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Gauge mediation of SUSY

Typical structure of GMSB:

Hidden
sector with

SUSY
SSM

Messengers

gauge
interactions

some
interactions

Good features:

• SUSY in SSM generated

dynamically.

• Predictive.

• No problems with flavor.

Bad feature:

• µ/Bµ problem.



General Gauge Mediation (GGM)(Meade, Seiberg & Shih, 2008)

Definition
In the limit gi → 0 we recover the SSM and a separate SUSY

sector.

• Allows us to distinguish model-specific from universal

predictions of GMSB.

• All soft masses are given by a small number of two-point

correlators of hidden-sector operators.

• Gives a description of the hidden sector dynamics without

referring to a Lagrangian.

• Produces mass sum rules (which could be verified

experimentally).



Superconformal OPE in GGM(Fortin, Intriligator & AS, 2011)

Idea:

• Assume superconformal symmetry in the UV.

• Use constraints of the symmetry on two- and three-point

functions to write down an OPE.

• Compute the Wilson coefficients (UV information).

• Express the soft terms in terms of hidden-sector operators

with non-zero vacuum expectation values

(IR information, incalculable).

The motivation is similar to the case of QCD, where quark and

gluon condensates contribute to the hadronic part of the vacuum

polarization of the photon.

The essential difference is that instead of asymptotic freedom we

use superconformal symmetry in the UV.

The UV theory may be strongly coupled.



Higgs sector(Kumar, Li, Poland & AS, 2014)

The same idea can be used to study soft parameters in the Higgs

sector.

These are also parametrized by two-point correlators of some

hidden-sector operators.(Komargodski & Seiberg; 2008)

Using asymptotic superconformal symmetry and the OPE we

developed a new language to talk about features of the Higgs

sector of the SSM.

We also find a new perspective on the µ/Bµ problem.
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CFTs

In conformal theories the form of the two- and three-point

functions of primary operators ([Kµ,O(0)] = 0) is determined by

the symmetry:

〈Osi (x1)Ōs̄ (x2)〉 = δi ̄
C

x2∆i
12

Is(x12), x12 ≡ x1 − x2,

〈Osii (x1)Osjj (x2)Oskk (x3)〉 =

cijk

x
∆i+∆j−∆k
12 x

∆i+∆k−∆j
13 x

∆j+∆k−∆i
23

Isi sj sk (x12, x13, x23).

Two and three-point functions of all the descendants can be

obtained from the above expressions with the action of Pµ = i∂µ.



OPE in CFTs

The OPE between conformal primaries is

Osii (x1)Osjj (x2) =
cijIsi sj (x12)

x2∆i
12

1

+
∑
k ′

ck
′
ij

x
∆i+∆j−∆k ′
12

[F k
′
ij (x12,P),Ok ′ ](sk ′ )(x2).

The two-point function is reproduced by the first term.

The three-point function is reproduced by the second term,

something that determines F .(Ferrara, Gatto & Grillo, 1973)

The contributions of all descendants in the OPE are thus

determined by the corresponding contributions of the primaries.



N = 1 SCFTs

In N = 1 SCFTs the story is a little different.

Similarly to CFTs, the two-point function of superconformal

primaries ([Sα,O(0)} = [S̄ α̇,O(0)} = 0) is fixed by the

symmetry:

〈Os(z1)Ōs̄(z2)〉 = CO
Iss̄(x12̄, x1̄2)

x12̄
2qx1̄2

2q̄
,

where

x1̄2 = −x21̄ = x12 − iθ1σθ̄1 − iθ2σθ̄2 + 2iθ2σθ̄1,

and

∆ = q + q̄, R = 2
3 (q − q̄).



N = 1 SCFTs

Unlike CFTs, the three-point function of superconformal primaries

is not fixed by the symmetry:(Park, 1997; Osborn, 1998)

〈Os11 (z1)Os22 (z2)Ōs̄33 (z3)〉 =

Is1s̄11 (x13̄, x1̄3)Is2s̄22 (x23̄, x2̄3)

x13̄
2q1x1̄3

2q̄1x23̄
2q2x2̄3

2q̄2
t̄ s̄3s̄1s̄2(X3,Θ3, Θ̄3).

