$3d \mathcal{N} = 4$ Gauge Theories, Hilbert series and Hall-Littlewood Polynomials

NOPPADOL MEKAREEYA cern

KITP program

April 1, 2014

Based on the following works:

- [arXiv:1403.0585, 1403.2384] with S. Cremonesi, A. Hanany, A. Zaffaroni
- [arXiv:1402.0016] with A. Dey, A. Hanany, P. Koroteev
- [arXiv:1205.4741] with A. Hanany and S. Razamat
- [arXiv:1111.5624] with C. Keller, J. Song and Y. Tachikawa
- [arXiv:1110.6203] with A. Hanany
- [arXiv:1005.3026] with S. Benvenuti and A. Hanany

Features of $3d \mathcal{N} = 4$ gauge theories

- Two branches of the moduli space:
 - Higgs branch: VEVs of scalars components of the hypermultiplets. Classically exact.
 - Coulomb branch: VEVs of scalars components of the vector multiplets. Receives quantum corrections.
 - Both are hyperKähler spaces.
- *R*-symmetry: $SU(2)_H \times SU(2)_V$.
- A quantum description of the Coulomb branch involves monopole operators. [Kapustin et al. from '02]
- Mirror symmetry exchanges the Higgs branch of one theory with the quantum Coulomb branch of another theory, and vice-versa. [Intriligator-Seiberg '97]
 - As a working assumption, it's very useful for studying moduli spaces of various theories.
 - ▶ E.g. 3d Gaiotto's type theories, whose mirrors have known Langrangians.

[Benini-Tachikawa-Xie '10]

Overview of the talk

- The Higgs branch of $3d \mathcal{N} = 4$ gauge theories.
- In Coulomb branch and its quantum description.
- Hilbert series as a generating function of the gauge invariant quantities on the moduli space.
- **9** 3d Sicilian theory as a theory of class S (4d Gaiotto's theory) compactified on S^1 .
 - Their mirror theories and the constructions.
 - The Coulomb branch of these mirror theories.
- Solutions with the moduli spaces of instantons.
 - New technology in computing instanton partition functions.

Part I: Higgs branch

Higgs branch of a $3d \mathcal{N} = 4$ gauge theory

- Translate the theory in $3d \mathcal{N} = 2$ language: The F and D terms give rise to the moment map equations of the hyperKähler quotient.
- A suitable description is in terms of gauge invariant quantities subject to the F term relations.
- A Hilbert series is a generating function that counts these gauge invariant quantities wrt. a U(1) global symmetry that is a generator of $SU(2)_H$ and wrt. the flavour symmetry.
- For the Higgs branch Hilbert series, the global U(1) symmetry can be taken as a generator of the $SU(2)_H$ *R*-symmetry.

Example 1: U(1) gauge theory with N flavours

U(N)

• In $3d \ \mathcal{N} = 2$ notation, the above quiver becomes

with the superpotential $W = \widetilde{Q}_i \varphi Q^i$.

- The relevant F-term for the Higgs branch is $\partial_{\varphi}W=\widetilde{Q}_{i}Q^{i}=0.$
- The Higgs branch is parametrised by the gauge invariant quantities

$$M^{i}_{\ j} = Q^{i} \widetilde{Q}_{j}$$
 with $\operatorname{tr} M = M^{i}_{\ i} = 0$.

U(1)

They transform in the adjoint rep., $\mathbf{Adj} = [1, 0, \dots, 0, 1]$, of SU(N).

• Thanks to the *F*-term, the square of matrix $M^2 = 0$, *i.e.* M is nilpotent:

$$M^i_{\ j}M^j_{\ k} = Q^i \widetilde{Q}_j Q^j \widetilde{Q}^k = 0 \; .$$

Example 1: U(1) gauge theory with N flavours

• The Higgs branch is

 $\{M: M \text{ an } N \times N \text{ matrix}, \text{ tr } M = 0 \text{ and } M^2 = 0\}.$

This space is also

- the 'reduced' moduli space of 1 SU(N) instanton on \mathbb{C}^2 ;
- minimal nilpotent orbit of SU(N).
- Any gauge invariant is a product of a matrix M, which carries charge 2 under the J_3 generator of $SU(2)_H$.
 - The operators with charge p transform in $\operatorname{Sym}^p \operatorname{Adj} = \operatorname{Sym}^p[1, 0, \dots, 0, 1]$ of SU(N).
 - The (minimal) nilpotency kills all representations but [p, 0, ..., 0, p] in Sym^pAdj. [e.g. Kronheimer '90; Vinberg-Popov '72; Garfinkle '73; Gaiotto, Neitzke, Tachikawa '08, Benvenuti-Hanany-NM '10]
- The Higgs branch Hilbert series is

$$H_{\text{red. 1 }SU(N) \text{ inst. } \mathbb{C}^2}(t; \boldsymbol{y}) = \sum_{p=0}^{\infty} \chi^{SU(N)}_{[p,0,...,0,p]}(\boldsymbol{y}) \; t^{2p} \; .$$

