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Features of 3d N = 4 gauge theories

Two branches of the moduli space:

I Higgs branch: VEVs of scalars components of the hypermultiplets.

Classically exact.

I Coulomb branch: VEVs of scalars components of the vector multiplets.

Receives quantum corrections.

I Both are hyperKähler spaces.

R-symmetry: SU(2)H × SU(2)V .

A quantum description of the Coulomb branch involves monopole operators.

[Kapustin et al. from ’02]

Mirror symmetry exchanges the Higgs branch of one theory with the quantum

Coulomb branch of another theory, and vice-versa. [Intriligator-Seiberg ’97]

I As a working assumption, it’s very useful for studying moduli spaces of various theories.

I E.g. 3d Gaiotto’s type theories, whose mirrors have known Langrangians.

[Benini-Tachikawa-Xie ’10]

Noppadol Mekareeya (CERN) HS and HL KITP, April 1, 2014 3 / 34



Overview of the talk

1 The Higgs branch of 3d N = 4 gauge theories.

2 The Coulomb branch and its quantum description.

3 Hilbert series as a generating function of the gauge invariant quantities on the

moduli space.

4 3d Sicilian theory as a theory of class S (4d Gaiotto’s theory) compactified on S1.

I Their mirror theories and the constructions.

I The Coulomb branch of these mirror theories.

5 Connections with the moduli spaces of instantons.

I New technology in computing instanton partition functions.
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Part I: Higgs branch
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Higgs branch of a 3d N = 4 gauge theory

Translate the theory in 3d N = 2 language: The F and D terms give rise to the

moment map equations of the hyperKähler quotient.

A suitable description is in terms of gauge invariant quantities subject to the F term

relations.

A Hilbert series is a generating function that counts these gauge invariant quantities

wrt. a U(1) global symmetry that is a generator of SU(2)H and wrt. the flavour

symmetry.

For the Higgs branch Hilbert series, the global U(1) symmetry can be taken as a

generator of the SU(2)H R-symmetry.
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Example 1: U(1) gauge theory with N flavours

U(1) U(N)

In 3d N = 2 notation, the above quiver becomes

U(1) U(N)

Q

Q̃

ϕ

with the superpotential W = Q̃iϕQ
i.

The relevant F -term for the Higgs branch is ∂ϕW = Q̃iQ
i = 0.

The Higgs branch is parametrised by the gauge invariant quantities

M i
j = QiQ̃j with trM = M i

i = 0 .

They transform in the adjoint rep., Adj = [1, 0, . . . , 0, 1], of SU(N).

Thanks to the F -term, the square of matrix M2 = 0, i.e. M is nilpotent:

M i
jM

j
k = QiQ̃jQ

jQ̃k = 0 .
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Example 1: U(1) gauge theory with N flavours

The Higgs branch is

{M : M an N ×N matrix, trM = 0 and M2 = 0}.

This space is also

I the ‘reduced’ moduli space of 1 SU(N) instanton on C2;

I minimal nilpotent orbit of SU(N).

Any gauge invariant is a product of a matrix M , which carries charge 2 under the J3

generator of SU(2)H .

I The operators with charge p transform in SympAdj = Symp[1, 0, . . . , 0, 1] of SU(N).

I The (minimal) nilpotency kills all representations but [p, 0, . . . , 0, p] in SympAdj.

[e.g. Kronheimer ’90; Vinberg-Popov ’72; Garfinkle ’73; Gaiotto, Neitzke, Tachikawa ’08,

Benvenuti-Hanany-NM ’10]

The Higgs branch Hilbert series is

Hred. 1 SU(N) inst. C2(t;y) =
∞∑
p=0

χ
SU(N)

[p,0,...,0,p](y) t2p .
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Example 2: One G instanton on C2

The Hilbert series has a uniform expression for one instanton in any simple group G:

Hred. 1 G inst. C2(t;y) =
∞∑
p=0

χGp·Adj(y) t2p .

