On QFT in dS
Victor Gorbenko

Part I: w. Leonardo Senatore 1911.00022
Part III: w. Lorenzo Di Pietro, Shota Komatsu

Why study QFT in $d S$?

- Applications to inflationary cosmology, e.g. (Panagopoulos, Silverstein 19)
- Some features of QFT correlators should be preserved when gravity is made dynamical.
- Understand relation between the wave function and correlators.
- For gun!

Part I: EFT approach and light fields.
cog. Starobinski ${ }^{184}$
$\mathcal{L}=(\partial \varphi)^{2}-V(\varphi)$ in rigid $d S_{d+1}$

$$
d s^{2}=-d t^{2}+e^{2 H t} d \vec{x}^{2}
$$

e.g. $V(e) \approx m^{2} \varphi^{2}+\lambda \varphi^{4}$
focus on $m^{2} \ll H^{2}, \lambda \ll 1$
Compute $\left\langle\varphi\left(\vec{x}_{1}, t\right) \ldots \varphi\left(\vec{x}_{n}, t\right)\right\rangle, a(t) x_{i j} \rightarrow \infty$
Diagrammatic calculation is hard, especially for $m \rightarrow 0$:

$$
\int e^{i \vec{k} \vec{x}} \longrightarrow \sim k^{-d+m^{2}}, k \rightarrow 0
$$

Instead, let us first compute the wave-function, IR divergences are understood:

$$
\Psi_{B D}[\varphi, \eta]=\left.Z_{E A d S}[\varphi, z]\right|_{z=i \eta} \quad d s^{2}=\frac{-d \eta^{2}+d \sum^{2}}{L_{A d S} \eta^{2} \eta^{2}}
$$

Perturbatively:

$$
\begin{aligned}
& \log \Psi_{\mathrm{BD}} \sum_{\eta \rightarrow 0} \frac{i}{\eta^{3}}\left(V(\varphi)+V^{\prime}(e)^{2}\right)+\ldots+ \\
& +\underbrace{\left.\varphi(x) \varphi(y)<O_{x} O_{y}\right\rangle+\varphi(x) \varphi(y) \varphi(z)\left\langle O_{x} O_{y} O_{z}\right\rangle}_{\log Z_{C R T}}+\ldots
\end{aligned}
$$

Correlators are integrals over sources:

$$
\left\langle\varphi\left(\vec{x}_{1}, \eta\right) \ldots \varphi\left(\vec{x}_{n}, \eta\right)\right\rangle=\int D \varphi(\vec{x}) \psi \psi^{*} \varphi\left(\vec{x}_{1}\right) \ldots \varphi\left(\vec{x}_{n}\right)
$$

This d-dimensional path int. is still IR div.:

$$
\rightarrow \longrightarrow \rightarrow \int \frac{d^{d} k}{k^{d-m^{2}}} \sim \frac{1}{m^{2}}
$$

However, let us split $\varphi=\varphi_{\ell}+\varphi_{s}$

$$
\begin{gathered}
\varphi_{l}=\int d k e^{i \vec{k} \cdot \vec{x}} \Omega_{\Lambda}(k) \varphi_{\vec{k}}, \quad \Lambda(t)=\varepsilon a(t) H, \\
\underbrace{i_{k}}_{\wedge(t)} \varphi_{l} \sim \frac{H}{\sqrt{m}}+\frac{H}{\lambda_{1}{ }^{1 / 4}} \gg \varphi_{s} \sim H
\end{gathered}
$$

Next, define n-point distributions:

$$
\begin{aligned}
P_{n}\left(\varphi_{1} \ldots \varphi_{n}, t\right) & =\int D \varphi(\vec{x}) \cap_{i} \delta\left(\varphi_{i}-\varphi_{l}\left(\vec{x}_{i}\right)\right) \psi \psi^{*}= \\
& =\left\langle\bigcap_{i} \delta\left(\varphi_{i}-\hat{\varphi}_{l}\left(\vec{x}_{i}, t\right)\right\rangle\right.
\end{aligned}
$$