Example 2: One G instanton on \mathbb{C}^2

• The Hilbert series has a uniform expression for one instanton in any simple group G:

$$H_{\mathrm{red.}\ 1\ G\ \mathrm{inst.}\ \mathbb{C}^2}(t;\boldsymbol{y}) = \sum_{p=0}^\infty \chi^G_{p\cdot \mathbf{Adj}}(\boldsymbol{y})\ t^{2p}\ .$$

[Benvenuti-Hanany-NM '10]

• For an instanton moduli space, the Hilbert series has an interpretation of the instanton contribution to the partition function of $5d \ \mathcal{N} = 1$ pure SYM with gauge group G on $S^1 \times \mathbb{R}^4$. [Nekrasov-Okounkov ' 03; Keller-NM-Song-Tachikawa '11]

• 4d Nekrasov: With
$$t = e^{-\frac{1}{2}\beta(\epsilon_1 + \epsilon_2)}$$
, $x = e^{-\frac{1}{2}\beta(\epsilon_1 - \epsilon_2)}$, $y_i = e^{-\beta a_i}$,
$$H_{1 G \text{ inst. } \mathbb{C}^2}(t; x; y) = \frac{1}{(1 - tx)(1 - tx^{-1})} \sum_{p=0}^{\infty} \chi^G_{p \cdot \mathbf{Adj}}(y) t^{2p} ,$$

reduces to the Nekrasov partition function [Keller-NM-Song-Tachikawa '11]

$$Z_{1 \text{ inst.}}(\epsilon_{1}, \epsilon_{2}, a) = -\frac{1}{\epsilon_{1}\epsilon_{2}} \sum_{\gamma \in \Delta_{l}} \frac{1}{(\epsilon_{1} + \epsilon_{2} + \gamma \cdot a)(\gamma \cdot a) \prod_{\gamma \vee \cdot \alpha = 1, \ \alpha \in \Delta} (\alpha \cdot a)}$$

where Δ and Δ_l are the sets of the roots and the long roots, and $\gamma^{\vee} = \frac{2\gamma}{\gamma \cdot \gamma}$

Example 2: One G instanton on \mathbb{C}^2

• The Hilbert series has a uniform expression for one instanton in any simple group G:

$$H_{\mathrm{red.}\ 1\ G\ \mathrm{inst.}\ \mathbb{C}^2}(t;\boldsymbol{y}) = \sum_{p=0}^\infty \chi^G_{p\cdot \mathbf{Adj}}(\boldsymbol{y})\ t^{2p}\ .$$

[Benvenuti-Hanany-NM '10]

- For an instanton moduli space, the Hilbert series has an interpretation of the instanton contribution to the partition function of $5d \ \mathcal{N} = 1$ pure SYM with gauge group G on $S^1 \times \mathbb{R}^4$. [Nekrasov-Okounkov ' 03; Keller-NM-Song-Tachikawa '11]
- 4d Nekrasov: With $t = e^{-\frac{1}{2}\beta(\epsilon_1 + \epsilon_2)}$, $x = e^{-\frac{1}{2}\beta(\epsilon_1 \epsilon_2)}$, $y_i = e^{-\beta a_i}$,

$$H_{1\;G\;{\rm inst.}\;\mathbb{C}^2}(t;x;{\pmb y}) = \frac{1}{(1-tx)(1-tx^{-1})} \sum_{p=0}^\infty \chi^G_{p\cdot{\bf Adj}}({\pmb y})\;t^{2p}\;,$$

reduces to the Nekrasov partition function [Keller-NM-Song-Tachikawa '11]

$$Z_{1 \text{ inst.}}(\epsilon_1, \epsilon_2, \boldsymbol{a}) = -\frac{1}{\epsilon_1 \epsilon_2} \sum_{\boldsymbol{\gamma} \in \Delta_l} \frac{1}{(\epsilon_1 + \epsilon_2 + \boldsymbol{\gamma} \cdot \boldsymbol{a})(\boldsymbol{\gamma} \cdot \boldsymbol{a}) \prod_{\boldsymbol{\gamma}^{\vee} \cdot \boldsymbol{\alpha} = 1, \ \boldsymbol{\alpha} \in \Delta} (\boldsymbol{\alpha} \cdot \boldsymbol{a})}$$

where Δ and Δ_l are the sets of the roots and the long roots, and $\gamma^{\vee} = \frac{2\gamma}{\gamma \cdot \gamma}$.

Part II: Coulomb branch

Coulomb branch of a $3d \mathcal{N} = 4$ gauge theory

- A v-plet contains a gauge field A_μ and 3 real scalars; all in the adjoint rep. of the gauge symmetry G. Combine the latter into a real scalar σ and a complex scalar φ.
- Generic VEVs of σ_j $(j = 1, \ldots, r_G)$ breaks the gauge group G to $U(1)^{r_G}$.
- For each U(1) factor, A_{μ} can be dualised into a periodic scalar a.
- We have chiral fields: $\exp\left(\frac{\sigma_j}{g^2(\sigma)} + ia_j\right)$.