[Benvenuti-Hanany-NM ’10]

For an instanton moduli space, the Hilbert series has an interpretation of the

instanton contribution to the partition function of 5d N = 1 pure SYM with gauge

group G on S1 × R4. [Nekrasov-Okounkov ’ 03; Keller-NM-Song-Tachikawa ’11]

4d Nekrasov: With t = e−
1
2
β(ε1+ε2), x = e−

1
2
β(ε1−ε2), yi = e−βai ,

H
1 G inst. C2 (t; x;y) =

1

(1− tx)(1− tx−1)

∞∑
p=0

χ
G
p·Adj(y) t

2p
,

reduces to the Nekrasov partition function [Keller-NM-Song-Tachikawa ’11]

Z1 inst.(ε1, ε2,a) = −
1

ε1ε2

∑
γ∈∆l

1

(ε1 + ε2 + γ · a)(γ · a)
∏

γ∨·α=1, α∈∆(α · a)
,

where ∆ and ∆l are the sets of the roots and the long roots, and γ∨ = 2γ
γ·γ .
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Part II: Coulomb branch
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Coulomb branch of a 3d N = 4 gauge theory

A v-plet contains a gauge field Aµ and 3 real scalars; all in the adjoint rep. of the

gauge symmetry G. Combine the latter into a real scalar σ and a complex scalar ϕ.

Generic VEVs of σj (j = 1, . . . , rG) breaks the gauge group G to U(1)rG .

For each U(1) factor, Aµ can be dualised into a periodic scalar a.

We have chiral fields: exp
(

σj
g2(σ)

+ iaj
)

.

Quantum description of the Coulomb branch.

Replace

exp

(
σj

g2(σ)
+ iaj

)
−→ monopole operators Xj

A monopole operator for the gauge group G is specified by the magnetic fluxes

m = (m1, . . . ,mrG) at the insertion point.
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Coulomb branch of a 3d N = 4 gauge theory

The magnetic flux m in U(1)rG ⊂ G is labelled by a weight of the GNO dual group

G∨, modulo the Weyl transformations WG∨ .

Turning on the monopole flux m breaks G to a residual gauge symmetry Hm.

I Example: G = U(2), m = (m1,m2).

Up to a Weyl transformation, we can take m1 ≥ m2 > −∞.

Hm = U(2) if m1 = m2, and Hm = U(1)2 if m1 6= m2.

The monopole operator can be dressed by all possible products of ϕ that are

invariant under the action of Hm. This is a quantum description of the chiral ring.
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Coulomb branch of a 3d N = 4 gauge theory

A topological symmetry

A monopole operator may carry charge under a topological symmetry, which is the

centre of the gauge group G.

For G = U(Nc), there is a topological U(1)J symmetry, associated with the current

J = ∗F associated with the U(1) factor in U(Nc).

I A monopole op. with fluxes m carries charge m1 +m2 + . . .+mNc under U(1)J .

The topological symmetry (or a collection of them) can enhance to a larger

non-abelian symmetry.
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Coulomb branch Hilbert series

Operators on the Coulomb branch: Monopole operators dressed with powers of

scalars in the residual gauge group.

Count these operators with respect to a U(1) global symmetry, which is a generator

of SU(2)V and wrt. the topological U(1)J charges.

The monopole formula for the Coulomb branch HS: [Cremonesi, Hanany, Zaffaroni ’13]

H(t;z) =
∑

m∈ΓG∨/WG∨

t∆(m)zJ(m)PG(t;m) ,

I Fugacity t keeps track of the U(1) global symmetry.

I Fugacities z = (z1, z2, . . .) keep track of a collection of the U(1)J charges, J(m).

I PG(t;m) =
∏
i 1/(1− t2di ), with di the degrees of independent Casimirs of Hm.

I Dimension of monopole operators:

∆(m) =

 ∑
all hypers

∑
w: weights

of rep of each hyper

|w(m)|

− 2
∑
α∈∆+

G

|α(m)| .

[Gaiotto-Witten ’08; Kim ’09, Benna-Klebanov-Klose ’09, Bashkirov-Kapustin ’10]
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Example: Coulomb branch of the affine D4 quiver

U(2)

U(1)

U(1) U(1)

U(1)

n1, n2

u1

u2 u3

u4

There’s an overall U(1) that decouples. Can remove this from any node, say U(2).

The Coulomb branch Hilbert series:

H
D̂4

(t; z0, z1, . . . , z4)

=
∑

u1,...,u4∈Z

∑
n1≥n2=0

t−2|n1−n2|+
∑4
i=1

∑2
j=1 |ui−nj |

(
zn1+n2
0 zu1

1 . . . zu4
4

)
×

[PU(1)(t)]
−1PU(2)(t;n1, n2)[PU(1)(t)]

4

I PU(1)(t) = (1− t2)−1 and PU(2)(t;n1, n2) =

(1− t2)−2, n1 6= n2

(1− t2)−1(1− t4)−1 n1 = n2 .

