1d $T \bar{T}$ and Hamiltonian deformations in quantum mechanics

Edgar Shaghoulian Cornell University

KITP: Geometry from the Quantum
January 14, 2020

[Gross, Kruthoff, Rolph, ES 1912.06132]
[Gross, Kruthoff, Rolph, ES 1907.04873]

Why quantum mechanics?

- Interested in emergent spacetime, black holes, quantum gravity, etc.; field theory is inessential, QM is enough! e.g. SYK in context of $\mathrm{AdS}_{2} / \mathrm{CFT}_{1}$, or D0-brane QM/BFSS.

Why quantum mechanics?

- Interested in emergent spacetime, black holes, quantum gravity, etc.; field theory is inessential, QM is enough! e.g. SYK in context of $\mathrm{AdS}_{2} / \mathrm{CFT}_{1}$, or D0-brane QM/BFSS.
- Wilsonian paradigm of QM vs. QFT: QM universal in UV, QFT universal in IR:

$$
S=\int d^{d} x\left[(\partial \phi)^{2}+V(\phi)\right], \quad[\phi]=\frac{d-2}{2}
$$

Why quantum mechanics?

- Interested in emergent spacetime, black holes, quantum gravity, etc.; field theory is inessential, QM is enough! e.g. SYK in context of $\mathrm{AdS}_{2} / \mathrm{CFT}_{1}$, or D0-brane QM/BFSS.
- Wilsonian paradigm of QM vs. QFT: QM universal in UV, QFT universal in IR:

$$
S=\int d^{d} x\left[(\partial \phi)^{2}+V(\phi)\right], \quad[\phi]=\frac{d-2}{2}
$$

- Holographically, this implies exotic interiors, e.g. dS centaur. [Anninos, Hofman; Anninos, Hofman, Galante]

Why quantum mechanics?

- Interested in emergent spacetime, black holes, quantum gravity, etc.; field theory is inessential, QM is enough! e.g. SYK in context of $\mathrm{AdS}_{2} / \mathrm{CFT}_{1}$, or D0-brane QM/BFSS.
- Wilsonian paradigm of QM vs. QFT: QM universal in UV, QFT universal in IR:

$$
S=\int d^{d} x\left[(\partial \phi)^{2}+V(\phi)\right], \quad[\phi]=\frac{d-2}{2}
$$

- Holographically, this implies exotic interiors, e.g. dS centaur. [Anninos, Hofman; Anninos, Hofman, Galante]

- To isolate exotic interiors, we want analog of $T \bar{T}$ deformation in QM [Zamolodchikov, Smirnov; Cavaglia, Negro, Tateo, Szécsényi; McGough, Mezei, Verlinde]

Why quantum mechanics?

- Interested in emergent spacetime, black holes, quantum gravity, etc.; field theory is inessential, QM is enough! e.g. SYK in context of $\mathrm{AdS}_{2} / \mathrm{CFT}_{1}$, or D0-brane QM/BFSS.
- Wilsonian paradigm of QM vs. QFT: QM universal in UV, QFT universal in IR:

$$
S=\int d^{d} x\left[(\partial \phi)^{2}+V(\phi)\right], \quad[\phi]=\frac{d-2}{2}
$$

- Holographically, this implies exotic interiors, e.g. dS centaur. [Anninos, Hofman; Anninos, Hofman, Galante]

- To isolate exotic interiors, we want analog of $T \bar{T}$ deformation in QM [Zamolodchikov, Smirnov; Cavaglia, Negro, Tateo, Szécsényi; McGough, Mezei, Verlinde]
- Any "composite" operator built out of T is well-defined; $1 \mathrm{~d} T \bar{T}$ is one example of infinite class of integrable deformations $H \rightarrow f(H)$.

Integrability of Hamiltonian deformations

Deform theory as $H \rightarrow f(H)$, restricting to monotonic $f(H)$ expandable around H, with $E_{\text {vac }}=0$. Key properties:

Integrability of Hamiltonian deformations

Deform theory as $H \rightarrow f(H)$, restricting to monotonic $f(H)$ expandable around H, with $E_{\text {vac }}=0$. Key properties:

- $f(H)$ well-defined composite operator.

