$3 d \mathcal{N}=4$ Gauge Theories, Hilbert series and Hall-Littlewood Polynomials

Noppadol Mekareeya CERN

KITP program
April 1, 2014

Based on the following works:

- [arXiv:1403.0585, 1403.2384] with S. Cremonesi, A. Hanany, A. Zaffaroni
- [arXiv:1402.0016] with A. Dey, A. Hanany, P. Koroteev
- [arXiv:1205.4741] with A. Hanany and S. Razamat
- [arXiv:1111.5624] with C. Keller, J. Song and Y. Tachikawa
- [arXiv:1110.6203] with A. Hanany
- [arXiv:1005.3026] with S. Benvenuti and A. Hanany

Features of $3 d \mathcal{N}=4$ gauge theories

- Two branches of the moduli space:
- Higgs branch: VEVs of scalars components of the hypermultiplets.

Classically exact.

- Coulomb branch: VEVs of scalars components of the vector multiplets.

Receives quantum corrections.

- Both are hyperKähler spaces.
- R-symmetry: $S U(2)_{H} \times S U(2)_{V}$.
- A quantum description of the Coulomb branch involves monopole operators.
[Kapustin et al. from '02]
- Mirror symmetry exchanges the Higgs branch of one theory with the quantum Coulomb branch of another theory, and vice-versa. [Intriligator-Seiberg '97]
- As a working assumption, it's very useful for studying moduli spaces of various theories.
- E.g. 3d Gaiotto's type theories, whose mirrors have known Langrangians.
[Benini-Tachikawa-Xie '10]

Overview of the talk

(1) The Higgs branch of $3 d \mathcal{N}=4$ gauge theories.
(2) The Coulomb branch and its quantum description.
(3) Hilbert series as a generating function of the gauge invariant quantities on the moduli space.
(9) $3 d$ Sicilian theory as a theory of class \mathcal{S} ($4 d$ Gaiotto's theory) compactified on S^{1}.

- Their mirror theories and the constructions.
- The Coulomb branch of these mirror theories.
(9) Connections with the moduli spaces of instantons.
- New technology in computing instanton partition functions.

Part I: Higgs branch

Higgs branch of a $3 d \mathcal{N}=4$ gauge theory

- Translate the theory in $3 d \mathcal{N}=2$ language: The F and D terms give rise to the moment map equations of the hyperKähler quotient.
- A suitable description is in terms of gauge invariant quantities subject to the F term relations.
- A Hilbert series is a generating function that counts these gauge invariant quantities wrt. a $U(1)$ global symmetry that is a generator of $S U(2)_{H}$ and wrt. the flavour symmetry.
- For the Higgs branch Hilbert series, the global $U(1)$ symmetry can be taken as a generator of the $S U(2)_{H} R$-symmetry.

Example 1: $U(1)$ gauge theory with N flavours

- $\ln 3 d \mathcal{N}=2$ notation, the above quiver becomes

with the superpotential $W=\widetilde{Q}_{i} \varphi Q^{i}$.
- The relevant F-term for the Higgs branch is $\partial_{\varphi} W=\widetilde{Q}_{i} Q^{i}=0$.
- The Higgs branch is parametrised by the gauge invariant quantities

$$
M_{j}^{i}=Q^{i} \widetilde{Q}_{j} \quad \text { with } \quad \operatorname{tr} M=M_{i}^{i}=0 .
$$

They transform in the adjoint rep., $\mathbf{A d j}=[1,0, \ldots, 0,1]$, of $S U(N)$.

- Thanks to the F-term, the square of matrix $M^{2}=0$, i.e. M is nilpotent:

$$
M_{j}^{i} M_{k}^{j}=Q^{i} \widetilde{Q}_{j} Q^{j} \widetilde{Q}^{k}=0
$$

Example 1: $U(1)$ gauge theory with N flavours

- The Higgs branch is

$$
\left\{M: M \text { an } N \times N \text { matrix, } \operatorname{tr} M=0 \text { and } M^{2}=0\right\} .
$$

This space is also

- the 'reduced' moduli space of $1 S U(N)$ instanton on \mathbb{C}^{2};
- minimal nilpotent orbit of $S U(N)$.
- Any gauge invariant is a product of a matrix M, which carries charge 2 under the J_{3} generator of $S U(2)_{H}$.
- The operators with charge p transform in $\operatorname{Sym}^{p} \mathbf{A d j}=\operatorname{Sym}^{p}[1,0, \ldots, 0,1]$ of $S U(N)$.
- The (minimal) nilpotency kills all representations but $[p, 0, \ldots, 0, p]$ in $\mathrm{Sym}^{p} \mathbf{A d j}$. [e.g. Kronheimer '90; Vinberg-Popov '72; Garfinkle '73; Gaiotto, Neitzke, Tachikawa '08, Benvenuti-Hanany-NM '10]
- The Higgs branch Hilbert series is

$$
H_{\text {red. } 1 S U(N) \text { inst. } \mathbb{C}^{2}}(t ; \boldsymbol{y})=\sum_{p=0}^{\infty} \chi_{[p, 0, \ldots, 0, p]}^{S U(N)}(\boldsymbol{y}) t^{2 p}
$$