I z0 keeps track of the topological charge for U(2) gauge group, and zi keep track of

topological charges for each U(1).
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Example: Coulomb branch of the affine D4 quiver

U(2)

U(1)

U(1) U(1)

U(1)

n1, n2

u1

u2 u3

u4

An overall U(1) ⇒ shift symmetry n1,2 → n1,2 + 2, u1,...,4 → u1,...,4 + 1.

This requires z2
0z1z2z3z4 = 1.

The power series in t admits an SO(8) character expansion:

HD̂4
(t;z) =

∞∑
p=0

χ
SO(8)

[0,p,0,0](z)t2p .

The four U(1) topological symmetries enhance to SO(8).

This is the Hilbert series of

I the Higgs branch of SU(2) gauge theory with 4 flavours;

I the reduced moduli space of 1 SO(8) instantons on C2.

This agrees with the prediction of mirror symmetry.
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Gluing the Coulomb branch Hilbert series

A number of quivers can be constructed from ‘gluing’ together basic building blocks.

Example:

+

1

1 1

1

2

2 2

2 −→ 2

1

1 1

1

The Coulomb branch Hilbert series can be computed as follows:

1 Compute the HS of each basic building block with ‘background fluxes’ nF turned on

for a global flavour symmetry GF :

HG,GF (t;z;nF ) =
∑

m∈ΓG∨/WG∨

t∆(m;nF )zJ(m)PG(t;m) ,

2 Glue each basic building block together via the common global symmetry GF :

H(t;z(1),z(2), . . .) =
∑

nF∈ΓG∨
F
/WG∨

F

t−δGF (nF )PGF (t;nF )
∏
i

H
(i)
G,GF

(t;z(i);nF ) ,

with δGF (nF ) = 2
∑
α∈∆+

G
|α(m)|.
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Gluing the Coulomb branch Hilbert series

+

1

1 1

1

2

2 2

2 −→ 2

1

1 1

1

1 The HS for each building block (1)− [2] with background fluxes n = (n1, n2) is

H(1)−[2](t; z;n) =

∞∑
m=−∞

t|m−n1|+|m−n2|zmPU(1)(t)

=
tn1−n2

(
t2
(
z−n1+n2+1 − zn1−n2−1

)
+ zn1−n2+1 − z−n1+n2−1

)(
z − 1

z

) (
1− t2

z2

)
(1− t2z2)

.

2 Glue four copies of (1)− [2] together:

HD̂4
(t; z1, . . . , z4) =

∑
n1≥n2=0

t−2(n1−n2)[PU(1)(t)]
−1PU(2)(t;n)

4∏
i=1

H(1)−[2](t; zi;n)

=
∞∑
p=0

χ
SO(8)

[0,p,0,0](z) t2p .
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Part III: 3d Sicilian theories and beyond!

Picture taken from http://en.wikipedia.org/wiki/Flag_of_Sicily

Credit for the name: [Benini, Tachikawa, Wecht ’09; Benini, Tachikawa, Xie ’09]

Noppadol Mekareeya (CERN) HS and HL KITP, April 1, 2014 19 / 34

http://en.wikipedia.org/wiki/Flag_of_Sicily


3d Sicilian theories

These are 3d theories obtained from the 6d (2, 0) theory (of type A, D or E)

compactified on S1 times a Riemann surface with punctures.

I For type AN−1, each puncture is accompanied by a partition of N .

The partition ρ = (ρ1, ρ2, . . .) induces an embedding of su(2) into su(N) such

N︸︷︷︸
N -dim rep of su(N)

= ρ1 + ρ2 + . . .︸ ︷︷ ︸
dim of irreps of su(2)

I For type DN , each puncture is specified by a partition ρ such that

2N︸︷︷︸
2N -dim rep of so(2N)

= ρ1 + ρ2 + . . .︸ ︷︷ ︸
dim of irreps of su(2)

subject to the condition that each even ρk appears even times: D-partition.

I For type E6, see a recent paper [arXiv:1403.4604] by Chacaltana, Distler, Trimm.

Upon the compactification, one may introduce a twist. This gives rise to other types

of embedding and hence other types of partitions, e.g. B and C partitions.

[Chacaltana, Distler, Tachikawa ’12, Chacaltana, Distler, Trimm ’13]
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3d Sicilian theories

Given a puncture ρ associated with group H, there is a global symmetry Gρ

associated with it. Let rk be the number of times that k appears in the partition ρ.