Integrability of Hamiltonian deformations

Deform theory as $H \rightarrow f(H)$, restricting to monotonic $f(H)$ expandable around H, with $E_{\text {vac }}=0$. Key properties:

- $f(H)$ well-defined composite operator.
- Conserved charges remain conserved.

Integrability of Hamiltonian deformations

Deform theory as $H \rightarrow f(H)$, restricting to monotonic $f(H)$ expandable around H, with $E_{\text {vac }}=0$. Key properties:

- $f(H)$ well-defined composite operator.
- Conserved charges remain conserved.
- Eigenvectors remain eigenvectors; for finite system eigenvectors coincide.

Integrability of Hamiltonian deformations

Deform theory as $H \rightarrow f(H)$, restricting to monotonic $f(H)$ expandable around H, with $E_{\text {vac }}=0$. Key properties:

- $f(H)$ well-defined composite operator.
- Conserved charges remain conserved.
- Eigenvectors remain eigenvectors; for finite system eigenvectors coincide.
Finite-temperature correlators obtained as integral transform. Consider $Z(\beta)$:

$$
K\left(\beta, \beta^{\prime}\right)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} d E e^{-\beta f(E)+\beta^{\prime} E} \Longrightarrow e^{-\beta f(E)}=\int_{0}^{\infty} d \beta^{\prime} e^{-\beta^{\prime} E} K\left(\beta, \beta^{\prime}\right)
$$

Integrability of Hamiltonian deformations

Deform theory as $H \rightarrow f(H)$, restricting to monotonic $f(H)$ expandable around H, with $E_{\text {vac }}=0$. Key properties:

- $f(H)$ well-defined composite operator.
- Conserved charges remain conserved.
- Eigenvectors remain eigenvectors; for finite system eigenvectors coincide.
Finite-temperature correlators obtained as integral transform. Consider $Z(\beta)$:

$$
K\left(\beta, \beta^{\prime}\right)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} d E e^{-\beta f(E)+\beta^{\prime} E} \Longrightarrow e^{-\beta f(E)}=\int_{0}^{\infty} d \beta^{\prime} e^{-\beta^{\prime} E} K\left(\beta, \beta^{\prime}\right)
$$

Since eigenfunctions unchanged, correlation functions treated similarly:

$$
\left\langle O\left(\tau_{1}\right) \ldots O\left(\tau_{n}\right)\right\rangle=\int\left(\prod_{i=1}^{n-1} d E_{i}\right)\langle 0| O\left|E_{1}\right\rangle \cdots\left\langle E_{n-1}\right| O|0\rangle e^{-\sum_{i=1}^{n-1}\left(\tau_{i}-\tau_{i+1}\right) E_{i}}
$$

AdS $_{2}$ JT gravity at finite cutoff: 1d $T \bar{T}$

Consider s-wave sector of AdS_{3} pure gravity:

$$
S_{J T}=-\frac{1}{16 \pi G} \int d^{2} x \sqrt{g} \Phi\left(R+\frac{2}{\ell^{2}}\right)-\frac{1}{8 \pi G} \int d \tau \sqrt{h} \Phi\left(K-\frac{1}{\ell}\right) .
$$

AdS $_{2}$ JT gravity at finite cutoff: 1d $T \bar{T}$

Consider s-wave sector of AdS_{3} pure gravity:

$$
S_{J T}=-\frac{1}{16 \pi G} \int d^{2} x \sqrt{g} \Phi\left(R+\frac{2}{\ell^{2}}\right)-\frac{1}{8 \pi G} \int d \tau \sqrt{h} \Phi\left(K-\frac{1}{\ell}\right) .
$$

Flow $\partial S^{(2 d)} / \partial \lambda=\int d^{2} x T \bar{T}$ in CFT_{2} is supposed to implement finite cutoff in AdS_{3} [McGough, Mezei, Verlinde]. Dimensionally reduce flow to get

$$
\frac{\partial S^{(1 d)}}{\partial \lambda}=\int d \tau \frac{T^{2}}{1 / 2-2 \lambda T}
$$