X ,Θ and Θ̄ are convenient “coordinates”, with Θ ∼ θ and thus

nilpotent.

The function t̄ is arbitrary (up to some conditions). Its

appearance here is due to the fact that one can construct

superconformal invariants out of three points in superspace.

In conformal field theories one needs four points in space to

construct the cross ratios u and v .



OPE in SCFTs

Since the three-point function has a degree of arbitrariness, so

does the OPE.

Different classes of operators contribute to the OPE, depending

on the independent contributions to the function t̄(X ,Θ, Θ̄).

Perhaps surprisingly, if we take two superconformal primaries and

we know the contribution of another primary to their OPE, then

we do not necessarily know the contributions of the

superdescendants of that primary.

Sometimes we do, though, in particular in some cases where short

multiplets are considered.

We will be interested in N = 1 linear, chiral, and antichiral

superfields.



Soft masses in GGM

Starting with a linear multiplet,

J (z) = J(x) + iθj(x)− i θ̄̄(x)− θσµθ̄jµ(x) + derivatives,

where the derivatives are determined by

D2J = D̄2J = 0,

we get gaugino and sfermion masses by(Buican, Meade, Seiberg & Shih, 2008)

Mgaugino = πiα

∫
d4x 〈Q2(J(x)J(0))〉,

m2
sfermion =

iα2c2
8

∫
d4x ln(x2M2)〈Q̄2Q2(J(x)J(0))〉.



sOPE in GGM

Since momentum-space current-current two-point functions∫
d4x e−ip·x 〈J(x)J(0)〉 determine the soft masses, we will use the

OPE J(x)× J(0).

Assumption: Superconformal symmetry in the UV, spontaneously

broken in the IR.

In an SCFT we know the form of the two- and three-point

functions involving two J ’s, and so we can write down the OPE

J(x)× J(0).

Then, we can act with Q2 and Q̄2Q2 to get expressions for

gaugino and sfermion masses.



Soft masses from the sOPE
We need

i

∫
d4x e−ip·xJ(x)J(0) =

∑
k

c̃kJJ(s)Ok(0), s = p2.

Compute the OPE coefficients and use a dispersion relation:

A(s) =
1

2πi

∫ ∞
s0

ds ′
DiscA(s ′)

s ′ − s =
1

π

∫ ∞
s0

ds ′
ImA(s ′)

s ′ − s .

s0

s



Soft masses from the sOPE

We find

Mgaugino ≈
∑
k

α Im[sdk/2 c̃kJJ(s)]

2dk−1dkMdk
〈Q2(Ok(0))〉,

m2
sfermion ≈ −

∑
k

α2c2 Im[sdk/2 c̃kJJ(s)]

2dk+1πd2
kM

dk
〈Q̄2Q2(Ok(0))〉.

In minimal GMSB,

W = λXΦΦ̃, 〈X 〉 = X + θ2F ,

J = Φ†Φ− Φ̃Φ̃†,

these methods reproduce the full gaugino and sfermion masses at

one loop.



Higgs sector

Our starting point is the simple superpotential

W = λuHuOu + λdHdOd .

The couplings λu,d are assumed perturbative.

The operators Ou,d are SU(2) doublets with hypercharge

opposite to that of Hu,d respectively, and belong to a sector that

breaks SUSY.

Ou,d can be fundamental or composite operators in the hidden

sector.

We assume that there is no bare µ-term in the superpotential.



Higgs Lagrangian

L = ZuF †HuFHu + ZdF †HdFHd +

(
µ

∫
d2θHuHd + c.c.

)
− V (soft)

Higgs − V
(other)
Higgs ,

V
(soft)
Higgs = m2

HuH
†
uHu +m2

Hd
H†dHd + (BµHuHd + c.c.)