Quantum description of the Coulomb branch.

Replace

$$\exp\left(\frac{\sigma_j}{g^2(\sigma)} + ia_j\right) \quad \longrightarrow \quad \text{monopole operators } X_j$$

- \bullet A monopole operator for the gauge group G is specified by the magnetic fluxes
 - $\boldsymbol{m} = (m_1, \ldots, m_{r_G})$ at the insertion point.

Coulomb branch of a $3d \mathcal{N} = 4$ gauge theory

- The magnetic flux m in $U(1)^{r_G} \subset G$ is labelled by a weight of the GNO dual group G^{\vee} , modulo the Weyl transformations $W_{G^{\vee}}$.
- Turning on the monopole flux m breaks G to a residual gauge symmetry H_m .

• Example: G = U(2), $m = (m_1, m_2)$. Up to a Weyl transformation, we can take $m_1 \ge m_2 > -\infty$. $H_m = U(2)$ if $m_1 = m_2$, and $H_m = U(1)^2$ if $m_1 \ne m_2$.

 The monopole operator can be dressed by all possible products of φ that are invariant under the action of H_m. This is a quantum description of the chiral ring. Coulomb branch of a $3d \mathcal{N} = 4$ gauge theory

A topological symmetry

- A monopole operator may carry charge under a topological symmetry, which is the centre of the gauge group *G*.
- For $G = U(N_c)$, there is a topological $U(1)_J$ symmetry, associated with the current J = *F associated with the U(1) factor in $U(N_c)$.
 - A monopole op. with fluxes m carries charge $m_1 + m_2 + \ldots + m_{N_c}$ under $U(1)_J$.
- The topological symmetry (or a collection of them) can enhance to a larger non-abelian symmetry.

Coulomb branch Hilbert series

- Operators on the Coulomb branch: Monopole operators dressed with powers of scalars in the residual gauge group.
- Count these operators with respect to a U(1) global symmetry, which is a generator of $SU(2)_V$ and wrt. the topological $U(1)_J$ charges.
- The monopole formula for the Coulomb branch HS: [Cremonesi, Hanany, Zaffaroni '13]

$$H(t; \boldsymbol{z}) = \sum_{\boldsymbol{m} \in \Gamma_{G^{\vee}} / W_{G^{\vee}}} t^{\Delta(\boldsymbol{m})} \boldsymbol{z}^{J(\boldsymbol{m})} P_G(t; \boldsymbol{m}) ,$$

- Fugacity t keeps track of the U(1) global symmetry.
- Fugacities $z = (z_1, z_2, ...)$ keep track of a collection of the $U(1)_J$ charges, J(m).
- $P_G(t; m) = \prod_i 1/(1 t^{2d_i})$, with d_i the degrees of independent Casimirs of H_m .
- Dimension of monopole operators:

$$\Delta(m) = \left(\sum_{\substack{\text{all hypers } \\ \text{of rep of each hyper}}} \sum_{\substack{w: \text{ weights} \\ \text{of rep of each hyper}}} |w(m)|\right) - 2\sum_{\alpha \in \Delta_G^+} |\alpha(m)| \ .$$

[Gaiotto-Witten '08; Kim '09, Benna-Klebanov-Klose '09, Bashkirov-Kapustin '10]

Noppadol Mekareeya (CERN)

Coulomb branch Hilbert series

- Operators on the Coulomb branch: Monopole operators dressed with powers of scalars in the residual gauge group.
- Count these operators with respect to a U(1) global symmetry, which is a generator of $SU(2)_V$ and wrt. the topological $U(1)_J$ charges.
- The monopole formula for the Coulomb branch HS: [Cremonesi, Hanany, Zaffaroni '13]

$$H(t; \boldsymbol{z}) = \sum_{\boldsymbol{m} \in \Gamma_{G^{\vee}} / W_{G^{\vee}}} t^{\Delta(\boldsymbol{m})} \boldsymbol{z}^{J(\boldsymbol{m})} P_G(t; \boldsymbol{m}) ,$$

- Fugacity t keeps track of the U(1) global symmetry.
- Fugacities $z = (z_1, z_2, ...)$ keep track of a collection of the $U(1)_J$ charges, J(m).
- $P_G(t; m) = \prod_i 1/(1 t^{2d_i})$, with d_i the degrees of independent Casimirs of H_m .
- Dimension of monopole operators:

$$\Delta(\boldsymbol{m}) = \left(\sum_{\substack{\text{all hypers } \\ \text{of rep of each hyper}}} |\boldsymbol{w}(\boldsymbol{m})| \right) - 2\sum_{\boldsymbol{\alpha} \in \Delta_G^+} |\boldsymbol{\alpha}(\boldsymbol{m})| \ .$$

[Gaiotto-Witten '08; Kim '09, Benna-Klebanov-Klose '09, Bashkirov-Kapustin '10]

Noppadol Mekareeya (CERN)