AdS $_{2}$ JT gravity at finite cutoff: 1d $T \bar{T}$

Consider s-wave sector of AdS_{3} pure gravity:

$$
S_{J T}=-\frac{1}{16 \pi G} \int d^{2} x \sqrt{g} \Phi\left(R+\frac{2}{\ell^{2}}\right)-\frac{1}{8 \pi G} \int d \tau \sqrt{h} \Phi\left(K-\frac{1}{\ell}\right) .
$$

Flow $\partial S^{(2 d)} / \partial \lambda=\int d^{2} x T \bar{T}$ in CFT_{2} is supposed to implement finite cutoff in AdS_{3} [McGough, Mezei, Verlinde]. Dimensionally reduce flow to get

$$
\frac{\partial S^{(1 d)}}{\partial \lambda}=\int d \tau \frac{T^{2}}{1 / 2-2 \lambda T}
$$

Energy levels of deformed theory given as

$$
\frac{\partial E}{\partial \lambda}=\frac{E^{2}}{1 / 2-2 \lambda E} \Longrightarrow H=\frac{1}{4 \lambda}\left(1-\sqrt{1-8 H_{0} \lambda}\right)
$$

This $f(H)$ leads to a computable kernel for $\lambda<0$:

$$
K\left(\beta, \beta^{\prime}\right)=\frac{\beta}{\sqrt{-8 \pi \lambda \beta^{\prime 3}}} \exp \left(\frac{\left(\beta-\beta^{\prime}\right)^{2}}{8 \beta^{\prime} \lambda}\right)
$$

General dilaton gravity (needed for exotic interiors!) must be analyzed directly using method of [Hartman, Kruthoff, ES, Tajdini]

Quantum mechanics and $\mathbf{1 d} T \bar{T}$

Quantum mechanics and $\mathbf{1 d} T \bar{T}$

Forget holography, apply this deformation to general QM theories! Consider

$$
S_{E}=\int d \tau\left(\frac{1}{2} \dot{q}_{i}{ }^{2}+V\left(q_{i}\right)\right), \quad i=1, \ldots, N
$$

under our flow. Deformed action found by using $T=L_{E}-\frac{\partial L_{E}}{\partial \dot{q}} \dot{q}$ to write a flow equation which is solved by

$$
S_{E}=\frac{1}{4 \lambda} \int d \tau\left(1-\sqrt{\left(1-4 \lambda \dot{q}_{i}^{2}\right)\left(1-8 \lambda V\left(q_{i}\right)\right)}\right) .
$$

Quantum mechanics and 1d $T \bar{T}$

Forget holography, apply this deformation to general QM theories! Consider

$$
S_{E}=\int d \tau\left(\frac{1}{2} \dot{q}_{i}{ }^{2}+V\left(q_{i}\right)\right), \quad i=1, \ldots, N
$$

under our flow. Deformed action found by using $T=L_{E}-\frac{\partial L_{E}}{\partial \dot{q}} \dot{q}$ to write a flow equation which is solved by

$$
S_{E}=\frac{1}{4 \lambda} \int d \tau\left(1-\sqrt{\left(1-4 \lambda \dot{q}_{i}^{2}\right)\left(1-8 \lambda V\left(q_{i}\right)\right)}\right)
$$

For $\lambda<0$ this is a worldline action with cosmological constant and mass $m=1$ in a curved target space metric $g_{\mu \nu}=\delta_{\mu \nu}\left(1-8 \lambda V\left(q_{i}\right)\right)$:

$$
S_{E}=\frac{1}{4 \lambda} \int d \tau\left(1-\sqrt{g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}}\right), \quad \mu=1, \ldots, N+1
$$

Pick static gauge $x^{0}(\tau)=\tau, x^{i}(\tau)=2 \sqrt{-\lambda} q_{i}(\tau)$. Sharp worldline interpretation for $\lambda<0$ (wrong-sign kinetic terms otherwise).