Example 2: One G instanton on \mathbb{C}^{2}

- The Hilbert series has a uniform expression for one instanton in any simple group G :

$$
H_{\text {red. } 1 G \text { inst. } \mathbb{C}^{2}}(t ; \boldsymbol{y})=\sum_{p=0}^{\infty} \chi_{p \cdot \mathbf{A d j}}^{G}(\boldsymbol{y}) t^{2 p}
$$

[Benvenuti-Hanany-NM '10]

- For an instanton moduli space, the Hilbert series has an interpretation of the instanton contribution to the partition function of $5 d \mathcal{N}=1$ pure SYM with gauge group G on $S^{1} \times \mathbb{R}^{4}$. [Nekrasov-Okounkov ' 03; Keller-NM-Song-Tachikawa '11]

reduces to the Nekrasov partition function

Example 2: One G instanton on \mathbb{C}^{2}

- The Hilbert series has a uniform expression for one instanton in any simple group G :

$$
H_{\text {red. } 1 G \text { inst. } \mathbb{C}^{2}}(t ; \boldsymbol{y})=\sum_{p=0}^{\infty} \chi_{p \cdot \mathbf{A d j}}^{G}(\boldsymbol{y}) t^{2 p}
$$

[Benvenuti-Hanany-NM '10]

- For an instanton moduli space, the Hilbert series has an interpretation of the instanton contribution to the partition function of $5 d \mathcal{N}=1$ pure SYM with gauge group G on $S^{1} \times \mathbb{R}^{4}$. [Nekrasov-Okounkov ' 03; Keller-NM-Song-Tachikawa '11]
- $4 d$ Nekrasov: With $t=e^{-\frac{1}{2} \beta\left(\epsilon_{1}+\epsilon_{2}\right)}, x=e^{-\frac{1}{2} \beta\left(\epsilon_{1}-\epsilon_{2}\right)}, y_{i}=e^{-\beta a_{i}}$,

$$
H_{1 G \text { inst. } \mathbb{C}^{2}}(t ; x ; \boldsymbol{y})=\frac{1}{(1-t x)\left(1-t x^{-1}\right)} \sum_{p=0}^{\infty} \chi_{p \cdot \mathbf{A d j}}^{G}(\boldsymbol{y}) t^{2 p},
$$

reduces to the Nekrasov partition function [Keller-NM-Song-Tachikawa '11]

$$
Z_{1 \text { inst. }}\left(\epsilon_{1}, \epsilon_{2}, \boldsymbol{a}\right)=-\frac{1}{\epsilon_{1} \epsilon_{2}} \sum_{\boldsymbol{\gamma} \in \Delta_{l}} \frac{1}{\left(\epsilon_{1}+\epsilon_{2}+\boldsymbol{\gamma} \cdot \boldsymbol{a}\right)(\boldsymbol{\gamma} \cdot \boldsymbol{a}) \prod_{\boldsymbol{\gamma}} \vee \cdot \boldsymbol{\alpha}=1, \boldsymbol{\alpha} \in \Delta}(\boldsymbol{\alpha} \cdot \boldsymbol{a}),
$$

where Δ and Δ_{l} are the sets of the roots and the long roots, and $\gamma^{\vee}=\frac{2 \gamma}{\gamma \cdot \gamma}$.

Part II: Coulomb branch

Coulomb branch of a $3 d \mathcal{N}=4$ gauge theory

- A v-plet contains a gauge field A_{μ} and 3 real scalars; all in the adjoint rep. of the gauge symmetry G. Combine the latter into a real scalar σ and a complex scalar φ.
- Generic VEVs of $\sigma_{j}\left(j=1, \ldots, r_{G}\right)$ breaks the gauge group G to $U(1)^{r_{G}}$.
- For each $U(1)$ factor, A_{μ} can be dualised into a periodic scalar a.
- We have chiral fields: $\quad \exp \left(\frac{\sigma_{j}}{g^{2}(\sigma)}+i a_{j}\right)$.

Quantum description of the Coulomb branch.

- Replace

$$
\exp \left(\frac{\sigma_{j}}{g^{2}(\sigma)}+i a_{j}\right) \quad \longrightarrow \quad \text { monopole operators } X_{j}
$$

- A monopole operator for the gauge group G is specified by the magnetic fluxes $\boldsymbol{m}=\left(m_{1}, \ldots, m_{r_{G}}\right)$ at the insertion point.

Coulomb branch of a $3 d \mathcal{N}=4$ gauge theory

- The magnetic flux \boldsymbol{m} in $U(1)^{r_{G}} \subset G$ is labelled by a weight of the GNO dual group G^{\vee}, modulo the Weyl transformations $W_{G^{\vee}}$.
- Turning on the monopole flux \boldsymbol{m} breaks G to a residual gauge symmetry $H_{\boldsymbol{m}}$.
- Example: $G=U(2), \boldsymbol{m}=\left(m_{1}, m_{2}\right)$.

Up to a Weyl transformation, we can take $m_{1} \geq m_{2}>-\infty$.

$$
H_{m}=U(2) \text { if } m_{1}=m_{2}, \text { and } H_{m}=U(1)^{2} \text { if } m_{1} \neq m_{2} .
$$

- The monopole operator can be dressed by all possible products of φ that are invariant under the action of H_{m}. This is a quantum description of the chiral ring.

