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Conformal bootstrap

The program of constructing conformal field theories using nothing but
conformal invariance and unitarity.

Has had important successes in the past few years in 3D and 4D
where crossing symmetry of 4-point functions has been used to bound
the dimensions of low-lying operators.

Was used with great success to study 2D CFTs in the 80’s
Much work focused onc< 1
Famously, the constraints imposed by conformal invariance are strong
enough to allow a complete classification in this case.

We'll be concerned with 2D CFTs with ¢ > 1.
Relatively poorly understood
mainly due to the complexity of the conformal blocks.
Worth understanding better
they include string compactifications, holographic CFTs, etc.



Abstract: We will obtain upper bounds on dimensions of the lowest few
primary operators, valid for all ¢,¢ > 1, and a lower bound on the number

of primaries of dimension less than % valid in the limit of large left- and

right-moving central charges c, C.

Primary tool: modular invariance of the partition function.
Method due to Cardy, used by Hellerman [0902.2790] to bound lowest primary.
Complementary to the approach of Ratazzi et. al. who used crossing symmetry
of 4-point functions - another form of modular invariance which generalizes
more easily to dimensions larger than 2.

“Complementary” because there are two necessary and sufficient
conditions for a CFT to be defined on all Riemann surfaces:

- crossing symmetry of 4-point functions on sphere

- modular invaiance of partition function and 1-pt fcns on the torus.
If these are satisfied, can glue elements together to make any surface.

(It's possible that our results could be strengthened by combining with data coming
from 4-point functions.)



Hellerman’s bound on A,

Start by reviewing Hellerman’s proof that the lowest nontrivial primary

must have dimension A; < %;+ 473695..

Partition function of a 2D CFT on torus:

Z(7,7) = tr (627ri'r(Lo—c/24)e—?wi%([_,-o—&/%l))

Hellerman makes the following assumptions about Z:
no chiral primary fields, other than the identity
so no extended chiral algebra, just Virasoro
vacuum is unique; cluster decomposition

c,c >1



In particular, ¢,¢ > 1 implies that the conformal blocks take a specific form,
so that we can write the partition function as

where

m=2 n=2
Za(rr) =g mgam [T - [Ta-a)
m=1 n=1

are the conformal blocks of the identity and other operators indexed by A.



The modular invariance condition we wish to impose is
Z(t,7)=Z(—1/1,—1/T)

The conformal blocks Z, are not modular invariant by themselves; the
condition that their sum be invariant is nontrivial and imposes constraints
on the conformal dimensions hy,.

Strategy: expand this condition around the point T =i and rewrite it as a
set of differential constraints on Z. For this purpose it is convenient to

change variables to s defined by 7 = i exp(s). Then modular invariance
becomes invariance under s = —s:

Z (iexp(s),zexp(5)) = Z(1exp(—s),iexp(—5))

i.,e. Zis an even function of s.
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statement that Z is an even function of s is equivalent to an infinite set of
differential constraints

Now restrict attention to purely imaginary 7 = i or purely real s. The
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Plugging in the expression for Z decomposed into conformal blocks, the pth
equation takes the form

fo(A4 + Eg)exp(—21A ) = —b,(Ep)

M)



The pth equation takes the form

fo(A4 + Ey)exp(—21A,) = —b,(Ep)

M)

where A=h+h ko = Eo + % — 112 - c;f

and f, and b, are polynomials of degree p:

folz) =1
fi(z) = (2mz) —

2
fa(z) = (27T::)2 —2(27z) + (g + 27‘20>

[W—
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f3('3) = (271'3)3 — 5 (27’1’2)2 -+ (g + 67’20) (271'2) — (E + 37’20)

etc...



Hellerman considers the ratio of the first two of these conditions, for
p=1,3:

> o1 fa(Aa + Eo)exp(—27A4)  bs(Eo)
S ot fi(Ap + Ep)exp(—271Ap)  bi(Ep)

Defining the RHS to be Fy(E,) and rearranging gives

ZZO:I I:f3(AA + EO) — FO(EO)fl(AA + Eo)] exp(—QwAA)
> 5o [1(Ap + Eo)exp(—2mAp)

=0

The expression in brackets is a cubic polynomial in A, , with a positive
leading coefficient. Let AT be its largest root, and suppose that A; > A7 .
Then since A, = A, > A}, every term in the numerator is positive, so the
LHS can not possibly vanish. Thus it must be that A; < A7 .



Maximizing A7 over all possibilities gives the result

A, < St L 4737
19

Comments:

- Valid forallc¢,¢ >1

- We have only used a fraction of the information available from
constraints on Z: only pure-imaginary t,nott - t+ 1,only p=1, 3.