P_{n} 's generate correlators of φ_{e}.
We still cannot compute them directly, but we can derive an equation they satisly:

$$
\begin{aligned}
\partial_{t} P_{n}\left(\varphi_{1} \ldots \varphi_{n}, t\right)= & \text { "Drift" }+ \text { "Diffusion" } \\
& \downarrow \\
& \partial_{+} \psi \psi^{*} \quad \delta\left(\varphi_{i}-\partial_{+} \varphi_{l}\left(\vec{x}_{i}\right)\right)
\end{aligned}
$$

Drill (Let us locus on P_{1}):

$$
\begin{gathered}
\partial_{+} \psi \psi^{*}=i a^{-3} \frac{\delta}{\delta \varphi}\left(\psi^{*} \frac{\delta}{\delta \varphi} \psi\right)+c . c . \\
i a^{-3} \frac{\delta}{\delta \varphi} \psi_{B D} \equiv \Pi(e) \psi_{B D}, \Pi(\varphi, x)=V^{\prime}(\varphi(x))+\ldots \\
\int D \varphi \delta\left(\varphi_{1}-\varphi_{e}\left(x_{1}\right)\right) \frac{\delta}{\delta \varphi}\left[\cap(e) \psi \psi^{*}\right]= \\
\left.=\frac{\partial}{\partial \varphi_{1}}<\Pi\left(\varphi, x_{1}\right)\right\rangle_{\varphi_{1}}
\end{gathered}
$$

We never need to Path-integrate over long fields:

$$
\left.\sim \lambda^{k} \int d \varphi_{2} \ldots d \varphi_{k}<\cap(e)\right\rangle_{\varphi_{1} \ldots \varphi_{k}}
$$

Alter some path-integral manipulations we get a set of PDE's:

$$
\begin{aligned}
\Gamma_{i} & =\frac{\partial^{2}}{\partial \varphi_{i}^{2}}+\frac{\partial}{\partial \varphi_{i}} V^{\prime}\left(\varphi_{i}\right)+O(\lambda) \\
\Gamma_{i j} & =\frac{\sin \varepsilon a x_{i j}}{2 a x_{i j}} \frac{\partial^{2}}{\partial \varphi_{i} \partial \varphi_{j}}+O(\lambda) \\
\partial_{+} P_{1}= & \underline{\Gamma_{1} P_{1}}+\lambda D_{12} P_{2}+\ldots \\
\partial_{+} P_{2}= & \left(\Gamma_{1}+\Gamma_{2}+\Gamma_{12}\right) P_{2}+\lambda D_{23} P_{3}+\ldots \\
P_{2}\left(\varphi_{1}, l_{2}, t\right) & I_{t \rightarrow-\infty}=P_{1}\left(\varphi_{1}\right) \cdot \delta\left(\varphi_{1}-\varphi_{2}\right)
\end{aligned}
$$

leading eqn agrees w. Starobinsky

Solving at the leading order amounts to finding Eigenvalues and Eigenfanctions of Γ :

$$
\begin{gathered}
\Gamma \varphi_{n}=\frac{\partial^{2}}{\partial \varphi^{2}} \Phi_{n}+\frac{\partial}{\partial \varphi}\left(V^{\prime} \varphi_{n}\right)=-\lambda_{n} \varphi_{n} \\
\left.\cdot \quad P_{1}^{e a}=\Phi_{0}=e^{-\frac{V\left(\varphi_{1}\right)}{H^{4}} \quad} \quad \begin{array}{ll}
\varphi^{4}: \lambda_{n} \sim \sqrt{\lambda} \\
\cdot & <\varphi\left(x_{1}\right) \varphi\left(x_{2}\right)>\sim\left(a x_{12}\right)^{-\lambda_{1}} \lambda_{n} \sim m^{2} / H^{2} \\
\cdot & <\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi_{n 31}^{2}\left(x_{3}\right)>0
\end{array}\right) \frac{C_{112}}{a x_{12}^{2 \lambda_{1}-\lambda_{2}} a x_{13}^{\lambda_{2}} a x_{23}^{\lambda_{2}}} \\
C_{112}=\int d \varphi \Phi_{1}^{2} \Phi_{2}
\end{gathered}
$$

