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Why quantum mechanics?

I Interested in emergent spacetime, black holes, quantum gravity, etc.;
field theory is inessential, QM is enough! e.g. SYK in context of
AdS2/CFT1, or D0-brane QM/BFSS.

I Wilsonian paradigm of QM vs. QFT: QM universal in UV, QFT
universal in IR:

S =

∫
ddx

[
(∂φ)2 + V (φ)

]
, [φ] =

d− 2

2

I Holographically, this implies exotic interiors,
e.g. dS centaur. [Anninos, Hofman; Anninos, Hofman,

Galante]

I To isolate exotic interiors, we want analog of TT deformation in QM
[Zamolodchikov, Smirnov; Cavaglia, Negro, Tateo, Szécsényi; McGough, Mezei, Verlinde]

I Any “composite” operator built out of T is well-defined; 1d TT is one
example of infinite class of integrable deformations H → f(H).
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Integrability of Hamiltonian deformations

Deform theory as H → f(H), restricting to monotonic f(H) expandable
around H, with Evac = 0. Key properties:

I f(H) well-defined composite operator.

I Conserved charges remain conserved.

I Eigenvectors remain eigenvectors; for finite system eigenvectors
coincide.

Finite-temperature correlators obtained as integral transform. Consider
Z(β):

K(β, β′) =
1

2πi

∫ i∞

−i∞
dEe−βf(E)+β′E =⇒ e−βf(E) =

∫ ∞
0
dβ′e−β

′EK(β, β′)

Since eigenfunctions unchanged, correlation functions treated similarly:

〈O(τ1) . . . O(τn)〉 =
∫ (n−1∏

i=1

dEi

)
〈0|O|E1〉 · · · 〈En−1|O|0〉e−

∑n−1
i=1 (τi−τi+1)Ei



Integrability of Hamiltonian deformations

Deform theory as H → f(H), restricting to monotonic f(H) expandable
around H, with Evac = 0. Key properties:

I f(H) well-defined composite operator.

I Conserved charges remain conserved.

I Eigenvectors remain eigenvectors; for finite system eigenvectors
coincide.

Finite-temperature correlators obtained as integral transform. Consider
Z(β):

K(β, β′) =
1

2πi

∫ i∞

−i∞
dEe−βf(E)+β′E =⇒ e−βf(E) =

∫ ∞
0
dβ′e−β

′EK(β, β′)

Since eigenfunctions unchanged, correlation functions treated similarly:

〈O(τ1) . . . O(τn)〉 =
∫ (n−1∏

i=1

dEi

)
〈0|O|E1〉 · · · 〈En−1|O|0〉e−

∑n−1
i=1 (τi−τi+1)Ei



Integrability of Hamiltonian deformations

Deform theory as H → f(H), restricting to monotonic f(H) expandable
around H, with Evac = 0. Key properties:

I f(H) well-defined composite operator.

I Conserved charges remain conserved.

I Eigenvectors remain eigenvectors; for finite system eigenvectors
coincide.

Finite-temperature correlators obtained as integral transform. Consider
Z(β):

K(β, β′) =
1

2πi

∫ i∞

−i∞
dEe−βf(E)+β′E =⇒ e−βf(E) =

∫ ∞
0
dβ′e−β

′EK(β, β′)

Since eigenfunctions unchanged, correlation functions treated similarly:

〈O(τ1) . . . O(τn)〉 =
∫ (n−1∏

i=1

dEi

)
〈0|O|E1〉 · · · 〈En−1|O|0〉e−

∑n−1
i=1 (τi−τi+1)Ei



Integrability of Hamiltonian deformations

Deform theory as H → f(H), restricting to monotonic f(H) expandable
around H, with Evac = 0. Key properties:

I f(H) well-defined composite operator.

I Conserved charges remain conserved.

I Eigenvectors remain eigenvectors; for finite system eigenvectors
coincide.

Finite-temperature correlators obtained as integral transform. Consider
Z(β):

K(β, β′) =
1

2πi

∫ i∞

−i∞
dEe−βf(E)+β′E =⇒ e−βf(E) =

∫ ∞
0
dβ′e−β

′EK(β, β′)

Since eigenfunctions unchanged, correlation functions treated similarly:

〈O(τ1) . . . O(τn)〉 =
∫ (n−1∏

i=1

dEi

)
〈0|O|E1〉 · · · 〈En−1|O|0〉e−

∑n−1
i=1 (τi−τi+1)Ei



Integrability of Hamiltonian deformations

Deform theory as H → f(H), restricting to monotonic f(H) expandable
around H, with Evac = 0. Key properties:

I f(H) well-defined composite operator.

I Conserved charges remain conserved.

I Eigenvectors remain eigenvectors; for finite system eigenvectors
coincide.