+ (AuHuF
†
Hu + AdHdF

†
Hd + c.c.),

V
(other)
Higgs = (a′uHuFHd + c.c.) + (a′dFHuHd + c.c.)

+ (γFHuFHd + c.c.).



Soft terms

We can integrate out the dynamics of the hidden sector and

generate the quadratic terms in the Higgs Lagrangian, with

µ =
i

8
λuλd

∫
d4x 〈Qα(Ou(x))Qα(Od(0))〉,

Bµ =
i

25
λuλd

∫
d4x 〈Q2(Ou(x))Q2(Od(0))〉,

Au,d = −
i

8
|λu,d |2

∫
d4x 〈Q2(Ou,d(x)Ōu,d(0))〉,

m2
Hu,d

= −
i

25
|λu,d |2

∫
d4x 〈Q2Q̄2(Ou,d(x)Ōu,d(0))〉,

and similar formulas for the remaining parameters.



Chiral-chiral three-point function(Vichi, 2011)

Analysis of the three-point function

〈Φ1(z1+)Φ2(z2+)ŌĪ (z3)〉 =
λ12O

x3̄1
2∆1x3̄2

2∆2
t̄ Ī (X̄3,Θ3, Θ̄3),

reveals three possible contributions to t̄:

1 t̄1(X̄3, Θ̄3) = 1, (∆O = ∆1 + ∆2, RO = R1 + R2)

2 t̄α̇1...α̇`
2α2...α`

(X̄3, Θ̄3) = Θ̄
(α̇1

3 X̄
α̇2

3α2
· · · X̄α̇`)3α`

,

(∆O = ∆1 + ∆2 + `− 1
2 , RO = R1 + R2 − 1),

3 t̄µ1...µ`
3 (X̄3, Θ̄3) = Θ̄2

3

X̄µ1
3 · · · X̄

µ`
3

X̄∆1+∆2−∆O+`+1
3

,

(∆O ≥ |∆1 + ∆2 − 3|+ `+ 2, RO = R1 + R2 − 2).



Chiral-chiral sOPE

Given the three classes of contributions to the three-point

function, there are three classes of operators that contribute to

the chiral-chiral OPE.

We are only interested in conformal primary operators that can

get a vev consistently with Poincaré invariance and SM gauge

invariance.

Such operators are not necessarily superconformal primaries.

In order to contain a scalar component an N = 1 superfield must

have j + ̄ = 0, 1
2 , 1.

So we will consider the superconformal primary operators

O1,0, Oα2,1, O3,0, Oµ3,1.



Chiral-antichiral three-point function(Poland & Simmons-Duffin, 2010)

Here we have a simple three-point function:

〈Φ(z1+)Φ̄(z2−)Ōµ1...µ`(z3)〉 =

λ12̄Oµ1...µ`

x2̄3
2∆Φx3̄1

2∆Φ
X̄∆O−2∆Φ−`

3 X̄µ1
3 · · · X̄

µ`
3 .

All three-point functions of, say, the zero components of the first

two operators with various components of Ō are determined by

the coefficient of the three-point function

〈φ(x1)φ̄(x2)Ōµ1...µ`(x3)〉.

Here the unitarity bound is

∆O ≥ `+ 2.



Chiral-antichiral sOPE

The chiral-antichiral sOPE in this case is also particularly simple.

The only operators that can contribute have to have zero

R-charge.

Since the parameters we are interested in (Au,d and m2
Hu,d

) are

given by Q2 and Q2Q̄2 on the OPE, Ou,d(x)× Ōu,d(0), we only

need to consider superconformal primary scalar operators

O0.

Only the zero component of O0 is of interest.



µ

We need QαOu(x)×QαOd(0).

We start from the known expression for the three-point function

〈Ou(z1+)Od(z2+)ŌĪ (z3)〉, and we pick the θ1θ2 component.

We then further expand in θ3, θ̄3 and we can finally find

QαOu ×QαOd = cµ;1Q
2O1,0 + cµ;2Q

αO2,1α

+ cµ;3O3,0 + cµ;4[Q2Q̄2O3,0]p

+ cµ;5[QσµQ̄O
µ
3,1]p + · · · ,

Determining the coefficients cµ is rather complicated, especially

for the primaries in higher θ-components of O3,0 and Oµ3,1.