t_{a}
$\left\{{ }^{3} \xrightarrow{3}\right.$ strongly coupled one-particle dynamics, Pi_{i}
short period of interaction through

$$
\begin{aligned}
& \vec{x} \\
& \partial_{+} P_{1}=\Gamma_{1} P_{1}+\lambda \underline{D_{12}} P_{2}+\ldots \\
& \partial_{+} P_{2}=\left(\Gamma_{1}+\Gamma_{2}+\underline{\Gamma_{12}}\right) P_{2}+\lambda \underline{D_{23}} P_{3}+\ldots \\
& \text { growth } \quad \Gamma_{i j}-\frac{\sin \sum a x_{i j}}{\varepsilon a x_{i j}} \underset{t \rightarrow \infty}{\longrightarrow}
\end{aligned}
$$

- $\left\langle\varphi_{s} \ldots \varphi_{s}\right\rangle_{\varphi_{e}}$ can be computed in P.T.,

$$
e^{-\frac{1}{\sqrt{\lambda}}} \ll \varepsilon \ll \sqrt{\lambda}, \varepsilon \text { dependence cancels. }
$$

- For $m^{4} \gg \lambda$ we get Id harmonic oscillator + pert. in λ corrections

Comments on gravitational backreaction We assume $V(e)$ does not dominate expansion, there is some other clock $x \equiv$ inflator.

Take $V(\varphi)=\lambda \varphi^{4}$,

$$
\varphi_{*} \gg H \lambda^{-\frac{1}{4}}
$$

This allows for $\sim \frac{M_{p e}^{2}}{H^{2}} e$-holdings Arkani-Hamed, Dubousky et.al.

$$
P \sim e^{-\frac{\lambda \varphi_{*}^{4}}{H^{4}}} \text {, but also }
$$

$$
\frac{\Delta H}{H} \sim \frac{\lambda \varphi_{*}^{4}}{H^{2} \mu_{p} e^{2}} \Rightarrow \Delta a \sim e^{\Delta H t_{*}}
$$

ant $t_{*} \sim \frac{1}{\lambda \varphi_{*}^{2}} \Rightarrow \Delta a \sim e^{\frac{\varphi_{*}^{2}}{\mu_{p e}}}$
So for $\varphi_{*} \gg M_{p e} \Delta a \gg 1$
(still $\Delta a / a<1$)

We can find the maximum of volume-weighted distribution:

$$
P_{\Delta} a \sim e^{-\frac{\lambda \varphi_{*}^{4}}{H^{4}}+\frac{\varphi_{*}^{2}}{\mu_{p} e^{2}}}
$$

Due to gravitational backreaction field distribution is very different.

- The effect is not there for $V=m^{2} \varphi^{2}$
- Formalism can be extended to include $\Delta a \gg 1$
- c.e. Goncharov, Linde, Mukhanov 187

$$
P \sim e^{\frac{M_{p} e^{4}}{V(e)}}
$$

Part II: Diagrammatic approach
It is convenint to use embedding coordinates:

$$
\begin{aligned}
& X \in R^{1, d+1}(-1,1 \ldots 1) \\
& X_{E A d s}^{2}=-1 \\
& X_{d s}^{2}=+1 \\
& P^{2}=0, \lambda P \equiv P \rightarrow \text { boundary }
\end{aligned}
$$

SO $(1, d+1)$ sym.
To compute correlators use "i n-in" formalism

$$
\langle o| e^{i H t} \varphi\left(t, x_{1}\right)_{\ldots} \varphi\left(t, x_{n}\right) e^{-i H t}|0\rangle
$$

Let's study Feynman rules for g φ^{3} theory

internal lines:

$$
G_{-}=\langle\bar{T} \varphi \rho\rangle
$$

$$
G_{++}=\langle T \varphi \varphi
$$

$$
G_{+-}=\langle\rho \varphi\rangle
$$

Bulk to boundary propagator: $\quad\left(D=\sqrt{m^{2}-\left(\frac{d}{2}\right)^{2}}\right)$

$$
\left(P \cdot X_{+}\right)^{-\frac{d}{2}+i D}, \quad X_{ \pm}=X(1 \pm i \varepsilon)
$$

Direct calculation even of these diagrams. is quite complicated.