Example: Coulomb branch of the affine D_4 quiver

- There's an overall U(1) that decouples. Can remove this from any node, say U(2).
- The Coulomb branch Hilbert series:

$$H_{\widehat{D}_{4}}(t;z_{0},z_{1},\ldots,z_{4}) = \sum_{u_{1},\ldots,u_{4}\in\mathbb{Z}}\sum_{n_{1}\geq n_{2}=0} t^{-2|n_{1}-n_{2}|+\sum_{i=1}^{4}\sum_{j=1}^{2}|u_{i}-n_{j}|} \left(z_{0}^{n_{1}+n_{2}}z_{1}^{u_{1}}\ldots z_{4}^{u_{4}}\right) \times [P_{U(1)}(t)]^{-1}P_{U(2)}(t;n_{1},n_{2})[P_{U(1)}(t)]^{4}$$

$$P_{U(1)}(t) = (1-t^2)^{-1} \text{ and } P_{U(2)}(t;n_1,n_2) = \begin{cases} (1-t^2)^{-2}, & n_1 \neq n_2 \\ (1-t^2)^{-1}(1-t^4)^{-1} & n_1 = n_2 \end{cases}$$

► z₀ keeps track of the topological charge for U(2) gauge group, and z_i keep track of topological charges for each U(1).

Example: Coulomb branch of the affine D_4 quiver

- An overall U(1) \Rightarrow shift symmetry $n_{1,2} \rightarrow n_{1,2} + 2$, $u_{1,...,4} \rightarrow u_{1,...,4} + 1$. This requires $z_0^2 z_1 z_2 z_3 z_4 = 1$.
- The power series in t admits an SO(8) character expansion:

$$H_{\widehat{D}_4}(t; \boldsymbol{z}) = \sum_{p=0}^{\infty} \chi^{SO(8)}_{[0,p,0,0]}(\boldsymbol{z}) t^{2p}$$

The four U(1) topological symmetries enhance to SO(8).

- This is the Hilbert series of
 - the Higgs branch of SU(2) gauge theory with 4 flavours;
 - the reduced moduli space of 1 SO(8) instantons on \mathbb{C}^2 .

This agrees with the prediction of mirror symmetry.

Gluing the Coulomb branch Hilbert series

A number of quivers can be constructed from 'gluing' together basic building blocks.

The Coulomb branch Hilbert series can be computed as follows:

Ocompute the HS of each basic building block with 'background fluxes' n_F turned on for a global flavour symmetry G_F:

$$H_{G,G_F}(t;\boldsymbol{z};\boldsymbol{n}_F) = \sum_{\boldsymbol{m}\in\Gamma_{G^{\vee}}/W_{G^{\vee}}} t^{\Delta(\boldsymbol{m};\boldsymbol{n}_F)} \boldsymbol{z}^{J(\boldsymbol{m})} P_G(t;\boldsymbol{m}) ,$$

3 Glue each basic building block together via the common global symmetry G_F :

$$H(t; \boldsymbol{z}^{(1)}, \boldsymbol{z}^{(2)}, \ldots) = \sum_{\boldsymbol{n}_F \in \Gamma_{G_F^{\vee}}/W_{G_F^{\vee}}} t^{-\delta_{G_F}(\boldsymbol{n}_F)} P_{G_F}(t; \boldsymbol{n}_F) \prod_i H_{G,G_F}^{(i)}(t; \boldsymbol{z}^{(i)}; \boldsymbol{n}_F) ,$$

with $\delta_{G_F}(\boldsymbol{n}_F) = 2 \sum_{\boldsymbol{\alpha} \in \Delta_G^+} |\boldsymbol{\alpha}(\boldsymbol{m})|.$

Gluing the Coulomb branch Hilbert series

() The HS for each building block (1) - [2] with background fluxes $\boldsymbol{n} = (n_1, n_2)$ is

$$H_{(1)-[2]}(t;z;\boldsymbol{n}) = \sum_{m=-\infty}^{\infty} t^{|m-n_1|+|m-n_2|} z^m P_{U(1)}(t)$$

= $\frac{t^{n_1-n_2} \left(t^2 \left(z^{-n_1+n_2+1} - z^{n_1-n_2-1}\right) + z^{n_1-n_2+1} - z^{-n_1+n_2-1}\right)}{\left(z - \frac{1}{z}\right) \left(1 - \frac{t^2}{z^2}\right) (1 - t^2 z^2)}$

② Glue four copies of (1) - [2] together:

$$H_{\widehat{D}_4}(t;z_1,\ldots,z_4) = \sum_{n_1 \ge n_2 = 0} t^{-2(n_1 - n_2)} [P_{U(1)}(t)]^{-1} P_{U(2)}(t;n) \prod_{i=1}^4 H_{(1) - [2]}(t;z_i;n)$$
$$= \sum_{p=0}^\infty \chi_{[0,p,0,0]}^{SO(8)}(\boldsymbol{z}) t^{2p} .$$

Part III: 3d Sicilian theories and beyond!