Coulomb branch of a $3 d \mathcal{N}=4$ gauge theory

A topological symmetry

- A monopole operator may carry charge under a topological symmetry, which is the centre of the gauge group G.
- For $G=U\left(N_{c}\right)$, there is a topological $U(1)_{J}$ symmetry, associated with the current $J=* F$ associated with the $U(1)$ factor in $U\left(N_{c}\right)$.
- A monopole op. with fluxes \boldsymbol{m} carries charge $m_{1}+m_{2}+\ldots+m_{N_{c}}$ under $U(1)_{J}$.
- The topological symmetry (or a collection of them) can enhance to a larger non-abelian symmetry.

Coulomb branch Hilbert series

- Operators on the Coulomb branch: Monopole operators dressed with powers of scalars in the residual gauge group.
- Count these operators with respect to a $U(1)$ global symmetry, which is a generator of $S U(2)_{V}$ and wrt. the topological $U(1)_{J}$ charges.
- The monopole formula for the Coulomb branch HS:

$$
H(t ; \boldsymbol{z})=\sum_{\boldsymbol{m} \in \Gamma_{G} \vee / W_{G} \vee} t^{\Delta(\boldsymbol{m})} \boldsymbol{z}^{J(\boldsymbol{m})} P_{G}(t ; \boldsymbol{m})
$$

- Fugacity t keeps track of the $U(1)$ global symmetry.
- Fugacities $\%=\left(z_{1}, z_{2}, \ldots\right)$ keen track of a collection of the $U(1) J$ charges, $J(m)$
$\Rightarrow P_{G}(t ; m)=\prod_{i} 1 /\left(1-t^{2 d_{i}}\right)$, with d_{i} the degrees of independent Casimirs of H_{m}
- Dimension of monopole operators:

Coulomb branch Hilbert series

- Operators on the Coulomb branch: Monopole operators dressed with powers of scalars in the residual gauge group.
- Count these operators with respect to a $U(1)$ global symmetry, which is a generator of $S U(2)_{V}$ and wrt. the topological $U(1)_{J}$ charges.
- The monopole formula for the Coulomb branch HS:
[Cremonesi, Hanany, Zaffaroni '13]

$$
H(t ; \boldsymbol{z})=\sum_{\boldsymbol{m} \in \Gamma_{G} \vee / W_{G} \vee} t^{\Delta(\boldsymbol{m})} \boldsymbol{z}^{J(\boldsymbol{m})} P_{G}(t ; \boldsymbol{m})
$$

- Fugacity t keeps track of the $U(1)$ global symmetry.
- Fugacities $\boldsymbol{z}=\left(z_{1}, z_{2}, \ldots\right)$ keep track of a collection of the $U(1)_{J}$ charges, $\boldsymbol{J}(\boldsymbol{m})$.
- $P_{G}(t ; \boldsymbol{m})=\prod_{i} 1 /\left(1-t^{2 d_{i}}\right)$, with d_{i} the degrees of independent Casimirs of $H_{\boldsymbol{m}}$.
- Dimension of monopole operators:

$$
\Delta(\boldsymbol{m})=\left(\sum_{\substack{\text { all hypers } \\ \boldsymbol{w}: \text { weights } \\ \text { of rep of each hyper }}}|\boldsymbol{w}(\boldsymbol{m})|\right)-2 \sum_{\boldsymbol{\alpha} \in \Delta_{G}^{+}}|\boldsymbol{\alpha}(\boldsymbol{m})| .
$$

[Gaiotto-Witten '08; Kim '09, Benna-Klebanov-Klose '09, Bashkirov-Kapustin '10]

Example: Coulomb branch of the affine D_{4} quiver

- There's an overall $U(1)$ that decouples. Can remove this from any node, say $U(2)$.
- The Coulomb branch Hilbert series:

$$
\begin{aligned}
& H_{\widehat{D}_{4}}\left(t ; z_{0}, z_{1}, \ldots, z_{4}\right) \\
& =\sum_{u_{1}, \ldots, u_{4} \in \mathbb{Z}} \sum_{n_{1} \geq n_{2}=0} t^{-2\left|n_{1}-n_{2}\right|+\sum_{i=1}^{4} \sum_{j=1}^{2}\left|u_{i}-n_{j}\right|}\left(z_{0}^{n_{1}+n_{2}} z_{1}^{u_{1}} \ldots z_{4}^{u_{4}}\right) \times \\
& \\
& {\left[P_{U(1)}(t)\right]^{-1} P_{U(2)}\left(t ; n_{1}, n_{2}\right)\left[P_{U(1)}(t)\right]^{4}}
\end{aligned}
$$

- $P_{U(1)}(t)=\left(1-t^{2}\right)^{-1}$ and $P_{U(2)}\left(t ; n_{1}, n_{2}\right)= \begin{cases}\left(1-t^{2}\right)^{-2}, & n_{1} \neq n_{2} \\ \left(1-t^{2}\right)^{-1}\left(1-t^{4}\right)^{-1} & n_{1}=n_{2} .\end{cases}$
- z_{0} keeps track of the topological charge for $U(2)$ gauge group, and z_{i} keep track of topological charges for each $U(1)$.