Finite-temperature correlators obtained as integral transform. Consider
Z(β):

K(β, β′) =
1

2πi

∫ i∞

−i∞
dEe−βf(E)+β′E =⇒ e−βf(E) =

∫ ∞
0
dβ′e−β

′EK(β, β′)

Since eigenfunctions unchanged, correlation functions treated similarly:

〈O(τ1) . . . O(τn)〉 =
∫ (n−1∏

i=1

dEi

)
〈0|O|E1〉 · · · 〈En−1|O|0〉e−

∑n−1
i=1 (τi−τi+1)Ei



Integrability of Hamiltonian deformations

Deform theory as H → f(H), restricting to monotonic f(H) expandable
around H, with Evac = 0. Key properties:

I f(H) well-defined composite operator.

I Conserved charges remain conserved.

I Eigenvectors remain eigenvectors; for finite system eigenvectors
coincide.

Finite-temperature correlators obtained as integral transform. Consider
Z(β):

K(β, β′) =
1

2πi

∫ i∞

−i∞
dEe−βf(E)+β′E =⇒ e−βf(E) =

∫ ∞
0
dβ′e−β

′EK(β, β′)

Since eigenfunctions unchanged, correlation functions treated similarly:

〈O(τ1) . . . O(τn)〉 =
∫ (n−1∏

i=1

dEi

)
〈0|O|E1〉 · · · 〈En−1|O|0〉e−

∑n−1
i=1 (τi−τi+1)Ei



AdS2 JT gravity at finite cutoff: 1d T T̄

Consider s-wave sector of AdS3 pure gravity:

SJT = − 1

16πG

∫
d2x
√
gΦ

(
R+

2

`2

)
− 1

8πG

∫
dτ
√
hΦ

(
K − 1

`

)
.

Flow ∂S(2d)/∂λ =
∫
d2xT T̄ in CFT2 is supposed to implement finite cutoff

in AdS3 [McGough, Mezei, Verlinde]. Dimensionally reduce flow to get

∂S(1d)

∂λ
=

∫
dτ

T 2

1/2− 2λT
.

Energy levels of deformed theory given as

∂E

∂λ
=

E2

1/2− 2λE
=⇒ H =

1

4λ

(
1−
√

1− 8H0λ
)
.

This f(H) leads to a computable kernel for λ < 0:

K(β, β′) =
β√

−8πλβ′3
exp

(
(β − β′)2

8β′λ

)

General dilaton gravity (needed for exotic interiors!) must be analyzed
directly using method of [Hartman, Kruthoff, ES, Tajdini]
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Quantum mechanics and 1d T T̄

Forget holography, apply this deformation to general QM theories! Consider

SE =

∫
dτ

(
1

2
q̇i

2 + V (qi)

)
, i = 1, . . . , N

under our flow. Deformed action found by using T = LE − ∂LE
∂q̇

q̇ to write a
flow equation which is solved by

SE =
1

4λ

∫
dτ

(
1−

√
(1− 4λq̇2

i )(1− 8λV (qi))

)
.

For λ < 0 this is a worldline action with cosmological constant and mass
m = 1 in a curved target space metric gµν = δµν(1− 8λV (qi)):

SE =
1

4λ

∫
dτ
(

1−
√
gµν ẋµẋν

)
, µ = 1, . . . , N + 1

Pick static gauge x0(τ) = τ , xi(τ) = 2
√
−λqi(τ). Sharp worldline

interpretation for λ < 0 (wrong-sign kinetic terms otherwise).
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1d T T̄ as coupling to worldline gravity

In 2d, the TT deformation is proposed to be equivalent to coupling the
theory to JT gravity in flat space [Dubovsky, Gorbenko, Mirbabayi].

Worldline actions for λ < 0 suggest similar connection. Proposal:

Zλ(β) =

∫
DeDXDΦ

Vol(Diff)
e−S0[e,Φ]−S[e,X;λ]

for S0[e,Φ] the undeformed theory with fields Φ(τ) on einbein e, τ ∼ τ + β′,

S[e,X] = − 1

8λ

∫ β′

0

e dτ
(
e−1Ẋ − 1

)2

.

X(τ + β′) = X(τ) +mβ compact scalar with winding m. Gauge fixing
e = 1 reduces the path integral over einbeins to an integral over β′:

Zλ(β) =
β√
−8πλ

∫ ∞
0

dβ′

β′3/2

∑
m∈Z

exp

(
1

8β′λ
(mβ − β′)2

)
Z(β′) .

Unit winding sector is the integral transform for Z(β′)!
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Applications: Schwarzian theory

Consider Schwarzian action

S = −C
∫
dτ {eiθ(τ), τ} = −C

∫
dτ

((
θ′′

θ′

)′
− 1

2

(
θ′′

θ′

)2

+
θ′2

2

)
.

Deformed action?

Compute deformed Hamiltonian and transform:

q1 = θ, q2 = θ′, p1 =
∂L

∂θ′
− d

du

(
∂L

∂θ′′

)
, p2 =

∂L

∂θ′′
.

