* additional condition on Killing spinor:

$$
\hat{\nabla}_{M} \epsilon=\frac{i}{2 r} \Gamma_{M} \tilde{\epsilon}, \quad \Gamma^{M} \hat{\nabla}_{M} \tilde{\epsilon}=2 i \epsilon, \quad \tilde{\epsilon}= \pm \Gamma_{0} \epsilon
$$

Twisting \& Dimensional Reduction to $\mathrm{R} \times \mathrm{CP}^{2}$

Killing spinor eq $\nabla_{M} \epsilon_{ \pm}= \pm \frac{1}{2 r} \Gamma_{M} \Gamma_{\tau} \epsilon_{ \pm}$

* Killing spinors: $\mathrm{SO}(1,5)=\mathrm{SU}(2,2)$ chiral spinor and 4 -dim of $\mathrm{Sp}(2)=\mathrm{SO}(5)_{\mathrm{R}}$
* 32 Killing spinors $=3 \times 8(S U(3)$ triplet $)+1 \times 8(S U(3)$ singlet $)$ under $S U(3)$ isometry of $C P^{2}$:
* (I) $\varepsilon_{+} \sim \exp (-i t / 2+3 i y / 2) \ldots$: singlet
* (II) $\varepsilon_{+} \sim \exp (-i t / 2-i y / 2) \ldots$: triplet
* Twisting

$$
\begin{array}{ll}
\epsilon_{\text {old }}=e^{-\frac{y}{4} M_{I J} \rho_{I J}} \epsilon_{\text {new }}, & M_{12}=-M_{21}=\frac{3+p}{2}, M_{45}=-M_{54}=\frac{3-p}{2} \\
\lambda_{\text {old }}=e^{-\frac{y}{4} M_{I J} \rho_{I J}} \lambda_{\text {new }}, & p=\cdots,-5,-3,-1,1,3,5, \cdots . \\
\left(\phi_{1}+i \phi_{2}\right)_{\text {old }}=e^{+(3+p) i y / 2}\left(\phi_{1}+\phi_{2}\right)_{\text {new }} & \\
\left(\phi_{4}+i \phi_{5}\right)_{\text {old }}=e^{+(3-p) i y / 2}\left(\phi_{4}+i \phi_{5}\right)_{\text {new }} . & \partial_{y} \rightarrow \partial_{y}+\frac{3 i}{2}\left(R_{1}+R_{2}\right)+\frac{i p}{2}\left(R_{1}-R_{2}\right) \\
\quad k \equiv j_{1}+j_{2}+j_{3}+\frac{3}{2}\left(R_{1}+R_{2}\right)+\frac{p}{2}\left(R_{1}-R_{2}\right), p=\text { odd integer }
\end{array}
$$

Singlets $\varepsilon_{+}, \varepsilon_{-}$for $Q=Q_{---}^{++}, S=Q_{+++}^{--}$

5d Lagrangian

$$
Q=Q_{---}^{++}, S=Q_{+++}^{--}
$$

* Lagrangian on $\mathrm{R} \times \mathrm{CP}^{2}$ with 2 supersymmetries for any p :

$$
\begin{align*}
S= & \frac{K}{4 \pi^{2}} \int_{\mathrm{R} \mathrm{\times CP}^{2}} d^{5} x \sqrt{|g|} \operatorname{tr}\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2 \sqrt{|g|}} \epsilon^{\mu \nu \rho \sigma \eta} J_{\mu \nu}\left(A_{\rho} \partial_{\sigma} A_{\eta}-\frac{2 i}{3} A_{\rho} A_{\sigma} A_{\eta}\right)\right. \\
& -\frac{1}{2} D_{\mu} \phi_{I} D^{\mu} \phi_{I}+\frac{1}{4}\left[\phi_{I}, \phi_{J}\right]^{2}-2 \phi_{I}^{2}-\frac{1}{2}\left(M_{I J} \phi_{J}\right)^{2}-i(3-p)\left[\phi_{1}, \phi_{2}\right] \phi_{3}-i(3+p)\left[\phi_{4}, \phi_{5}\right] \phi_{3} \\
& \left.-\frac{i}{2} \bar{\lambda} \gamma^{\mu} D_{\mu} \lambda-\frac{i}{2} \bar{\lambda} \rho_{I}\left[\phi_{I}, \lambda\right]-\frac{1}{8} \bar{\lambda} \gamma^{m n} \lambda J_{m n}+\frac{1}{8} \bar{\lambda} M_{I J} \rho_{I J} \lambda\right] \tag{2.27}
\end{align*}
$$