Example: Coulomb branch of the affine D_{4} quiver

- An overall $U(1) \Rightarrow$ shift symmetry $n_{1,2} \rightarrow n_{1,2}+2, u_{1, \ldots, 4} \rightarrow u_{1, \ldots, 4}+1$. This requires $\quad z_{0}^{2} z_{1} z_{2} z_{3} z_{4}=1$.
- The power series in t admits an $S O(8)$ character expansion:

$$
H_{\widehat{D}_{4}}(t ; \boldsymbol{z})=\sum_{p=0}^{\infty} \chi_{[0, p, 0,0]}^{S O(8)}(\boldsymbol{z}) t^{2 p}
$$

The four $U(1)$ topological symmetries enhance to $S O(8)$.

- This is the Hilbert series of
- the Higgs branch of $S U(2)$ gauge theory with 4 flavours;
- the reduced moduli space of $1 S O(8)$ instantons on \mathbb{C}^{2}.

This agrees with the prediction of mirror symmetry.

Gluing the Coulomb branch Hilbert series

A number of quivers can be constructed from 'gluing' together basic building blocks.

Example:

The Coulomb branch Hilbert series can be computed as follows:
(1) Compute the HS of each basic building block with 'background fluxes' \boldsymbol{n}_{F} turned on for a global flavour symmetry G_{F} :

$$
H_{G, G_{F}}\left(t ; \boldsymbol{z} ; \boldsymbol{n}_{F}\right)=\sum_{\boldsymbol{m} \in \Gamma_{G} \vee / W_{G} \vee} t^{\Delta\left(\boldsymbol{m} ; \boldsymbol{n}_{F}\right)} \boldsymbol{z}^{J(\boldsymbol{m})} P_{G}(t ; \boldsymbol{m}),
$$

(2) Glue each basic building block together via the common global symmetry G_{F} :

$$
H\left(t ; \boldsymbol{z}^{(1)}, \boldsymbol{z}^{(2)}, \ldots\right)=\sum_{\boldsymbol{n}_{F} \in \Gamma_{G_{F}^{\vee}} / W_{G_{F}}} t^{-\delta_{G_{F}}\left(\boldsymbol{n}_{F}\right)} P_{G_{F}}\left(t ; \boldsymbol{n}_{F}\right) \prod_{i} H_{G, G_{F}}^{(i)}\left(t ; \boldsymbol{z}^{(i)} ; \boldsymbol{n}_{F}\right),
$$

$$
\text { with } \quad \delta_{G_{F}}\left(\boldsymbol{n}_{F}\right)=2 \sum_{\boldsymbol{\alpha} \in \Delta_{G}^{+}}|\boldsymbol{\alpha}(\boldsymbol{m})| .
$$

Gluing the Coulomb branch Hilbert series

(1) The HS for each building block (1) - [2] with background fluxes $\boldsymbol{n}=\left(n_{1}, n_{2}\right)$ is

$$
\begin{aligned}
H_{(1)-[2]}(t ; z ; \boldsymbol{n}) & =\sum_{m=-\infty}^{\infty} t^{\left|m-n_{1}\right|+\left|m-n_{2}\right|} z^{m} P_{U(1)}(t) \\
& =\frac{t^{n_{1}-n_{2}}\left(t^{2}\left(z^{-n_{1}+n_{2}+1}-z^{n_{1}-n_{2}-1}\right)+z^{n_{1}-n_{2}+1}-z^{-n_{1}+n_{2}-1}\right)}{\left(z-\frac{1}{z}\right)\left(1-\frac{t^{2}}{z^{2}}\right)\left(1-t^{2} z^{2}\right)} .
\end{aligned}
$$

(2) Glue four copies of $(1)-[2]$ together:

$$
\begin{aligned}
H_{\widehat{D}_{4}}\left(t ; z_{1}, \ldots, z_{4}\right) & =\sum_{n_{1} \geq n_{2}=0} t^{-2\left(n_{1}-n_{2}\right)}\left[P_{U(1)}(t)\right]^{-1} P_{U(2)}(t ; \boldsymbol{n}) \prod_{i=1}^{4} H_{(1)-[2]}\left(t ; z_{i} ; \boldsymbol{n}\right) \\
& =\sum_{p=0}^{\infty} \chi_{[0, p, 0,0]}^{S O(8)}(\boldsymbol{z}) t^{2 p}
\end{aligned}
$$

Part III: $3 d$ Sicilian theories and beyond!

Picture taken from http://en.wikipedia.org/wiki/Flag_of_Sicily Credit for the name: [Benini, Tachikawa, Wecht '09; Benini, Tachikawa, Xie '09]

$3 d$ Sicilian theories

- These are $3 d$ theories obtained from the $6 d(2,0)$ theory (of type A, D or E) compactified on S^{1} times a Riemann surface with punctures.
- For type A_{N-1}, each puncture is accompanied by a partition of N.