Gρ =


S
(∏

k U(rk)
)

H = U(N) ,∏
k odd SO(rk)×

∏
k even USp(rk) H = SO(2N + 1) or SO(2N) ,∏

k odd USp(rk)×
∏
k even SO(rk) H = USp(2N) .

ρ1

ρ2

ρ3

ρn−1
ρn

For a Riemann surface with a collection of punctures {ρ1,ρ2, . . .}, the global

symmetry is
∏
iGρi . This may enhance to a larger group.
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A mirror of a 3d Sicilian theory [Benini, Tachikawa, Xie ’10]

ρ1

ρ2

ρ3

ρn−1

ρn

G/Z(G)

Tρ1(G)

Tρ2 (G)

Tρ3 (G)

Tρn(G)
Tρn-1 (G)

mirror

For a Sicilian theory with partitions ρ1,ρ2, . . . ,ρn associtated with a classical

group, its mirror theory admits a Lagrangian description.

A mirror of the theory associated with a sphere with punctures {ρ1,ρ2, . . .}

= a quiver theory formed by gluing basic building blocks, Tρ1(G), Tρ2(G), . . ., via

their common symmetry G/Z(G), with Z(G) the centre of G.

For a genus g Riemann surface, the mirror theory is the same but with g additional

adjoint hypers under gauge group G.
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The Tρ(G) theory [Gaiotto-Witten ’ 08]

Tρ(G) is constructed as a boundary theory of 4d N = 4 SYM on a half-space, with

the half-BPS boundary condition specified by ρ : su(2)→ Lie(G∨).

I ρ can be classified, up to conjugation, by the nilpotent orbits of Lie(G∨).

For a classical group G, Tρ(G) is a quiver theory.

The quiver for Tρ(SU(N)) is

[U(N)]− (U(N1))− (U(N2))− · · · (U(Nd))

with ρ = (N −N1, N1 −N2, . . . , Nd−1 −Nd, Nd) and ρ is non-increasing:

N −N1 ≥ N1 −N2 ≥ . . . ≥ Nd−1 −Nd ≥ Nd > 0.

A brane configuration [Hanany-Witten ’97]:

3

7,8,9

D3

NS5

D5

N1 Nd-1 NdNn1n2n3
nN

ρ is the set of linking numbers of each NS5-brane.
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The Tρ(G) theory

For G = SO(N), USp(2N), one can consider such a system with D3-branes on top

of an appropriate O3-planes [Feng-Hanany ’00; Gaiotto-Witten ’ 08].

The partition ρ is associated with the GNO dual group G∨ of G.

Example: For G = SO(5), G∨ = USp(4).

T(4)(SO(5)) : [SO(5)]

T(2,2)(SO(5)) : [SO(5)]− (USp(2))− (O(1))

T(2,1,1)(SO(5)) : [SO(5)]− (USp(2))− (O(3))

T(1,1,1,1)(SO(5)) : [SO(5)]− (USp(4))− (O(3))− (USp(2))− (O(1))

Special case: ρ = (1, 1, . . . , 1). The Higgs branch is a nilpotent orbit of the Lie

algebra of G∨, and the Coulomb branch is a nilpotent orbit of the Lie algebra of G.
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The Coulomb branch of Tρ(G)

The monopole formula for the Coulomb branch Hilbert series works well in most

cases for Tρ(G), except that

1 For an exceptional group G, the Lagrangian description (and quiver) is not available!

No starting point for the monopole formula!

2 For a theory such as

T(1,1,1,1)(SO(5)) : [SO(5)]− (USp(4))− (O(3))− (USp(2))− (O(1))

the monopole formula blows up to infinity, because the dimension ∆(m) for the

monopole operator in USp(2) vanishes when m 6= 0:

‘Bad theory’ in the sense of [Gaiotto-Witten ’08].

In general, a theory Tρ(G) is ‘bad’ occurs if it contains

I U(Nc) gauge group with Nf < 2Nc − 1;

I SO(Nc) gauge group with Nf < Nc − 1;

I USp(2Nc) gauge group with Nf < 2Nc + 1.