Picture taken from http://en.wikipedia.org/wiki/Flag_of_Sicily Credit for the name: [Benini, Tachikawa, Wecht '09; Benini, Tachikawa, Xie '09]

3d Sicilian theories

- These are 3d theories obtained from the 6d (2,0) theory (of type A, D or E) compactified on S^1 times a Riemann surface with punctures.
 - For type A_{N-1} , each puncture is accompanied by a partition of N.

The partition $\boldsymbol{\rho} = (\rho_1, \rho_2, \ldots)$ induces an embedding of su(2) into su(N) such

$$\underbrace{N}_{N-\text{dim rep of } su(N)} = \underbrace{\rho_1 + \rho_2 + \dots}_{\text{dim of irreps of } su(2)}$$

• For type D_N , each puncture is specified by a partition ρ such that

$$2N = \underbrace{2N}_{2N \text{-dim rep of } so(2N)} = \underbrace{\rho_1 + \rho_2 + \dots}_{\text{dim of irreps of } su(2)}$$

subject to the condition that each even ρ_k appears even times: **D**-partition.

- ▶ For type *E*₆, see a recent paper [arXiv:1403.4604] by Chacaltana, Distler, Trimm.
- Upon the compactification, one may introduce a twist. This gives rise to other types of embedding and hence other types of partitions, e.g. *B* and *C* partitions.

[Chacaltana, Distler, Tachikawa '12, Chacaltana, Distler, Trimm '13]

$3d\ {\rm Sicilian}\ {\rm theories}$

Given a puncture ρ associated with group H, there is a global symmetry G_ρ associated with it. Let r_k be the number of times that k appears in the partition ρ.

$$G_{\boldsymbol{\rho}} = \begin{cases} S\left(\prod_{k} U(r_{k})\right) & H = U(N) \ ,\\ \prod_{k \text{ odd}} SO(r_{k}) \times \prod_{k \text{ even}} USp(r_{k}) & H = SO(2N+1) \text{ or } SO(2N) \ ,\\ \prod_{k \text{ odd}} USp(r_{k}) \times \prod_{k \text{ even}} SO(r_{k}) & H = USp(2N) \ . \end{cases}$$

For a Riemann surface with a collection of punctures {ρ₁, ρ₂,...}, the global symmetry is ∏_i G_{ρi}. This may enhance to a larger group.

- For a Sicilian theory with partitions ρ₁, ρ₂,..., ρ_n associtated with a *classical* group, its mirror theory admits a Lagrangian description.
- A mirror of the theory associated with a sphere with punctures {ρ₁, ρ₂,...}
 = a quiver theory formed by gluing basic building blocks, T_{ρ1}(G), T_{ρ2}(G),..., via their common symmetry G/Z(G), with Z(G) the centre of G.
- For a genus g Riemann surface, the mirror theory is the same but with g additional adjoint hypers under gauge group G.

The $T_{\rho}(G)$ theory [Gaiotto-Witten ' 08]

- $T_{\rho}(G)$ is constructed as a boundary theory of $4d \mathcal{N} = 4$ SYM on a half-space, with the half-BPS boundary condition specified by $\rho : su(2) \to \text{Lie}(G^{\vee})$.
 - ρ can be classified, up to conjugation, by the nilpotent orbits of $\operatorname{Lie}(G^{\vee})$.
- For a classical group G, $T_{\rho}(G)$ is a quiver theory.
- The quiver for $T_{\rho}(SU(N))$ is

$$[U(N)] - (U(N_1)) - (U(N_2)) - \cdots (U(N_d))$$

with $\rho = (N - N_1, N_1 - N_2, ..., N_{d-1} - N_d, N_d)$ and ρ is non-increasing: $N - N_1 \ge N_1 - N_2 \ge ... \ge N_{d-1} - N_d \ge N_d > 0.$

• A brane configuration [Hanany-Witten '97]:

ho is the set of linking numbers of each NS5-brane.

The $T_{\rho}(G)$ theory

- For G = SO(N), USp(2N), one can consider such a system with D3-branes on top of an appropriate O3-planes [Feng-Hanany '00; Gaiotto-Witten ' 08].
 The partition ρ is associated with the GNO dual group G[∨] of G.
- **Example:** For G = SO(5), $G^{\vee} = USp(4)$.

$T_{(4)}(SO(5)):$	[SO(5)]
$T_{(2,2)}(SO(5)):$	[SO(5)] - (USp(2)) - (O(1))
$T_{(2,1,1)}(SO(5)):$	[SO(5)] - (USp(2)) - (O(3))
$T_{(1,1,1,1)}(SO(5)):$	[SO(5)] - (USp(4)) - (O(3)) - (USp(2)) - (O(1))

Special case: ρ = (1, 1, ..., 1). The Higgs branch is a nilpotent orbit of the Lie algebra of G[∨], and the Coulomb branch is a nilpotent orbit of the Lie algebra of G.