The partition $\boldsymbol{\rho}=\left(\rho_{1}, \rho_{2}, \ldots\right)$ induces an embedding of $s u(2)$ into $s u(N)$ such

$$
\underbrace{N}_{N-\operatorname{dim} \text { rep of } s u(N)}=\underbrace{\rho_{1}+\rho_{2}+\ldots}_{\text {dim of irreps of } s u(2)}
$$

- For type D_{N}, each puncture is specified by a partition ρ such that

$$
\underbrace{2 N}_{2 N \text {-dim rep of } s o(2 N)}=\underbrace{\rho_{1}+\rho_{2}+\ldots}_{\text {dim of irreps of } s u(2)}
$$

subject to the condition that each even ρ_{k} appears even times: D-partition.

- For type E_{6}, see a recent paper [arXiv:1403.4604] by Chacaltana, Distler, Trimm.
- Upon the compactification, one may introduce a twist. This gives rise to other types of embedding and hence other types of partitions, e.g. B and C partitions.
[Chacaltana, Distler, Tachikawa '12, Chacaltana, Distler, Trimm '13]

$3 d$ Sicilian theories

- Given a puncture $\boldsymbol{\rho}$ associated with group H, there is a global symmetry G_{ρ} associated with it. Let r_{k} be the number of times that k appears in the partition ρ.

$$
G_{\boldsymbol{\rho}}= \begin{cases}S\left(\prod_{k} U\left(r_{k}\right)\right) & H=U(N) \\ \prod_{k \text { odd }} S O\left(r_{k}\right) \times \prod_{k \text { even }} U S p\left(r_{k}\right) & H=S O(2 N+1) \text { or } S O(2 N) \\ \prod_{k \text { odd }} U S p\left(r_{k}\right) \times \prod_{k \text { even }} S O\left(r_{k}\right) & H=U S p(2 N)\end{cases}
$$

- For a Riemann surface with a collection of punctures $\left\{\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, \ldots\right\}$, the global symmetry is $\prod_{i} G_{\boldsymbol{\rho}_{i}}$. This may enhance to a larger group.

A mirror of a $3 d$ Sicilian theory

- For a Sicilian theory with partitions $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$ associtated with a classical group, its mirror theory admits a Lagrangian description.
- A mirror of the theory associated with a sphere with punctures $\left\{\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, \ldots\right\}$ $=$ a quiver theory formed by gluing basic building blocks, $T_{\boldsymbol{\rho}_{1}}(G), T_{\boldsymbol{\rho}_{2}}(G), \ldots$, via their common symmetry $G / Z(G)$, with $Z(G)$ the centre of G.
- For a genus g Riemann surface, the mirror theory is the same but with g additional adjoint hypers under gauge group G.
- $T_{\rho}(G)$ is constructed as a boundary theory of $4 d \mathcal{N}=4 \mathrm{SYM}$ on a half-space, with the half-BPS boundary condition specified by $\rho: s u(2) \rightarrow \operatorname{Lie}\left(G^{\vee}\right)$.
- ρ can be classified, up to conjugation, by the nilpotent orbits of $\operatorname{Lie}\left(G^{\vee}\right)$.
- For a classical group $G, T_{\rho}(G)$ is a quiver theory.
- The quiver for $T_{\rho}(S U(N))$ is

$$
[U(N)]-\left(U\left(N_{1}\right)\right)-\left(U\left(N_{2}\right)\right)-\cdots\left(U\left(N_{d}\right)\right)
$$

with $\boldsymbol{\rho}=\left(N-N_{1}, N_{1}-N_{2}, \ldots, N_{d-1}-N_{d}, N_{d}\right)$ and ρ is non-increasing: $N-N_{1} \geq N_{1}-N_{2} \geq \ldots \geq N_{d-1}-N_{d} \geq N_{d}>0$.

- A brane configuration [Hanany-Witten '97]:

ρ is the set of linking numbers of each NS5-brane.

The $T_{\rho}(G)$ theory

- For $G=S O(N), U S p(2 N)$, one can consider such a system with D3-branes on top of an appropriate O3-planes [Feng-Hanany '00; Gaiotto-Witten ' 08].

The partition ρ is associated with the GNO dual group G^{\vee} of G.

- Example: For $G=S O(5), G^{\vee}=U S p(4)$.

$$
\begin{aligned}
T_{(4)}(S O(5)): & {[S O(5)] } \\
T_{(2,2)}(S O(5)): & {[S O(5)]-(U S p(2))-(O(1)) } \\
T_{(2,1,1)}(S O(5)): & {[S O(5)]-(U S p(2))-(O(3)) } \\
T_{(1,1,1,1)}(S O(5)): & {[S O(5)]-(U S p(4))-(O(3))-(U S p(2))-(O(1)) }
\end{aligned}
$$

- Special case: $\boldsymbol{\rho}=(1,1, \ldots, 1)$. The Higgs branch is a nilpotent orbit of the Lie algebra of G^{\vee}, and the Coulomb branch is a nilpotent orbit of the Lie algebra of G.