A ‘bad’ theory does not flow to a standard IR critical point: the R-symmetry is not

the one as can be seen in the UV. [Gaiotto-Witten ’08]
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The Hall-Littlewood formula for Coulomb branch of Tρ(G)
[Cremonesi, Hanany, NM, Zaffaroni ’14]

The HL formula for the Coulomb branch HS of Tρ(G):

H[Tρ(G∨)](t; z;n) = tδG∨ (n)(1− t2)rGKG
ρ (x; t)ΨnG(a(t,x); t)

δG∨ (n) :=
∑
α∈∆+(G∨) |α(n)|.

The Hall-Littlewood (HL) polynomial associated with a group G:

ΨnG(x1, . . . , xrG ; t) :=
∑

w∈WG

xw(n)
∏

α∈∆+(G)

1− tx−w(α)

1− x−w(α)

The argument a(t,x) of the HL poly comes from the decomposition

χGfund(a) =
∑
k

χ
Gρk
fund(xk)χ

SU(2)
ρk-dim irrep(t)

where Gρk ⊂ Gρ associated with the number k in ρ that appears rk times.

KG
ρ (x; t) is fixed by the decomposition of adjoint rep of G into those of SU(2)×Gρ:

χ
G
Adj(a) =

∑
j∈ 1

2
Z≥0

χ
SU(2)

[2j]
(t)χ

Gρ
Rj

(xj) , K
G
ρ (x; t) = PE

 ∑
j∈ 1

2
Z≥0

t
2j+2

χ
Gρ
Rj

(xj)

 .

[cf. Gadde, Rastelli, Razamat, Yan ’11; NM, Song, Tachikawa ’12; Lemos, Peelaers, Rastelli ’12]Noppadol Mekareeya (CERN) HS and HL KITP, April 1, 2014 26 / 34



The Hall-Littlewood formula for Coulomb branch of Tρ(G)
[Cremonesi, Hanany, NM, Zaffaroni ’14]

The HL formula for the Coulomb branch HS of Tρ(G):

H[Tρ(G∨)](t; z;n) = tδG∨ (n)(1− t2)rGKG
ρ (x; t)ΨnG(a(t,x); t)

δG∨ (n) :=
∑
α∈∆+(G∨) |α(n)|.

The Hall-Littlewood (HL) polynomial associated with a group G:

ΨnG(x1, . . . , xrG ; t) :=
∑

w∈WG

xw(n)
∏

α∈∆+(G)

1− tx−w(α)

1− x−w(α)

The argument a(t,x) of the HL poly comes from the decomposition

χGfund(a) =
∑
k

χ
Gρk
fund(xk)χ

SU(2)
ρk-dim irrep(t)

where Gρk ⊂ Gρ associated with the number k in ρ that appears rk times.

KG
ρ (x; t) is fixed by the decomposition of adjoint rep of G into those of SU(2)×Gρ:

χ
G
Adj(a) =

∑
j∈ 1

2
Z≥0

χ
SU(2)

[2j]
(t)χ

Gρ
Rj

(xj) , K
G
ρ (x; t) = PE

 ∑
j∈ 1

2
Z≥0

t
2j+2

χ
Gρ
Rj

(xj)

 .
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Coulomb branch of a 3d Sicilian theory of the A type

Gluing: The Coulomb branch HS of a mirror of the Sicilian theory of the

AN−1 type on a genus g surface with e punctures {ρ1, . . . ,ρe}.

H[mirror g, {ρi}ei=1](t;x(1), . . . ,x(e))

=
∑

n1≥···≥nN−1≥0

t
(e+2g−2)

∑N−1
j=1 (N+1−2j)nj (1− t2)eN+1×

PU(N)(t;n1, . . . , nN−1, 0)
e∏
j=1

Kρj (x(j); t)Ψ
(n1,...,nN−1,0)

U(N)
(x(j)t

wρj ; t) ,

G/Z(G)

Tρ1(G)

Tρ2 (G)

Tρ3 (G)

Tρe(G)
Tρe-1 (G)

g adjoints

where

Ψn
U(N)

(xtwρ ; t) := Ψ
(n1,...,nN )
U(N)

(x1t
wρ1 , x2t

wρ2 , . . . , xd+1t
wρd+1 ; t).

twr = (tr−1, tr−3, . . . , t−(r−3), t−(r−1)).

PU(N)(t;n) is the generating function for the indep Casimirs in the residue group left

unbroken by n.
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Agreement with the Hall-Littlewood limit of the

superconformal index

ρ1

ρ2

ρ3

ρn−1
ρn

For genus g = 0, this formula agrees with the Hall-Littlewood index for the 4d

Sicilian theory with punctures {ρi}ei=1. [Gadde, Rastelli, Razamat, Yan ’11]

I This is equal to the Higgs branch HS for the corresponding 3d Sicilian theory.