The undeformed and deformed Hamiltonian are

H0 = p2
2q

2
2 +

C

2
q2
2 + p1q2 , H(λ) = f(H0).

Euclidean Lagrangian becomes

LE(λ) =
C

2

eφ

θ′
(φ′2 − θ′2) + f(ḟ−1(e−φθ′))− e−φθ′ḟ−1(e−φθ′),

where we have substituted q2 = eφ. As λ→ 0 latter terms enforce θ′ = eφ.

OTOC: linearize around saddle θ = τ + ε(τ), eφ = cfe
η(τ), compute

〈ε(τ)ε(0)〉 which feeds into 4-pt function. Lyapunov exponent unaffected.
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where we have substituted q2 = eφ. As λ→ 0 latter terms enforce θ′ = eφ.

OTOC: linearize around saddle θ = τ + ε(τ), eφ = cfe
η(τ), compute

〈ε(τ)ε(0)〉 which feeds into 4-pt function. Lyapunov exponent unaffected.



Applications: Schwarzian theory

This theory has a one-loop exact partition function [Stanford, Witten]

Z(β) =
α

β3/2
exp

(
π2

β

)
, ρ(E) =

α

π3/2
sinh

(
2π
√
E
)
.

ρ(E) determines potential for matrix model. [Saad, Shenker, Stanford]

Deforming
H → f(H) gives

ρλ(E) = ρ(f−1(E))
df−1(E)

dE
.

New matrix model descriptions from this spectral function? 1d T T̄ :

ρλ(E) =
α

π3/2
(1− 4λE) sinh

(
2π
√
E(1− 2λE)

)
.

One cut matrix model description? Deformed partition function can be
computed exactly by integral transform for λ < 0:

Zλ(β) =
αβ e−

β
4λ

√
−2πλ(β2 + 8π2λ)

K2

(
− 1

4λ

√
β2 + 8π2λ

)
.

Hagedorn divergence! Can be continued to λ > 0. Bulk calculation would
be a check of TT -ology at subleading order in 1/N .
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This theory has a one-loop exact partition function [Stanford, Witten]

Z(β) =
α

β3/2
exp

(
π2

β

)
, ρ(E) =

α

π3/2
sinh

(
2π
√
E
)
.

ρ(E) determines potential for matrix model. [Saad, Shenker, Stanford] Deforming
H → f(H) gives

ρλ(E) = ρ(f−1(E))
df−1(E)

dE
.

New matrix model descriptions from this spectral function? 1d T T̄ :

ρλ(E) =
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.
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Applications: SYK

H = iq/2
∑
ij

Ji1···iqψi1 · · ·ψiq , 〈Z〉J ∼
∫
dJi1···iq exp

(
−

J2
i1···iq

2〈J2
i1···iq 〉

)
Z(Ji1···iq )

Can deform then disorder average (only simple deformations manageable),
or disorder average then deform; for latter, we end with

SE,λ = N

(
− log Pf(∂τ − Σ) +

1

2

∫
dτ

[∫
dτ ′Σ(τ, τ ′)G(τ, τ ′) + 2f(H/N)

])
where

H = −iq J
2N

2q

∫
dτ ′G(τ, τ ′)q − E0 ,

with E0 a constant shift. Deforming microscopic SYK H + λH2 then
disorder averaging leads to a particular f(H). SD equations are∫

dτ ′G(τ, τ ′)Σ(τ ′, τ ′′)− ∂τG(τ, τ ′′) = −δ(τ − τ ′′) ,

Σ(τ, τ ′)− iqf ′(H/N)J2Gq−1(τ, τ ′) = 0 .
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Applications: SYK

Combining SD equations by solving for Σ gives

iqJ2f ′(H/N)

∫
dτ ′G(τ, τ ′)G(τ ′, τ ′′)q−1 − ∂τG(τ, τ ′′) = −δ(τ − τ ′′) .

Seems difficult because of the
∫
Gq factors in f ′(H/N), but it is formally

the same as the undeformed equations if we identify

J(λ)2 = J2f ′(H/N).

Our proposed solution to the Schwinger-Dyson equations is

G(τ, τ ′) = G0(τ, τ ′; J(λ)),

where we take the undeformed correlator and map J → J(λ). For
E0 = Evac we find J(λ) = J . Can see this from integral transforms as well.

Integral transforms work for H + λH2 with λ ∼ O(1), but no effective
action understanding.
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Comments

I Hamiltonian deformations H → f(H) are integrable.

I 1d TT is a Hamiltonian deformation that couples the theory to
worldline gravity.

I Can mix in additional commuting conserved charges, e.g.
H1 +H2 + λH1H2.

I Quantum mechanics is interesting due to the rich infrared!

I Duality for truncated theory?

I Holography for more general spacetimes through 1d TT?

I Questionable tangent to entertain my friends and connect directly to
“Geometry from the Quantum”: how do higher-form symmetries /
Eguchi-Kawai fit into the 1d framework, if at all? [ES]
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