The Coulomb branch of $T_{\rho}(G)$

- The monopole formula for the Coulomb branch Hilbert series works well in most cases for $T_{\rho}(G)$, except that
(1) For an exceptional group G, the Lagrangian description (and quiver) is not available! No starting point for the monopole formula!
(2) For a theory such as
$T_{(1,1,1,1)}(S O(5)):[S O(5)]-(U S p(4))-(O(3))-(U S p(2))-(O(1))$
the monopole formula blows up to infinity, because the dimension $\Delta(\boldsymbol{m})$ for the monopole operator in $U S p(2)$ vanishes when $\boldsymbol{m} \neq 0$:
'Bad theory' in the sense of [Gaiotto-Witten '08].
- In general, a theory $T_{\rho}(G)$ is 'bad' occurs if it contains
\because son
- USp $\left(2 N_{c}\right)$ gauge group with $N_{f}<2 N_{c}+1$

A 'bad' theory does not flow to a standard IR critical point: the R-symmetry is not
the one as can be seen in the UV. [Gaiotto-Witten '08]

The Coulomb branch of $T_{\rho}(G)$

- The monopole formula for the Coulomb branch Hilbert series works well in most cases for $T_{\rho}(G)$, except that
(1) For an exceptional group G, the Lagrangian description (and quiver) is not available! No starting point for the monopole formula!
(2) For a theory such as
$T_{(1,1,1,1)}(S O(5)):[S O(5)]-(U S p(4))-(O(3))-(U S p(2))-(O(1))$
the monopole formula blows up to infinity, because the dimension $\Delta(\boldsymbol{m})$ for the monopole operator in $U S p(2)$ vanishes when $\boldsymbol{m} \neq 0$:
'Bad theory' in the sense of [Gaiotto-Witten '08].
- In general, a theory $T_{\rho}(G)$ is 'bad' occurs if it contains
- $U\left(N_{c}\right)$ gauge group with $N_{f}<2 N_{c}-1$;
- $S O\left(N_{c}\right)$ gauge group with $N_{f}<N_{c}-1$;
- $\operatorname{USp}\left(2 N_{c}\right)$ gauge group with $N_{f}<2 N_{c}+1$.

A 'bad' theory does not flow to a standard IR critical point: the R-symmetry is not the one as can be seen in the UV. [Gaiotto-Witten '08]

The Hall-Littlewood formula for Coulomb branch of $T_{\rho}(G)$ [Cremonesi, Hanany, NM, Zaffaroni '14]

The HL formula for the Coulomb branch HS of $T_{\rho}(G)$:

$$
H\left[T_{\boldsymbol{\rho}}\left(G^{\vee}\right)\right](t ; \boldsymbol{z} ; \boldsymbol{n})=t^{\delta_{G} \vee(\boldsymbol{n})}\left(1-t^{2}\right)^{r_{G}} K_{\boldsymbol{\rho}}^{G}(\boldsymbol{x} ; t) \Psi_{G}^{\boldsymbol{n}}(\boldsymbol{a}(t, \boldsymbol{x}) ; t)
$$

- The Hall-Littlewood (HL) polynomial associated with a group G :
- The argument $a(t, x)$ of the HL poly comes from the decomposition

where $G_{\rho_{k}} \subset G_{\rho}$ associated with the number k in ρ that appears r_{k} times.
- $K_{\rho}^{G}(x, t)$ is fixed by the decomposition of adjoint ren of G into those of $S U(2) \times G_{\rho}$

The Hall-Littlewood formula for Coulomb branch of $T_{\rho}(G)$

 [Cremonesi, Hanany, NM, Zaffaroni '14]The HL formula for the Coulomb branch HS of $T_{\rho}(G)$:

$$
H\left[T_{\boldsymbol{\rho}}\left(G^{\vee}\right)\right](t ; \boldsymbol{z} ; \boldsymbol{n})=t^{\delta_{G} \vee(\boldsymbol{n})}\left(1-t^{2}\right)^{r_{G}} K_{\boldsymbol{\rho}}^{G}(\boldsymbol{x} ; t) \Psi_{G}^{\boldsymbol{n}}(\boldsymbol{a}(t, \boldsymbol{x}) ; t)
$$

- $\delta_{G^{\vee}}(\boldsymbol{n}):=\sum_{\boldsymbol{\alpha} \in \Delta_{+}\left(G^{\vee}\right)}|\boldsymbol{\alpha}(\boldsymbol{n})|$.
- The Hall-Littlewood (HL) polynomial associated with a group G :

$$
\Psi_{G}^{n}\left(x_{1}, \ldots, x_{r_{G}} ; t\right):=\sum_{w \in W_{G}} \boldsymbol{x}^{w(\boldsymbol{n})} \prod_{\boldsymbol{\alpha} \in \Delta_{+}(G)} \frac{1-t \boldsymbol{x}^{-w(\boldsymbol{\alpha})}}{1-\boldsymbol{x}^{-w(\boldsymbol{\alpha})}}
$$

- The argument $a(t, x)$ of the HL poly comes from the decomposition

where $G_{\rho_{k}} \subset G_{\rho}$ associated with the number k in ρ that appears r_{k} times.
- $K_{\rho}^{G}(x, t)$ is fixed by the decomposition of adioint ren of G into those of SU(2) $\times G_{\rho}$:

The Hall-Littlewood formula for Coulomb branch of $T_{\rho}(G)$

[Cremonesi, Hanany, NM, Zaffaroni '14]
The HL formula for the Coulomb branch HS of $T_{\rho}(G)$:

$$
H\left[T_{\boldsymbol{\rho}}\left(G^{\vee}\right)\right](t ; \boldsymbol{z} ; \boldsymbol{n})=t^{\delta_{G} \vee(\boldsymbol{n})}\left(1-t^{2}\right)^{r_{G}} K_{\boldsymbol{\rho}}^{G}(\boldsymbol{x} ; t) \Psi_{G}^{\boldsymbol{n}}(\boldsymbol{a}(t, \boldsymbol{x}) ; t)
$$