I Agrees with mirror symmetry.

This Coulomb branch HS can also be computed for mirrors of D-, twisted A- and

twisted D-type Sicilian theories. Agree with the Higgs branch computations from

[Lemos, Peelaers, Rastelli ’12; Chacaltana, Distler, Tachikawa ’12; Chacaltana, Distler, Trimm ’13]
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Application:
The moduli spaces of k G instantons on C2
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The moduli spaces of k G instantons on C2

For a simple group G, such a moduli space can be realised from the Coulomb branch

of the affine Dynkin diagram of G with a U(1) node attached at the imaginary root.

If G is simply-laced (ADE), such Dynkin diagrams correspond to quiver diagrams

with Lagrangian descriptions. Each node ` denotes a U(`) group and each line

denotes a hypermultiplet. [Intriligator-Seiberg ’97]

SU(N) : −−
− ◦k −−−

◦
k
− ◦
k
· · · − ◦

k
− ◦

1

SO(2N) : ◦
k
−
◦ k
|
◦
2k
− ◦

2k
− · · · −

◦ k
|
◦
2k
− ◦
k
− ◦

1
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The moduli spaces of k E6,7,8 instantons on C2

[Gaiotto-Razamat ’12]

3k

2k

k

2k kk 2k 1

(a)

4k

3k

2k

2k k2k 1

k

3k

(b)

6k

4k

2k

3k 5k

(c)

4k 2k k 13k

ρ1 ρ2 ρ3

E6 (k, k, k) (k, k, k) (k, k, k − 1, 1)

E7 (k, k, k, k) (2k, 2k) (k, k, k, k − 1, 1)

E8 (3k, 3k) (2k, 2k, 2k) (k, k, k, k, k, k − 1, 1)
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Non-simply laced groups

BN : ◦
1
− ◦
k
−
◦ k
|
◦
2k
− ◦

2k
− · · · − ◦

2k︸ ︷︷ ︸
N−3 nodes

⇒ ◦
k

CN : ◦
1
−◦
k
⇒ ◦

k
− · · · − ◦

k︸ ︷︷ ︸
N nodes

⇐ ◦
k

G2 : ◦
1
− ◦
k
−◦

2k
V ◦

k

F4 : ◦
1
− ◦
k
− ◦

2k
−◦

3k
⇒ ◦

2k
− ◦
k

These diagrams do not correspond to theories with known Lagrangian descriptions.

For G2 and F4, the theories themselves and their mirrors have no known Lagrangian.

Mirror symmetry does not help in these cases!

Nevertheless, these quivers have brane configurations in terms of D3, NS5 and

ON -planes. Magnetically charged BPS objects can be identified. [Hanany, Troost ’01]
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Non-simply laced groups

Each node ` still represents the U(`) root system. But the weights for the

bi-fundamental hypers are modified as follows:

Quiver Weights of the bi-fund rep of U(k1)× U(k2)

◦
k1

− ◦
k2

{mi − nj | i = 1, . . . , k1, j = 1, . . . , k2}

◦
k1

⇒ ◦
k2

{2mi − nj | i = 1, . . . , k1, j = 1, . . . , k2}

◦
k1

V ◦
k2

{3mi − nj | i = 1, . . . , k1, j = 1, . . . , k2}

Gluing technique still applies.

I Example: The quiver for k G2 instantons on C2

◦
1
− ◦
k
−

2k︸ ︷︷ ︸
ρ1=(k,k−1,1)

+
2k

V ◦
k︸ ︷︷ ︸

ρ2=(k,k)

−→ ◦
1
− ◦
k
− ◦

2k
V ◦

k

Using the monopole/HL formula, one can compute the Coulomb branch HS for all

quivers listed above.
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Conclusions

Study moduli spaces of 3d N = 4 gauge theories using Hilbert series.

Understand quantum corrections to the Coulomb branch chiral rings using the

monopole formula.

Compute Coulomb branch Hilbert series of Tρ(G) and 3d Sicilian theories using the

Hall-Littlewood formula.

Provide more tests for 3d mirror symmetry.

Connections between Coulomb branches and instanton moduli spaces

Connections between Hilbert series and 5d instanton partition functions.

Hilbert series for k G-instantons on C2 can be computed for any simple group G.
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