The Coulomb branch of $T_{\rho}(G)$

- The monopole formula for the Coulomb branch Hilbert series works well in most cases for $T_{\rho}(G)$, except that
 - For an exceptional group G, the Lagrangian description (and quiver) is not available! No starting point for the monopole formula!
 - Por a theory such as

 $T_{(1,1,1,1)}(SO(5)): [SO(5)] - (USp(4)) - (O(3)) - (USp(2)) - (O(1))$

the monopole formula blows up to infinity, because the dimension $\Delta(m)$ for the monopole operator in USp(2) vanishes when $m \neq 0$:

'Bad theory' in the sense of [Gaiotto-Witten '08].

- In general, a theory $T_{\rho}(G)$ is 'bad' occurs if it contains
 - $U(N_c)$ gauge group with $N_f < 2N_c 1$;
 - $SO(N_c)$ gauge group with $N_f < N_c 1$;
 - $USp(2N_c)$ gauge group with $N_f < 2N_c + 1$.

A 'bad' theory does not flow to a standard IR critical point: the R-symmetry is not the one as can be seen in the UV. [Gaiotto-Witten '08]

The Coulomb branch of $T_{\rho}(G)$

- The monopole formula for the Coulomb branch Hilbert series works well in most cases for $T_{\rho}(G)$, except that
 - For an exceptional group G, the Lagrangian description (and quiver) is not available! No starting point for the monopole formula!
 - Por a theory such as

 $T_{(1,1,1,1)}(SO(5)): [SO(5)] - (USp(4)) - (O(3)) - (USp(2)) - (O(1))$

the monopole formula blows up to infinity, because the dimension $\Delta(m)$ for the monopole operator in USp(2) vanishes when $m \neq 0$: 'Bad theory' in the sense of [Gaiotto-Witten '08].

- In general, a theory $T_{\rho}(G)$ is 'bad' occurs if it contains
 - $U(N_c)$ gauge group with $N_f < 2N_c 1$;
 - $SO(N_c)$ gauge group with $N_f < N_c 1$;
 - $USp(2N_c)$ gauge group with $N_f < 2N_c + 1$.

A 'bad' theory does not flow to a standard IR critical point: the R-symmetry is not the one as can be seen in the UV. [Gaiotto-Witten '08]

The Hall-Littlewood formula for Coulomb branch of $T_{\rho}(G)$ [Cremonesi, Hanany, NM, Zaffaroni '14]

The HL formula for the Coulomb branch HS of $T_{\rho}(G)$:

 $H[T_{\boldsymbol{\rho}}(G^{\vee})](t;\boldsymbol{z};\boldsymbol{n}) = t^{\delta_{G^{\vee}}(\boldsymbol{n})}(1-t^2)^{r_G}K^G_{\boldsymbol{\rho}}(\boldsymbol{x};t)\Psi^{\boldsymbol{n}}_G(\boldsymbol{a}(t,\boldsymbol{x});t)$

• $\delta_{G^{\vee}}(n) := \sum_{\alpha \in \Delta_+(G^{\vee})} |\alpha(n)|.$

• The Hall-Littlewood (HL) polynomial associated with a group G:

$$\Psi_G^{\boldsymbol{n}}(x_1,\ldots,x_{r_G};t) := \sum_{w \in W_G} \boldsymbol{x}^{w(\boldsymbol{n})} \prod_{\boldsymbol{\alpha} \in \Delta_+(G)} \frac{1 - t \boldsymbol{x}^{-w(\boldsymbol{\alpha})}}{1 - \boldsymbol{x}^{-w(\boldsymbol{\alpha})}}$$

• The argument $oldsymbol{a}(t,oldsymbol{x})$ of the HL poly comes from the decomposition

$$\chi^G_{\mathbf{fund}}(a) = \sum_k \chi^{G_{\rho_k}}_{\mathbf{fund}}(\boldsymbol{x}_k) \chi^{SU(2)}_{\rho_k \text{-dim irrep}}(t)$$

where $G_{\rho_k} \subset G_{\rho}$ associated with the number k in ρ that appears r_k times.

• $K^G_{\rho}(\boldsymbol{x};t)$ is fixed by the decomposition of adjoint rep of G into those of $SU(2) \times G_{\rho}$:

$$\chi^G_{\mathbf{Adj}}(a) = \sum_{j \in \frac{1}{2}\mathbb{Z} \ge 0} \chi^{SU(2)}_{[2j]}(t) \chi^{G_{\boldsymbol{\rho}}}_{\mathbf{R}_j}(\boldsymbol{x}_j) \;, \quad K^G_{\boldsymbol{\rho}}(\boldsymbol{x};t) = \mathrm{PE}\left[\sum_{j \in \frac{1}{2}\mathbb{Z} \ge 0} t^{2j+2} \chi^{G_{\boldsymbol{\rho}}}_{\mathbf{R}_j}(\boldsymbol{x}_j)\right]$$

The Hall-Littlewood formula for Coulomb branch of $T_{\rho}(G)$ [Cremonesi, Hanany, NM, Zaffaroni '14]

The HL formula for the Coulomb branch HS of $T_{\rho}(G)$:

 $H[T_{\boldsymbol{\rho}}(G^{\vee})](t;\boldsymbol{z};\boldsymbol{n}) = t^{\delta_{G^{\vee}}(\boldsymbol{n})}(1-t^2)^{r_G}K^G_{\boldsymbol{\rho}}(\boldsymbol{x};t)\Psi^{\boldsymbol{n}}_G(\boldsymbol{a}(t,\boldsymbol{x});t)$

- $\delta_{G^{\vee}}(\boldsymbol{n}) := \sum_{\boldsymbol{\alpha} \in \Delta_+(G^{\vee})} |\boldsymbol{\alpha}(\boldsymbol{n})|.$
- The Hall-Littlewood (HL) polynomial associated with a group G:

$$\Psi_G^{\boldsymbol{n}}(x_1,\ldots,x_{r_G};t) := \sum_{w \in W_G} \boldsymbol{x}^{w(\boldsymbol{n})} \prod_{\boldsymbol{\alpha} \in \Delta_+(G)} \frac{1 - t \boldsymbol{x}^{-w(\boldsymbol{\alpha})}}{1 - \boldsymbol{x}^{-w(\boldsymbol{\alpha})}}$$

• The argument $\boldsymbol{a}(t, \boldsymbol{x})$ of the HL poly comes from the decomposition

$$\chi^{G}_{\mathbf{fund}}(\boldsymbol{a}) = \sum_{k} \chi^{G_{\rho_{k}}}_{\mathbf{fund}}(\boldsymbol{x}_{k}) \chi^{SU(2)}_{\rho_{k}\text{-dim irrep}}(t)$$

where $G_{\rho_k} \subset G_{\rho}$ associated with the number k in ρ that appears r_k times.

• $K^G_{\rho}(\boldsymbol{x};t)$ is fixed by the decomposition of adjoint rep of G into those of $SU(2) \times G_{\rho}$:

$$\chi^G_{\mathbf{Adj}}(a) = \sum_{j \in \frac{1}{2}\mathbb{Z} \ge 0} \chi^{SU(2)}_{[2j]}(t) \chi^{G\rho}_{\mathbf{R}_j}(x_j) \;, \quad K^G_\rho(x;t) = \operatorname{PE}\left[\sum_{j \in \frac{1}{2}\mathbb{Z} \ge 0} t^{2j+2} \chi^{G\rho}_{\mathbf{R}_j}(x_j)\right]$$

The Hall-Littlewood formula for Coulomb branch of $T_{\rho}(G)$ [Cremonesi, Hanany, NM, Zaffaroni '14]

The HL formula for the Coulomb branch HS of $T_{\rho}(G)$:

 $H[T_{\boldsymbol{\rho}}(G^{\vee})](t;\boldsymbol{z};\boldsymbol{n}) = t^{\delta_{G^{\vee}}(\boldsymbol{n})}(1-t^2)^{r_G}K^G_{\boldsymbol{\rho}}(\boldsymbol{x};t)\Psi^{\boldsymbol{n}}_G(\boldsymbol{a}(t,\boldsymbol{x});t)$

- $\delta_{G^{\vee}}(\boldsymbol{n}) := \sum_{\boldsymbol{\alpha} \in \Delta_+(G^{\vee})} |\boldsymbol{\alpha}(\boldsymbol{n})|.$
- The Hall-Littlewood (HL) polynomial associated with a group G:

$$\Psi_G^{\boldsymbol{n}}(x_1,\ldots,x_{r_G};t) := \sum_{w \in W_G} \boldsymbol{x}^{w(\boldsymbol{n})} \prod_{\boldsymbol{\alpha} \in \Delta_+(G)} \frac{1 - t \boldsymbol{x}^{-w(\boldsymbol{\alpha})}}{1 - \boldsymbol{x}^{-w(\boldsymbol{\alpha})}}$$

• The argument $oldsymbol{a}(t,oldsymbol{x})$ of the HL poly comes from the decomposition

$$\chi^{G}_{\mathbf{fund}}(\boldsymbol{a}) = \sum_{k} \chi^{G_{\rho_{k}}}_{\mathbf{fund}}(\boldsymbol{x}_{k}) \chi^{SU(2)}_{\rho_{k}\text{-dim irrep}}(t)$$

where $G_{\rho_k} \subset G_{\rho}$ associated with the number k in ρ that appears r_k times.