* Supersymmetry Transformation

$$
\begin{aligned}
\delta A_{\mu} & =+i \bar{\lambda} \gamma_{\mu} \epsilon=-i \bar{\epsilon} \gamma_{\mu} \lambda, \quad \delta \phi_{I}=-\bar{\lambda} \rho_{I} \epsilon=\bar{\epsilon} \rho_{I} \lambda \\
\delta \lambda & =+\frac{1}{2} F_{\mu \nu} \gamma^{\mu \nu} \epsilon+i D_{\mu} \phi_{I} \rho_{I} \gamma^{\mu} \epsilon-\frac{i}{2}\left[\phi_{I}, \phi_{J}\right] \rho_{I J} \epsilon-2 \phi_{I} \rho_{I} \tilde{\epsilon}-M_{I J} \phi_{I} \rho_{J} \epsilon
\end{aligned}
$$

* $p / 2=-1 / 2: k=j_{1}+j_{2}+j_{3}+R_{1}+2 R_{2}$
* additional supersymmetries: Total 8 supersymmetries

$$
Q_{-++}^{+-}, Q_{+-+}^{+-}, Q_{++-}^{+-} \text {conjugates }
$$

Coupling Constant Quantization

* Instanton number on CP2

$$
\nu=\frac{1}{8 \pi^{2}} \int_{\mathrm{CP}^{2}} \operatorname{Tr}(F \wedge F)=\frac{1}{16 \pi^{2}} \int_{\mathrm{CP}^{2}} d^{4} x \sqrt{|g|} \operatorname{Tr} F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

* Instantons represents the momentum K or energy K:

$$
\frac{1}{g_{Y M}^{2}}=\frac{K}{4 \pi^{2} r}
$$

* Another approach to quantization: $\mathrm{F}=2 \mathrm{~J}: 2 \pi$ flux on a cycle, $1 / 2$ instanton for abelian theory

$$
\frac{K}{4 \pi^{2}} \int_{\mathrm{R} \times \mathrm{CP}^{2}} d^{5} x \frac{1}{2} \epsilon^{\mu \nu \rho \sigma \eta} J_{\mu \nu} \partial_{\rho} A_{\sigma} A_{\eta} \Rightarrow K \int d t A_{0}
$$

* 't Hooft coupling constant: $\lambda=\mathrm{N} / \mathrm{K}$
* Large K => Free Theory

Diluting degrees of freedom with Z_{k} modding+ Twisting

Expected Enhanced Supersymmetries

* Killing spinors with $p / 2=-1 / 2, \quad k=j_{1}+j_{2}+j_{3}+R_{1}+2 R_{2}$
* $\mathrm{k}=0$: 8 kinds
* $\mathrm{k}= \pm 1$: 14 kinds
* $\mathrm{k}= \pm 2: 8$ kinds
* $\mathrm{k}= \pm 3$: 2 kinds
* \# of supersymmetries
* $\quad \mathrm{K} \geqq 4$: 8 supersymmetries
* $\quad \mathrm{K}=3: 10$ supersymmetries
* $\mathrm{K}=2: 16$ supersymmetries
* $\mathrm{K}=1: 32$ supersymmetries