The complication arises from the presence of conformal

descendants.



Aside: Conformal primary norms
In order to complete this computation we need the projection of

the N = 1 superconformal two-point function to the conformal

subgroup.

We worked this out for scalar and spin-one operators.

For example,

〈[Q2Q̄2O]p(x)[Q2Q̄2O]†p(0)〉 =

212CO
qq̄(q − 1)(q̄ − 1)(q + q̄)(q + q̄ + 1)

(q + q̄ − 1)(q + q̄ − 2)

1

x2(q+q̄+2)
,

where

[Q2Q̄2O]p = Q2Q̄2O − 24 q̄(q̄ − 1)

(q + q̄ − 1)(q + q̄ − 2)
P2O

− 8
q̄ − 1

q + q̄ − 2
PµQσ

µQ̄O.



µ

QαOu ×QαOd = cµ;1Q
2O1,0 + cµ;2Q

αO2,1α

+ cµ;3O3,0 + cµ;4[Q2Q̄2O3,0]p

+ cµ;5[QσµQ̄O
µ
3,1]p + · · · ,

To find µ we need to Fourier-transform this and go to the zero

momentum limit.

The coefficients cµ;1 and cµ;2 have no x-dependence.

Assuming the simple analytic structure we saw before, it turns out

that Q2O1,0 and QαO2,1α do not actually contribute to the

µ-term.

One way to see this:

i

∫
d4x e−ip·x

1

(x2)ε
= π2 Γ(2− ε)

22ε−4Γ(ε)

1

(p2)2−ε .



µ

We can finally write

µ = λuλd(ĉµ;3〈O3,0〉+ ĉµ;4〈Q2Q̄2O3,0〉+ ĉµ;5〈QσµQ̄Oµ3,1〉),

with

ĉµ;3 =
i

8
čµ;3

∫
d4x e−ip·xx∆O3,0

−∆Ou−∆Od−1

∣∣∣∣
p→0

,

ĉµ;4 =
i

8
čµ;4

∫
d4x e−ip·xx∆O3,0

−∆Ou−∆Od+1

∣∣∣∣
p→0

,

ĉµ;5 =
i

8
čµ;5

∫
d4x e−ip·xx

∆Oµ
3,1
−∆Ou−∆Od

∣∣∣∣
p→0

.



Bµ

For Bµ we need the OPE Q2Ou(x)×Q2Od(0), i.e. we need to

look at the θ2
1θ

2
2 order of the three-point function

〈Ou(z1+)Od(z2+)ŌĪ (z3)〉.

The answer is

Bµ = λuλd ĉBµ〈Q2O3,0〉,

where

ĉBµ = −1
4 ĉµ;3.

This relation follows from

Q2(Qα(Ou(x))Qα(Od(0))) = −Q2(Ou(x))Q2(Od(0)).

Go to soft terms



Au,d and m2
Hu,d

From

〈Ou,d(z1+)Ōu,d(z2−)Ō0(z3)〉 = λOu,d Ōu,dO0

x2̄1
∆O0
−2∆Ou,d

x2̄3
∆O0x3̄1

∆O0

,

we can extract the OPE

Ou,d × Ōu,d = c iu,dO
u,d
0;i + · · · ,

and obtain

Au,d = |λu,d |2ĉAu,d 〈Q
2Ou,d0 〉,

m2
Hu,d

= |λu,d |2ĉm2
Hu,d

〈Q2Q̄2Ou,d0 〉,

with

ĉm2
Hu,d

= 1
4 ĉAu,d .



Summary of results

We have found expressions that allow us to determine the Higgs

parameters by identifying hidden-sector operators that can get a

vev.

µ : O3,0, Q
2Q̄2O3,0, QσµQ̄O

µ
3,1,

Bµ : Q2O3,0,

Au,d : Q2Ou,d0 ,

m2
Hu,d

: Q2Q̄2Ou,d0 .