1d $T \bar{T}$ as coupling to worldline gravity

In 2d, the $T \bar{T}$ deformation is proposed to be equivalent to coupling the theory to JT gravity in flat space [Dubovsky, Gorbenko, Mirbabayi].

1d $T \bar{T}$ as coupling to worldline gravity

In 2d, the $T \bar{T}$ deformation is proposed to be equivalent to coupling the theory to JT gravity in flat space [Dubovsky, Gorbenko, Mirbabayi].

Worldline actions for $\lambda<0$ suggest similar connection. Proposal:

$$
Z_{\lambda}(\beta)=\int \frac{\mathcal{D} e \mathcal{D} X \mathcal{D} \Phi}{\operatorname{Vol}(\mathrm{Diff})} e^{-S_{0}[e, \Phi]-S[e, X ; \lambda]}
$$

for $S_{0}[e, \Phi]$ the undeformed theory with fields $\Phi(\tau)$ on einbein $e, \tau \sim \tau+\beta^{\prime}$,

$$
S[e, X]=-\frac{1}{8 \lambda} \int_{0}^{\beta^{\prime}} e d \tau\left(e^{-1} \dot{X}-1\right)^{2} .
$$

$X\left(\tau+\beta^{\prime}\right)=X(\tau)+m \beta$ compact scalar with winding m.

1d $T \bar{T}$ as coupling to worldline gravity

In 2d, the $T \bar{T}$ deformation is proposed to be equivalent to coupling the theory to JT gravity in flat space [Dubovsky, Gorbenko, Mirbabayi].

Worldline actions for $\lambda<0$ suggest similar connection. Proposal:

$$
Z_{\lambda}(\beta)=\int \frac{\mathcal{D} e \mathcal{D} X \mathcal{D} \Phi}{\operatorname{Vol}(\mathrm{Diff})} e^{-S_{0}[e, \Phi]-S[e, X ; \lambda]}
$$

for $S_{0}[e, \Phi]$ the undeformed theory with fields $\Phi(\tau)$ on einbein $e, \tau \sim \tau+\beta^{\prime}$,

$$
S[e, X]=-\frac{1}{8 \lambda} \int_{0}^{\beta^{\prime}} e d \tau\left(e^{-1} \dot{X}-1\right)^{2} .
$$

$X\left(\tau+\beta^{\prime}\right)=X(\tau)+m \beta$ compact scalar with winding m. Gauge fixing $e=1$ reduces the path integral over einbeins to an integral over β^{\prime} :

$$
Z_{\lambda}(\beta)=\frac{\beta}{\sqrt{-8 \pi \lambda}} \int_{0}^{\infty} \frac{d \beta^{\prime}}{\beta^{\prime 3 / 2}} \sum_{m \in \mathbb{Z}} \exp \left(\frac{1}{8 \beta^{\prime} \lambda}\left(m \beta-\beta^{\prime}\right)^{2}\right) Z\left(\beta^{\prime}\right) .
$$

Unit winding sector is the integral transform for $Z\left(\beta^{\prime}\right)$!

Applications: Schwarzian theory

Consider Schwarzian action

$$
S=-C \int d \tau\left\{e^{i \theta(\tau)}, \tau\right\}=-C \int d \tau\left(\left(\frac{\theta^{\prime \prime}}{\theta^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{\theta^{\prime \prime}}{\theta^{\prime}}\right)^{2}+\frac{\theta^{\prime 2}}{2}\right)
$$

Deformed action?