• $K^G_{\rho}(\boldsymbol{x};t)$ is fixed by the decomposition of adjoint rep of G into those of $SU(2) \times G_{\rho}$:

$$\chi_{\mathbf{Adj}}^{G}(\boldsymbol{a}) = \sum_{j \in \frac{1}{2}\mathbb{Z}_{\geq 0}} \chi_{[2j]}^{SU(2)}(t) \chi_{\mathbf{R}_{j}}^{G\rho}(\boldsymbol{x}_{j}) , \quad K_{\rho}^{G}(\boldsymbol{x};t) = \operatorname{PE}\left[\sum_{j \in \frac{1}{2}\mathbb{Z}_{\geq 0}} t^{2j+2} \chi_{\mathbf{R}_{j}}^{G\rho}(\boldsymbol{x}_{j})\right]$$

Coulomb branch of a 3d Sicilian theory of the A type

where

•
$$\Psi_{U(N)}^{\boldsymbol{n}}(\boldsymbol{x}t^{\boldsymbol{w}_{\boldsymbol{\rho}}};t) := \Psi_{U(N)}^{(n_1,\dots,n_N)}(x_1t^{\boldsymbol{w}_{\boldsymbol{\rho}_1}}, x_2t^{\boldsymbol{w}_{\boldsymbol{\rho}_2}},\dots, x_{d+1}t^{\boldsymbol{w}_{\boldsymbol{\rho}_{d+1}}};t).$$

• $t^{\boldsymbol{w}_r} = (t^{r-1}, t^{r-3}, \dots, t^{-(r-3)}, t^{-(r-1)}).$

 P_{U(N)}(t; n) is the generating function for the indep Casimirs in the residue group left unbroken by n. Agreement with the Hall-Littlewood limit of the superconformal index

- For genus g = 0, this formula agrees with the Hall-Littlewood index for the 4dSicilian theory with punctures $\{\rho_i\}_{i=1}^e$. [Gadde, Rastelli, Razamat, Yan '11]
 - ▶ This is equal to the Higgs branch HS for the corresponding 3d Sicilian theory.
 - Agrees with mirror symmetry.
- This Coulomb branch HS can also be computed for mirrors of *D*-, twisted *A* and twisted *D*-type Sicilian theories. Agree with the Higgs branch computations from [Lemos, Peelaers, Rastelli '12; Chacaltana, Distler, Tachikawa '12; Chacaltana, Distler, Trimm '13]

Application: The moduli spaces of $k \ G$ instantons on \mathbb{C}^2

The moduli spaces of $k \ G$ instantons on \mathbb{C}^2

- For a simple group G, such a moduli space can be realised from the Coulomb branch of the affine Dynkin diagram of G with a U(1) node attached at the imaginary root.
- If G is simply-laced (ADE), such Dynkin diagrams correspond to quiver diagrams with Lagrangian descriptions. Each node ℓ denotes a $U(\ell)$ group and each line denotes a hypermultiplet. [Intriligator-Seiberg '97]

$$SU(N):$$

$$SU(N):$$

$$SO(2N):$$

$$O(2N):$$

The moduli spaces of $k \ E_{6,7,8}$ instantons on \mathbb{C}^2 [Gaiotto-Razamat '12]

 $\begin{array}{cccc} \rho_1 & \rho_2 & \rho_3 \\ E_6 & (k,k,k) & (k,k,k) & (k,k,k-1,1) \\ E_7 & (k,k,k,k) & (2k,2k) & (k,k,k,k-1,1) \\ E_8 & (3k,3k) & (2k,2k,2k) & (k,k,k,k,k,k-1,1) \end{array}$

Non-simply laced groups

- These diagrams do not correspond to theories with known Lagrangian descriptions.
- For G₂ and F₄, the theories themselves and their mirrors have no known Lagrangian. Mirror symmetry does not help in these cases!
- Nevertheless, these quivers have brane configurations in terms of D3, NS5 and ON-planes. Magnetically charged BPS objects can be identified. [Hanany, Troost '01]

Non-simply laced groups

• Each node ℓ still represents the $U(\ell)$ root system. But the weights for the bi-fundamental hypers are modified as follows:

Quiver	Weights of the bi-fund rep of $U(k_1) imes U(k_2)$
$\circ _{k_1} \circ - \circ _{k_2}$	$\{m_i - n_j i = 1, \dots, k_1, j = 1, \dots, k_2\}$
$\mathop{\circ}_{k_1} \stackrel{\diamond}{\Rightarrow} \mathop{\circ}_{k_2}$	$\{2m_i - n_j i = 1, \dots, k_1, j = 1, \dots, k_2\}$
$\mathop{\circ}\limits_{k_1} \stackrel{\circ}{\Rightarrow} \mathop{\circ}\limits_{k_2}$	$\{3m_i - n_j i = 1, \dots, k_1, j = 1, \dots, k_2\}$

- Gluing technique still applies.
 - **Example:** The quiver for $k G_2$ instantons on \mathbb{C}^2

• Using the monopole/HL formula, one can compute the Coulomb branch HS for all quivers listed above.

Conclusions

- Study moduli spaces of $3d \ \mathcal{N} = 4$ gauge theories using Hilbert series.
- Understand quantum corrections to the Coulomb branch chiral rings using the **monopole formula**.
- Compute Coulomb branch Hilbert series of $T_{\rho}(G)$ and 3d Sicilian theories using the Hall-Littlewood formula.
- Provide more tests for 3d mirror symmetry.
- Connections between Coulomb branches and instanton moduli spaces
- \bullet Connections between Hilbert series and 5d instanton partition functions.
- Hilbert series for k G-instantons on \mathbb{C}^2 can be computed for any simple group G.