- Can improve bound somewhat for finite ¢ by including higher-order
constraints, p=1,3,5,7,9 ... [Friedan & Keller 1307.6562]

- However, in all cases the bound asymptotes to c/12.
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New bounds

Similar methods may be used to derive bounds on A, , A5 .
The main difference in the derivation for A, is that we put all terms
involving A; on the RHS:

> o [3(Aa + EAO)G_QWAA f3(Ay + EO)G_Q”AI + b3(Ep)
> B J1I(Ap+ Ep)e™™5  fi(A1 + Ep)e ™1 4 by (Ep)

This leads to

221022 [f3(AA -+ Eo) — fl(AA + EO)FI] eXp(—‘Z'/TAA)

- = ()
> oo J1(Ap + Eg)exp(—2mAp)

and finally (after a bit of algebra)

Ct

A, < 1; 1 0.533845...




Likewise,

As < Cf;’* 1 0.879532...

e

Are we beginning to see a pattern?
A new wrinkle occurs for A, .
We can no longer prove such a bound under the assumption ¢;,; >

2, because the denominator vanishes when ¢;,; = 2.34..
However, if we assume ¢;,; > 2.5 then

Ct

1 1.0795...

‘

Ay <



Large n

[t turns out that to obtain bounds on A,, for larger n, we must keep raising
the lower limit for ¢;,; in order for our method to work. The lower limit
grows logarithmically with n:

12

Ctot Z ? lOg n

With this assumption, we can show that, asymptotically,

Ctot -
<
A, < o T O(1)

where the 0(1) term depends weakly on n.



The fact that all these bounds have the same form indicates that there are a

large number of operators with dimensions approximately less than Clt‘z’t.

In fact, the number N of such operators must be quite large:

T Ct ot
12

—_

log N > + O(1)

or

TUCtot

12

N 2 exp

up to a prefactor of order c. It's surprising to find so many low-lying states!

Or maybe not...



Holographic Interpretation

If the CFT has a gravitational dual, it becomes a statement about the
number of gravitational bound states, or more precisely, about the number
of BTZ black holes without boundary excitations (“primary”). And we know
there are a lot of these.

According to AdS/CFT, we identify

3L
G

c+c=
We also match the rest energy of the nth gravitational solution

A[n — An/L

(with no boundary excitations) with the dimension of the nth primary in
the CFT.



Then using the bound on A,, gives

1 D,
M, < +

"Gy L

where D,, is an 0(1) constant.

In the limit L — oo we get

n <
— 4Gy



Our CFT result implies that the number of states satisfying this inequality is
of order

T Ctot | gl
O(1) =
12 +00) 4G N

This is comparable to the entropy of a black hole of mass 1/4G) :

log N >

S(M =1 J=0) =

- 4GN?




Comments

It's suggestive that 1/4Gy is also the maximum possible ADM mass of any
localized configuration of 2+1 gravity coupled to matter, for A = 0. Thus
higher excitations of the CFT can not correspond to local excitations of an
effective gravitational theory, although they might correspond to extended
(stringy or braney) excitations.

Hellerman has advertised his bound on A, as a proof of a form of the Weak
Gravity Conjecture, according to which the lightest state in a quantum
theory of gravity can't be heavier than a certain value proportional to the
Planck mass. Along these lines, we have proved a significant extension
generalization of the WGC: that there must be an enormous number of
states lighter than a certain value proportional to the Planck mass.

To conclude, our lower bound on the number of primaries of dimension
c/12 is of a similar order to what we would expect on holographic grounds.
The difference is, our bound is universally valid, whether or not the CFT has
a gravitational dual.



Questions
1.What about the assumption of no nontrivial chiral primaries?

We believe it can be relaxed, and one can obtain similar bounds on the
dimensions of primaries, still of order c/12. A new feature is that
when extended chiral algebras are present, primary operators are
defined with respect to the full chiral algebra, including both the
Virasoro and current algebras. Our methods would give bounds on
Virasoro primaries. Since primaries of the full algebra are also Virasoro
primaries, they will also obey bounds of order ¢/12.

[f this turns out to be the case, our results will apply to any unitary,
modular invariant CFT.

2.Are our bounds optimal?
There’s a lot of additional information we haven’t used: full modular

invariance of torus, crossing symmetry of 4-point functions, etc. Maybe
one can do better by taking these into account.



3. Are there CFTs that saturate our bounds?

It's hard to find CFTs with large values of A, .
Examples with the largest known gaps are the Hohn-Witten “monster”
CFTs, proposed as duals of pure 3D gravity. Assuming they exist, these

CFTs have gap A, = 2—‘; + 1 and an exponential large density of states.
They are holomorphically factorized, and thus highly nongeneric.
There is no reason why non-holomorphically factorized CFTs should
not permit a larger gap, but on the other hand I don’t know of any

examples.