the index function on $S^{1} \times S^{5}$

* 5d SYM on S ${ }^{5}$ Hee-Cheol Kim, Seok Kim:1206.6339; Hee-Cheol Kim, Joonho Kim, S.K. 1211.0144, Minahan-NedelinZabzine, 1207.3763
* S-dual version of the index
* Vacuum energy: $\quad\left(\epsilon_{0}\right)_{\text {index }}=\lim _{\beta^{\prime} \rightarrow 0} \operatorname{Tr}\left[(-1)^{F} \frac{E-R}{2} e^{-\beta^{\prime}\left(E-R_{1}\right)}\right]$
* $\quad S^{1} \times C P^{2}$ path integral off-shell

$$
\begin{array}{r}
\left(\epsilon_{0}\right)_{\text {index }}=\lim _{\beta^{\prime} \rightarrow 0} \operatorname{Tr}\left[(-1)^{F} \frac{E-R}{2} e^{-\beta^{\prime}\left(E-R_{1}\right)}\right] \\
\\
=\frac{N\left(N^{2}-1\right)}{6}+\frac{N}{24}
\end{array}
$$

* Stationary phase: $\mathrm{D}^{1}=\mathrm{D}^{2}=0, \quad \mathrm{~F}=2 \mathrm{~s} \mathrm{~J}, \quad \varphi+\mathrm{D}^{3}=4 \mathrm{~s}, \mathrm{~s}=\operatorname{diag}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{N}}\right)$
* analogous to 3-dim Monopole operator
* Path Integral: Off-shell, localization (K=1 case_

$$
\sum_{s_{1}, s_{2}, \cdots s_{N}=-\infty}^{\infty} \frac{1}{\left|W_{s}\right|} \oint\left[\frac{d \lambda_{i}}{2 \pi}\right] e^{\frac{\beta}{2} \sum_{i=1}^{N} s_{i}^{2}-i \sum_{i} s_{i} \lambda_{i}} Z_{\text {pert }}^{(1)} Z_{\text {inst }}^{(1)} \cdot Z_{\text {pert }}^{(2)} Z_{\text {inst }}^{(2)} \cdot Z_{\text {pert }}^{(3)} Z_{\text {inst }}^{(3)}
$$

* For $\mathrm{K}=1$, well-confirmed for $\mathrm{k} \leq \mathrm{N}$ with $\mathrm{N}=1,2,3$ with the AdS/CFT calculation

Strange Vacua

* $\mathrm{K}=1, \mathrm{~F}=2 \mathrm{~s} \mathrm{~J}$ background

$$
\begin{aligned}
& U(2)(1,-1) \\
& U(3)(2,0,-2),(2,-1,-1),(1,1,-2),(1,0,-1) \\
& U(4)(3,1,-1,-3),(3,1,-2,-2),(2,2,-1,-3),(3,0,-1,-2) \\
& \quad(2,1,0,-3),(2,0,0,-2),(2,0,-1,-1),(1,1,0,-2),(1,0,0,-1)
\end{aligned}
$$

* the Lowest one $S_{G}=2 \rho \cdot H$ with negative energy $-2 \rho^{2}$, where $\rho=$ Weyl vector
* Ground State for Index: $\mathrm{K} \leq \mathrm{N}$ (Strong 't Hooft coupling $\lambda=\mathrm{N} / \mathrm{K}$)

K	$U(2)$	$U(3)$	$U(4)$	$U(5)$	$U(6)$	$U(7)$	$U(8)$	$U(9)$	$U(N)$
1	-1	-4	-10	-20	-35	-56	-84	-120	$-\frac{N\left(N^{2}-1\right)}{6}$
2	0	-1	-2	-5	-8	-14	-20	-30	
3		0	-1	-2	-3	-6	-9	-12	
4			0	-1	-2	-3	-4	-7	
5				0	-1	-2	-3	-4	
6					0	-1	-2	-3	
7						0	-1	-2	
8							0	-1	
9								0	

Table 1: Vacuum energies divided by K, at general \mathbb{Z}_{K} (and fluxes)