Applications: Schwarzian theory

Consider Schwarzian action

$$
S=-C \int d \tau\left\{e^{i \theta(\tau)}, \tau\right\}=-C \int d \tau\left(\left(\frac{\theta^{\prime \prime}}{\theta^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{\theta^{\prime \prime}}{\theta^{\prime}}\right)^{2}+\frac{\theta^{\prime 2}}{2}\right)
$$

Deformed action? Compute deformed Hamiltonian and transform:

$$
q_{1}=\theta, \quad q_{2}=\theta^{\prime}, \quad p_{1}=\frac{\partial L}{\partial \theta^{\prime}}-\frac{d}{d u}\left(\frac{\partial L}{\partial \theta^{\prime \prime}}\right), \quad p_{2}=\frac{\partial L}{\partial \theta^{\prime \prime}}
$$

The undeformed and deformed Hamiltonian are

$$
H_{0}=p_{2}^{2} q_{2}^{2}+\frac{C}{2} q_{2}^{2}+p_{1} q_{2}, \quad H(\lambda)=f\left(H_{0}\right)
$$

Euclidean Lagrangian becomes

$$
L_{E}(\lambda)=\frac{C}{2} \frac{e^{\phi}}{\theta^{\prime}}\left(\phi^{\prime 2}-\theta^{2}\right)+f\left(\dot{f}^{-1}\left(e^{-\phi} \theta^{\prime}\right)\right)-e^{-\phi} \theta^{\prime} \dot{f}^{-1}\left(e^{-\phi} \theta^{\prime}\right)
$$

where we have substituted $q_{2}=e^{\phi}$. As $\lambda \rightarrow 0$ latter terms enforce $\theta^{\prime}=e^{\phi}$.

Applications: Schwarzian theory

Consider Schwarzian action

$$
S=-C \int d \tau\left\{e^{i \theta(\tau)}, \tau\right\}=-C \int d \tau\left(\left(\frac{\theta^{\prime \prime}}{\theta^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{\theta^{\prime \prime}}{\theta^{\prime}}\right)^{2}+\frac{\theta^{\prime 2}}{2}\right)
$$

Deformed action? Compute deformed Hamiltonian and transform:

$$
q_{1}=\theta, \quad q_{2}=\theta^{\prime}, \quad p_{1}=\frac{\partial L}{\partial \theta^{\prime}}-\frac{d}{d u}\left(\frac{\partial L}{\partial \theta^{\prime \prime}}\right), \quad p_{2}=\frac{\partial L}{\partial \theta^{\prime \prime}}
$$

The undeformed and deformed Hamiltonian are

$$
H_{0}=p_{2}^{2} q_{2}^{2}+\frac{C}{2} q_{2}^{2}+p_{1} q_{2}, \quad H(\lambda)=f\left(H_{0}\right)
$$

Euclidean Lagrangian becomes

$$
L_{E}(\lambda)=\frac{C}{2} \frac{e^{\phi}}{\theta^{\prime}}\left(\phi^{\prime 2}-\theta^{2}\right)+f\left(\dot{f}^{-1}\left(e^{-\phi} \theta^{\prime}\right)\right)-e^{-\phi} \theta^{\prime} \dot{f}^{-1}\left(e^{-\phi} \theta^{\prime}\right)
$$

where we have substituted $q_{2}=e^{\phi}$. As $\lambda \rightarrow 0$ latter terms enforce $\theta^{\prime}=e^{\phi}$.
OTOC: linearize around saddle $\theta=\tau+\varepsilon(\tau), e^{\phi}=c_{f} e^{\eta(\tau)}$, compute $\langle\varepsilon(\tau) \varepsilon(0)\rangle$ which feeds into 4-pt function. Lyapunov exponent unaffected.

Applications: Schwarzian theory

This theory has a one-loop exact partition function [Stanford, Witten]

$$
Z(\beta)=\frac{\alpha}{\beta^{3 / 2}} \exp \left(\frac{\pi^{2}}{\beta}\right), \quad \rho(E)=\frac{\alpha}{\pi^{3 / 2}} \sinh (2 \pi \sqrt{E})
$$

$\rho(E)$ determines potential for matrix model. [Saad, Shenker, Stanford]

Applications: Schwarzian theory

This theory has a one-loop exact partition function [Stanford, witten]

$$
Z(\beta)=\frac{\alpha}{\beta^{3 / 2}} \exp \left(\frac{\pi^{2}}{\beta}\right), \quad \rho(E)=\frac{\alpha}{\pi^{3 / 2}} \sinh (2 \pi \sqrt{E})
$$

$\rho(E)$ determines potential for matrix model. [Saad, Shenker, Stanford] Deforming $H \rightarrow f(H)$ gives

$$
\rho_{\lambda}(E)=\rho\left(f^{-1}(E)\right) \frac{d f^{-1}(E)}{d E}
$$

New matrix model descriptions from this spectral function?