- $\delta_{G^{\vee}}(\boldsymbol{n}):=\sum_{\boldsymbol{\alpha} \in \Delta_{+}\left(G^{\vee}\right)}|\boldsymbol{\alpha}(\boldsymbol{n})|$.
- The Hall-Littlewood (HL) polynomial associated with a group G :

$$
\Psi_{G}^{n}\left(x_{1}, \ldots, x_{r_{G}} ; t\right):=\sum_{w \in W_{G}} \boldsymbol{x}^{w(\boldsymbol{n})} \prod_{\boldsymbol{\alpha} \in \Delta_{+}(G)} \frac{1-t \boldsymbol{x}^{-w(\boldsymbol{\alpha})}}{1-\boldsymbol{x}^{-w(\boldsymbol{\alpha})}}
$$

- The argument $\boldsymbol{a}(t, \boldsymbol{x})$ of the HL poly comes from the decomposition

$$
\chi_{\text {fund }}^{G}(\boldsymbol{a})=\sum_{k} \chi_{\text {fund }}^{G \rho_{k}}\left(\boldsymbol{x}_{k}\right) \chi_{\rho_{k} \text {-dim irrep }}^{S U(2)}(t)
$$

where $G_{\rho_{k}} \subset G_{\rho}$ associated with the number k in ρ that appears r_{k} times.

- $K_{\boldsymbol{\rho}}^{G}(\boldsymbol{x} ; t)$ is fixed by the decomposition of adjoint rep of G into those of $S U(2) \times G_{\boldsymbol{\rho}}$:

$$
\chi_{\mathbf{A d j}}^{G}(\boldsymbol{a})=\sum_{j \in \frac{1}{2} \mathbb{Z}_{\geq 0}} \chi_{[2 j]}^{S U(2)}(t) \chi_{\mathbf{R}_{j}}^{G \boldsymbol{\rho}}\left(\boldsymbol{x}_{j}\right), \quad K_{\boldsymbol{\rho}}^{G}(\boldsymbol{x} ; t)=\mathrm{PE}\left[\sum_{j \in \frac{1}{2} \mathbb{Z}_{\geq 0}} t^{2 j+2} \chi_{\mathbf{R}_{j}}^{G \boldsymbol{\rho}}\left(\boldsymbol{x}_{j}\right)\right]
$$

Coulomb branch of a $3 d$ Sicilian theory of the A type

Gluing: The Coulomb branch HS of a mirror of the Sicilian theory of the A_{N-1} type on a genus g surface with e punctures $\left\{\boldsymbol{\rho}_{1}, \ldots, \boldsymbol{\rho}_{e}\right\}$.
$H\left[\right.$ mirror $\left.g,\left\{\boldsymbol{\rho}_{i}\right\}_{i=1}^{e}\right]\left(t ; \boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(e)}\right)$

$$
\begin{aligned}
= & \sum_{n_{1} \geq \cdots \geq n_{N-1} \geq 0} t^{(e+2 g-2) \sum_{j=1}^{N-1}(N+1-2 j) n_{j}}\left(1-t^{2}\right)^{e N+1} \times \\
& P_{U(N)}\left(t ; n_{1}, \ldots, n_{N-1}, 0\right) \prod_{j=1}^{e} K_{\boldsymbol{\rho}_{j}}\left(\boldsymbol{x}^{(j)} ; t\right) \Psi_{U(N)}^{\left(n_{1}, \ldots, n_{N-1}, 0\right)}\left(\boldsymbol{x}^{(j)} t^{\boldsymbol{w}_{\boldsymbol{\rho}}} ; t\right)
\end{aligned}
$$

where

- $\Psi_{U(N)}^{\boldsymbol{n}}\left(\boldsymbol{x} t^{\boldsymbol{w}_{\boldsymbol{\rho}}} ; t\right):=\Psi_{U(N)}^{\left(n_{1}, \ldots, n_{N}\right)}\left(x_{1} t^{\boldsymbol{w}_{\rho_{1}}}, x_{2} t^{\boldsymbol{w}_{\rho_{2}}}, \ldots, x_{d+1} t^{\boldsymbol{w}_{\rho_{d+1}}} ; t\right)$.
- $t^{\boldsymbol{w}_{r}}=\left(t^{r-1}, t^{r-3}, \ldots, t^{-(r-3)}, t^{-(r-1)}\right)$.
- $P_{U(N)}(t ; \boldsymbol{n})$ is the generating function for the indep Casimirs in the residue group left unbroken by \boldsymbol{n}.