Example: in a spurion model O3,0 = X †F †, O0 = X †X .

The soft parameters are determined at the messenger scale M.

To study their phenomenology we have to RG evolve them down

to the weak scale.



µ/Bµ problem
Electroweak symmetry breaking in the MSSM requires

Bµ ≈ µ2.

In gravity mediation this is achived by the Giudice–Masiero

mechanism:

1

MP

∫
d4θX †HuHd ,

1

M2
P

∫
d4θX †XHuHd .

In gauge mediation, however,

Bµ � µ2.

In the weakly-coupled example

W = λuHuΦ1Φ2 + λdHd Φ̃1Φ̃2 + λX (Φ1Φ̃1 + Φ2Φ̃2),

we can compute

Bµ ≈ 16π2µ2.



µ/Bµ problem

From our OPE analysis the problem in a weakly-coupled spurion

model is also clear:

µ ∼
cµ
M2
〈O3,0〉 ∼ cµ

F

M
,

Bµ ∼
cµ
M2
〈Q2O3,0〉 ∼ cµ

F 2

M2
,

and so
Bµ
µ2
∼ c−1

µ ∼ 16π2 � 1.

One way out is to find models where cµ ∼ 1, but that requires

strong coupling.

Another way out is to assume some dynamics between M and√
F that suppress Bµ and give Bµ ≈ µ2 at the weak scale.

(Conformal sequestering(Murayama, Nomura & Poland, 2007; Roy & Schmaltz, 2007))



µ/Bµ problem
An interesting direction to explore is if there are models where

O3,0 does not appear.

In that case µ is still generated by QσµQ̄O
µ
3,1:

µ ∼
F 2

M3
.

Au,d and m2
Hu,d

are generated at the messenger scale M.

Bµ is zero at the messenger scale, but it is generated by RG

runnning down to the weak scale:

Bµ ≈ µ(Mgaugino + A).

Then, at the weak scale,

Bµ
µ2
∼
Mgaugino + A

µ
∼
(
F

M2

)−1

> 1.



Summary
We used an OPE analysis to classify hidden-sector operators that

can generate soft parameters in the MSSM.

This approach offer a new perspective on the quadratic Higgs

Lagrangian, and elegantly explains known features of models

found in the literature.

We relied on superconformal symmetry in the UV, and also on

various assumptions on the analytic structure of the relevant

two-point functions.

Future work:

• Study effects of poles in the relevant correlation functions.

• Explore further the µ/Bµ problem.

• Study the quartic terms in the Higgs Lagrangian using similar

methods.

Thank you!
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BACKUP



a′u,d

a′u,d =
i

8
λuλd

∫
d4x 〈Qα(Ou,d(x)Qα(Od ,u(0)))〉.

We have the OPE

Qα(Ou,d ×QαOd ,u) = ca′u,d ;1
Q2O1,0 + ca′u,d ;2

QαO2,1α

+ ca′u,d ;3
[Q2Q̄2O3,0]p

+ ca′u,d ;4
[QσµQ̄O

µ
3,1]p + · · · .

We have exactly the same contributions as for µ, except, of

course, for the O3,0 contribution.

We can obtain

a′u,d = λuλd(ĉa′u,d ;3
〈Q2Q̄2O3,0〉+ ĉa′u,d ;4

〈QσµQ̄Oµ3,1〉).



Smallness of a′u,d
In the presence of singlets a′u,d is not soft.

Typically a′ is neglected because it comes out suppressed in most

cases.

This is easy to understand with our methods:

µ ∼
cµ
M2
〈O3,0〉 ∼ cµ

F

M
,

a′u,d ∼
ca′u,d
M4
〈Q2Q̄2O3,0〉 ∼ ca′u,d

F 2

M3
.

If, however, we assume that the operator that generates µ and

a′u,d is not O3,0 but rather QσµQ̄O
µ
3,1, then µ and a′u,d are of the

same order and both suppressed,

µ, a′u,d ∼
F 2

M3
.