Applications: Schwarzian theory

This theory has a one-loop exact partition function [Stanford, witten]

$$
Z(\beta)=\frac{\alpha}{\beta^{3 / 2}} \exp \left(\frac{\pi^{2}}{\beta}\right), \quad \rho(E)=\frac{\alpha}{\pi^{3 / 2}} \sinh (2 \pi \sqrt{E})
$$

$\rho(E)$ determines potential for matrix model. [Saad, Shenker, Stanford] Deforming $H \rightarrow f(H)$ gives

$$
\rho_{\lambda}(E)=\rho\left(f^{-1}(E)\right) \frac{d f^{-1}(E)}{d E}
$$

New matrix model descriptions from this spectral function? 1d $T \bar{T}$:

$$
\rho_{\lambda}(E)=\frac{\alpha}{\pi^{3 / 2}}(1-4 \lambda E) \sinh (2 \pi \sqrt{E(1-2 \lambda E)}) .
$$

One cut matrix model description?

Applications: Schwarzian theory

This theory has a one-loop exact partition function [Stanford, Witten]

$$
Z(\beta)=\frac{\alpha}{\beta^{3 / 2}} \exp \left(\frac{\pi^{2}}{\beta}\right), \quad \rho(E)=\frac{\alpha}{\pi^{3 / 2}} \sinh (2 \pi \sqrt{E})
$$

$\rho(E)$ determines potential for matrix model. [Saad, Shenker, Stanford] Deforming $H \rightarrow f(H)$ gives

$$
\rho_{\lambda}(E)=\rho\left(f^{-1}(E)\right) \frac{d f^{-1}(E)}{d E}
$$

New matrix model descriptions from this spectral function? 1d $T \bar{T}$:

$$
\rho_{\lambda}(E)=\frac{\alpha}{\pi^{3 / 2}}(1-4 \lambda E) \sinh (2 \pi \sqrt{E(1-2 \lambda E)})
$$

One cut matrix model description? Deformed partition function can be computed exactly by integral transform for $\lambda<0$:

$$
Z_{\lambda}(\beta)=\frac{\alpha \beta e^{-\frac{\beta}{4 \lambda}}}{\sqrt{-2 \pi \lambda}\left(\beta^{2}+8 \pi^{2} \lambda\right)} K_{2}\left(-\frac{1}{4 \lambda} \sqrt{\beta^{2}+8 \pi^{2} \lambda}\right)
$$

Hagedorn divergence! Can be continued to $\lambda>0$. Bulk calculation would be a check of $T \bar{T}$-ology at subleading order in $1 / N$.

Applications: SYK

$$
H=i^{q / 2} \sum_{i_{j}} J_{i_{1} \cdots i_{q}} \psi_{i_{1}} \cdots \psi_{i_{q}}, \quad\langle Z\rangle_{J} \sim \int d J_{i_{1} \cdots i_{q}} \exp \left(-\frac{J_{i_{1} \cdots i_{q}}^{2}}{2\left\langle J_{i_{1} \cdots i_{q}}^{2}\right\rangle}\right) Z\left(J_{i_{1} \cdots i_{q}}\right)
$$

Applications: SYK

$$
H=i^{q / 2} \sum_{i_{j}} J_{i_{1} \cdots i_{q}} \psi_{i_{1}} \cdots \psi_{i_{q}}, \quad\langle Z\rangle_{J} \sim \int d J_{i_{1} \cdots i_{q}} \exp \left(-\frac{J_{i_{1} \cdots i_{q}}^{2}}{2\left\langle J_{i_{1} \cdots i_{q}}^{2}\right\rangle}\right) Z\left(J_{i_{1} \cdots i_{q}}\right)
$$