Agreement with the Hall-Littlewood limit of the superconformal index

- For genus $g=0$, this formula agrees with the Hall-Littlewood index for the $4 d$ Sicilian theory with punctures $\left\{\boldsymbol{\rho}_{i}\right\}_{i=1}^{e}$. [Gadde, Rastelli, Razamat, Yan '11]
- This is equal to the Higgs branch HS for the corresponding 3d Sicilian theory.
- Agrees with mirror symmetry.
- This Coulomb branch HS can also be computed for mirrors of D-, twisted A - and twisted D-type Sicilian theories. Agree with the Higgs branch computations from [Lemos, Peelaers, Rastelli '12; Chacaltana, Distler, Tachikawa '12; Chacaltana, Distler, Trimm '13]

Application:
The moduli spaces of $k G$ instantons on \mathbb{C}^{2}

The moduli spaces of $k G$ instantons on \mathbb{C}^{2}

- For a simple group G, such a moduli space can be realised from the Coulomb branch of the affine Dynkin diagram of G with a $U(1)$ node attached at the imaginary root.
- If G is simply-laced (ADE), such Dynkin diagrams correspond to quiver diagrams with Lagrangian descriptions. Each node ℓ denotes a $U(\ell)$ group and each line denotes a hypermultiplet. [Intriligator-Seiberg '97]

$$
\begin{aligned}
& S U(N) \text { : } \\
& S O(2 N) \text { : }
\end{aligned}
$$

The moduli spaces of $k E_{6,7,8}$ instantons on \mathbb{C}^{2}

[Gaiotto-Razamat '12]

	$\boldsymbol{\rho}_{1}$	$\boldsymbol{\rho}_{2}$	$\boldsymbol{\rho}_{3}$
E_{6}	(k, k, k)	(k, k, k)	$(k, k, k-1,1)$
E_{7}	(k, k, k, k)	$(2 k, 2 k)$	$(k, k, k, k-1,1)$
E_{8}	$(3 k, 3 k)$	$(2 k, 2 k, 2 k)$	$(k, k, k, k, k, k-1,1)$

Non-simply laced groups

$$
\begin{aligned}
& C_{N}: \quad{ }_{1}^{\circ}-\underset{k}{\circ} \Rightarrow \underbrace{\stackrel{0}{k}-\cdots-\underset{k}{\circ}}_{N \text { nodes }} \Leftarrow \stackrel{\circ}{k} \\
& G_{2}: \quad \underset{1}{\circ}-\underset{k}{\circ}-\underset{2 k}{\circ} \Rightarrow \stackrel{0}{\circ} \\
& F_{4}: \quad \underset{1}{\circ}-\underset{k}{\circ}-\underset{2 k}{\circ}-\underset{3 k}{\circ} \Rightarrow \underset{2 k}{\circ}-\underset{k}{\circ}
\end{aligned}
$$

- These diagrams do not correspond to theories with known Lagrangian descriptions.
- For G_{2} and F_{4}, the theories themselves and their mirrors have no known Lagrangian. Mirror symmetry does not help in these cases!
- Nevertheless, these quivers have brane configurations in terms of D3, NS5 and $O N$-planes. Magnetically charged BPS objects can be identified. [Hanany, Troost '01]

Non-simply laced groups

- Each node ℓ still represents the $U(\ell)$ root system. But the weights for the bi-fundamental hypers are modified as follows:

$$
\begin{aligned}
& \text { Quiver } \quad \text { Weights of the bi-fund rep of } U\left(k_{1}\right) \times U\left(k_{2}\right) \\
& \stackrel{\circ}{k_{1}}-\stackrel{\circ}{k_{2}} \quad\left\{m_{i}-n_{j} \mid i=1, \ldots, k_{1}, j=1, \ldots, k_{2}\right\} \\
& \underset{k_{1}}{\circ} \Rightarrow \underset{k_{2}}{\circ} \quad\left\{2 m_{i}-n_{j} \mid i=1, \ldots, k_{1}, j=1, \ldots, k_{2}\right\} \\
& \stackrel{\circ}{k_{1}} \Rightarrow \underset{k_{2}}{\circ} \quad\left\{3 m_{i}-n_{j} \mid i=1, \ldots, k_{1}, j=1, \ldots, k_{2}\right\}
\end{aligned}
$$

- Gluing technique still applies.
- Example: The quiver for $k G_{2}$ instantons on \mathbb{C}^{2}

$$
\underbrace{\stackrel{\circ}{1}-\stackrel{\circ}{k}-\square_{2 k}}_{\boldsymbol{\rho}_{1}=(k, k-1,1)}+\underbrace{\square}_{\boldsymbol{\rho}_{2}=(k, k)} \quad \longrightarrow \quad \begin{array}{l}
\circ \\
\hline
\end{array})-{ }_{k}^{\circ}-\underset{2 k}{\circ} \Rightarrow \stackrel{\circ}{\circ}
$$

- Using the monopole/HL formula, one can compute the Coulomb branch HS for all quivers listed above.

Conclusions

- Study moduli spaces of $3 d \mathcal{N}=4$ gauge theories using Hilbert series.
- Understand quantum corrections to the Coulomb branch chiral rings using the monopole formula.
- Compute Coulomb branch Hilbert series of $T_{\rho}(G)$ and $3 d$ Sicilian theories using the Hall-Littlewood formula.
- Provide more tests for $3 d$ mirror symmetry.
- Connections between Coulomb branches and instanton moduli spaces
- Connections between Hilbert series and $5 d$ instanton partition functions.
- Hilbert series for $k G$-instantons on \mathbb{C}^{2} can be computed for any simple group G.