However, one can use split representation:

$$
G_{+-}^{\nu}\left(x_{+}, Y_{-}\right)=\int d P\left(P \cdot X_{+}\right)^{-\frac{d}{2}+i D}\left(P \cdot Y_{-}\right)^{-\frac{d}{2}-i D}
$$

(It is slightly more complicated for G_{++}and G_{-})

(similar to Ads)

Diagrams factorize into + and - parts "glued" only along the boundary.

This is so because we could first compute the wave function:

$$
\langle\varphi \ldots \varphi\rangle=\int \Delta \varphi \psi \psi^{*} \varphi \ldots \varphi
$$

$$
\begin{gathered}
\int \quad \Delta \tilde{o}=d-\Delta_{0} \\
\left.d P<O_{1} O_{2} \widetilde{O}(P)><O(P) O_{3} O_{4}\right\rangle \sim \\
\sim \operatorname{con} \text { formal blocks. }
\end{gathered}
$$

So also in aS exchange diagrams can be expressed in terms of conformal blocks.
c. C. Sleight, Tar anna '19

Let us look closer at the boundary path integral:

$$
\begin{aligned}
& \log \Psi_{\mathrm{BD}} \underset{y \rightarrow 0}{ } \frac{i}{\eta^{3}}(\ldots)+\underbrace{\varphi(x) \varphi(y)\left\langle O_{x} O_{y}\right\rangle+\varphi(x) \varphi(y) \varphi(z)\left\langle O_{x} O_{y} O_{z}\right\rangle}_{\log Z_{C R T}}+\ldots \\
& \longrightarrow \longrightarrow\left\langle\widetilde{O}_{x} \widetilde{O}_{y}\right\rangle \\
& \Delta_{0}=d-\Delta_{0} \\
& =\left\langle\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right)\right\rangle=\int D \varphi(\vec{x}) \psi \psi^{*} \varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right)= \\
& =\int d y_{1} d y_{2} d y_{3}\left\langle O_{y_{1}} O_{y_{2}} O_{y_{3}}\right\rangle\left\langle\widetilde{O}_{y_{1}} \widetilde{O}_{x_{1}}\right\rangle\left\langle\widetilde{O}_{y_{2}} \widetilde{O}_{x_{2}}\right\rangle . \\
& \cdot\left\langle\widetilde{O}_{y_{3}} \widetilde{O}_{x_{3}}\right\rangle \sim\left\langle\widetilde{O}_{x_{1}} \widetilde{O}_{x_{2}} \widetilde{O}_{x_{3}}\right\rangle
\end{aligned}
$$

It appears that pert. theory is just doing conformal integrals!

Karateer, Kravchak, Simmons - Duggin '18

We know, however, that for $\lambda \varphi^{4}$ theory

$$
\begin{aligned}
& \left\langle O_{x} O_{y}\right\rangle \sim(x-y)^{-2 d+m^{2}}, \text { while } \\
& \langle\varphi(x) \varphi(y)\rangle \sim(x-y)^{-\lambda_{1}}, \quad \lambda_{1} \sim \sqrt{\lambda} \gg m^{2}
\end{aligned}
$$

So it cannot be just a shadow transform. The catch is that one- and two-point condormol integrals are divergent:

But, presumably, these are the only ones.

This, actually, resonates with the EFT approach where equation for the 2-point function determined everything.

Next, we want to compute the 2-point function in the diagrammatic approach and compare. We did it at large - N so lar:

$$
\begin{aligned}
& \mathcal{L}=\partial \varphi^{i} \partial \varphi^{i}-m^{2} \varphi^{i^{2}}+\frac{\lambda}{N}\left(\varphi^{i} \varphi^{i}\right)^{2}, i=1 \ldots N, \\
& \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma=\sigma .
\end{aligned}
$$

dominates at large $-N$, any λ.