Check with AdS/CFT

- E.g. $\mathrm{k}=\mathrm{N}=3$: (all results multiplied by vacuum energy factor \& $\left.\mathrm{e}^{-3 \beta}\right) y_{i}=e^{-\beta a_{i}}, y=e^{\beta\left(m-\frac{1}{2}\right)}$

$$
\left.\begin{array}{rl}
Z_{(2,0,-2)}= & 3\left[y^{2}\left(y_{1}+y_{2}+y_{3}\right)+y\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)+y^{-1}\left(y_{1}+y_{2}+y_{3}\right)-\left(1+\frac{y_{1}}{y_{2}}+\frac{y_{2}}{y_{1}}+\cdots\right)+y^{3}\right] \\
& +6 y\left[y\left(y_{1}+y_{2}+y_{3}\right)-\left(y_{1}^{-1}+y_{2}^{-1}+y_{3}^{-1}\right)+y^{-1}+y^{2}\right]+y^{3} \\
Z_{(2,-1,-1)}+Z_{(1,1,-2)}= & -2 y\left[y\left(y_{1}+y_{2}+y_{3}\right)-\left(y_{1}^{-1}+y_{2}^{-1}+y_{3}^{-1}\right)+y^{-1}+y^{2}\right] \\
& -2 y\left[y\left(y_{1}+y_{2}+y_{3}\right)-\left(y_{1}^{-1}+y_{2}^{-1}+y_{3}^{-1}\right)+y^{-1}+y^{2}\right] \\
& -4 y^{3}-4 y^{2}\left(y_{1}+y_{2}+y_{3}\right)-2 y\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-\frac{1}{y_{1}}-\frac{1}{y_{2}}-\frac{1}{y_{3}}\right)+2\left(\frac{y_{1}}{y_{2}}+\frac{y_{2}}{y_{3}}+\cdots\right)-2 y^{-1}\left(y_{1}+y_{2}+y_{3}\right) \\
Z_{(1,0,-1)}= & y^{3}+y^{2}\left(y_{1}+y_{2}+y_{3}\right)-y\left(y_{1}^{-1}+y_{2}^{-1}+y_{3}^{-1}\right)+1 \\
Z_{\text {SUGRA }}= & 3 y^{3}+2 y^{2}\left(y_{1}+y_{2}+y_{3}\right)+y\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{3}-\frac{1}{y_{1}}-\frac{1}{y_{2}}-\frac{1}{y_{3}}\right)-\left(\frac{y_{1}}{y_{2}}+\frac{y_{2}}{y_{1}}+\cdots\right)+y^{-1}\left(y_{1}+y_{2}+y_{3}\right)
\end{array}\right] \text { add all }
$$

* Non-zero flux states contributing to the index
* $\mathrm{s}=(\mathrm{N}-1, \mathrm{~N}-3, \ldots,-(\mathrm{N}-1))=\mathrm{s} 0: \mathrm{SU}(\mathrm{N})$ Weyl vector
* index vacuum energy:

$$
E_{0}=-\frac{N\left(N^{2}-1\right)}{6}
$$

Kim \&Kim: 2-loop effect on S 5 SYM

SU(2) Case

* BPS Eq. for Homogeneous Configuration with instanton number n^{2}

$$
A=V \operatorname{diag}(n,-n), F=2 J \operatorname{diag}(n,-n)
$$

* homogeneous bosonic solutions possible only with $n=+1,-1$
* but gauss law is violated
* for one of the constant bps solutions, the homogeneous fermionic zero mode is possible.
* gauss law can be satisfied with fermionic contribution for $\mathrm{K}=1$ but not for $\mathrm{K}>1$.
* energetic is more complicated to due to zero-point contribution to the classical one,...

Conclusion

* New 5d supersymmetric theories for M5 are found with discrete coupling constant and a weak coupling limit
* Index Function of $6 d A_{N}(2,0)$ is partially obtained.
* highly nontrivial vacuum structure in the strong coupled regime
* UV finite? How rigid is the theory with eight supersymmetries.
* Enhanced supersymmetry to $\mathrm{K}=1,2,3$?
* Wilson-loop can be easily included.
* Near BPS objects? perturbative approach?
* Rastelli et.al on conformal bootstrap
* 6-dim $(1,0)$ theories