To compute the "bubble" it is convenient to Wick rotate $d S \rightarrow S$

On the sphere it can be computed as a sum over spherical harmonics:

$$
\begin{aligned}
& \stackrel{\sigma}{\square}=\sum_{l=0}^{\infty} \frac{\Omega_{s}(\ell, 3)}{\lambda^{-1}+\frac{4 \pi}{\ell+1} B(l)} \quad \text { Maroll, Morrison '10 } \\
& \text { on } S_{3}, \quad B(\ell)=\frac{1}{16 \pi^{2}}+\cot (\pi \sigma) \frac{4\left(\frac{\ell}{2}-\sigma\right)-\psi\left(\frac{\ell}{2}+\sigma+2\right)}{16 \pi^{3}}
\end{aligned}
$$

Watson - Sommer Geld trans form:

$$
\begin{aligned}
& \langle\sigma(x) \sigma(y)\rangle=\oint_{\gamma} \frac{d l}{2 \pi i} g(l) \frac{\pi}{\sin \pi l}(-1)^{l} \Omega_{s}(l, \xi)= \\
& \left.=\sum_{l^{*}} \operatorname{res} \frac{\pi g(l)}{\sin \pi l} \Omega_{d s}(\eta, \xi)+\int_{-\infty}^{\infty} d \nu f\left(-\frac{d}{2}+i\right)\right) \Omega_{d s}(\eta, \xi) .
\end{aligned}
$$

In this form the answer can be continued to $d S$. Poles determine the leading long-distance behavior. For $m^{2} \ll \sqrt{\lambda}, \lambda \ll 1$ we get

$$
\langle\sigma \sigma\rangle \approx 3^{-\Delta_{*}}
$$

$$
\Delta_{x}=4\left(\frac{\lambda}{2}\right)^{\frac{1}{2}}+3 \lambda+O\left(\lambda^{3 / 2}\right)
$$

This matches the leading Eigenvalue of the operator

$$
\begin{aligned}
& \rho^{(N)}=\frac{\partial^{2}}{\partial \varphi_{i} \partial \varphi_{i}}+N W\left(\frac{\varphi^{i} \varphi^{i}}{N}\right), \quad \Gamma^{(N)} \Phi_{1}=\lambda_{1} \Phi_{1} \\
& W(\rho)=\frac{\lambda^{2}}{\partial d^{2}} \rho^{3}-\frac{\lambda \rho}{4 d}-\frac{\bar{m}^{2}}{4 d}+\frac{\lambda \bar{m}^{2}}{4 d^{2}} \rho^{2}+\frac{3 \lambda^{3} \rho^{4}}{4 d^{2}}+O\left(\lambda^{3 / 2}\right),
\end{aligned}
$$

which we obtained in the EFT approach (at large N)

Technically, this match appears quite non-trivial

On unitarity in $d S$ and $A d S$.
There are two more manipulations we can do to the contour: rewrite it over halg-line $\operatorname{Im} l>0$, and push it further to the le gt:

$$
\begin{gathered}
\langle\sigma \sigma\rangle= \\
=f d l g(l) \Omega(l, \xi)
\end{gathered}
$$

In AdS sum over poles on the left would correspond to OPE expansion. In dS, however, "Operators" generically come in complex pairs. Instead, the integral over principal series must have a positive density, as a consequence of bulk unitatity.

Summary

- We developed an EFT formalism for correlators in QFTs in $d S$ space; computation of correlators reduces to a system of PDE'S; result agrees with diagrammatic calculation.
- Boundary correlators define a Euclidean CFT, unitarity is encoded through SO $(1, d+1)$ partial wave decomposition
- It will be interesting to see how bull causality is ericoded.
- The wave function also defines a CFT, which is very different, but is related via conformal integrals
- Inclusion of (perturbative) gravity appears possible.