Can deform then disorder average (only simple deformations manageable), or disorder average then deform; for latter, we end with

$$
S_{E, \lambda}=N\left(-\log \operatorname{Pf}\left(\partial_{\tau}-\Sigma\right)+\frac{1}{2} \int d \tau\left[\int d \tau^{\prime} \Sigma\left(\tau, \tau^{\prime}\right) G\left(\tau, \tau^{\prime}\right)+2 f(H / N)\right]\right)
$$

where

$$
H=-i^{q} \frac{J^{2} N}{2 q} \int d \tau^{\prime} G\left(\tau, \tau^{\prime}\right)^{q}-E_{0}
$$

with E_{0} a constant shift. Deforming microscopic SYK $H+\lambda H^{2}$ then disorder averaging leads to a particular $f(H)$.

Applications: SYK

$$
H=i^{q / 2} \sum_{i_{j}} J_{i_{1} \cdots i_{q}} \psi_{i_{1}} \cdots \psi_{i_{q}}, \quad\langle Z\rangle_{J} \sim \int d J_{i_{1} \cdots i_{q}} \exp \left(-\frac{J_{i_{1} \cdots i_{q}}^{2}}{2\left\langle J_{i_{1} \cdots i_{q}}^{2}\right\rangle}\right) Z\left(J_{i_{1} \cdots i_{q}}\right)
$$

Can deform then disorder average (only simple deformations manageable), or disorder average then deform; for latter, we end with

$$
S_{E, \lambda}=N\left(-\log \operatorname{Pf}\left(\partial_{\tau}-\Sigma\right)+\frac{1}{2} \int d \tau\left[\int d \tau^{\prime} \Sigma\left(\tau, \tau^{\prime}\right) G\left(\tau, \tau^{\prime}\right)+2 f(H / N)\right]\right)
$$

where

$$
H=-i^{q} \frac{J^{2} N}{2 q} \int d \tau^{\prime} G\left(\tau, \tau^{\prime}\right)^{q}-E_{0}
$$

with E_{0} a constant shift. Deforming microscopic SYK $H+\lambda H^{2}$ then disorder averaging leads to a particular $f(H)$. SD equations are

$$
\begin{array}{r}
\int d \tau^{\prime} G\left(\tau, \tau^{\prime}\right) \Sigma\left(\tau^{\prime}, \tau^{\prime \prime}\right)-\partial_{\tau} G\left(\tau, \tau^{\prime \prime}\right)=-\delta\left(\tau-\tau^{\prime \prime}\right) \\
\Sigma\left(\tau, \tau^{\prime}\right)-i^{q} f^{\prime}(H / N) J^{2} G^{q-1}\left(\tau, \tau^{\prime}\right)=0
\end{array}
$$

Applications: SYK

Combining SD equations by solving for Σ gives

$$
i^{q} J^{2} f^{\prime}(H / N) \int d \tau^{\prime} G\left(\tau, \tau^{\prime}\right) G\left(\tau^{\prime}, \tau^{\prime \prime}\right)^{q-1}-\partial_{\tau} G\left(\tau, \tau^{\prime \prime}\right)=-\delta\left(\tau-\tau^{\prime \prime}\right) .
$$

Applications: SYK

Combining SD equations by solving for Σ gives

$$
i^{q} J^{2} f^{\prime}(H / N) \int d \tau^{\prime} G\left(\tau, \tau^{\prime}\right) G\left(\tau^{\prime}, \tau^{\prime \prime}\right)^{q-1}-\partial_{\tau} G\left(\tau, \tau^{\prime \prime}\right)=-\delta\left(\tau-\tau^{\prime \prime}\right) .
$$

Seems difficult because of the $\int G^{q}$ factors in $f^{\prime}(H / N)$, but it is formally the same as the undeformed equations if we identify

$$
J(\lambda)^{2}=J^{2} f^{\prime}(H / N) .
$$

Our proposed solution to the Schwinger-Dyson equations is

$$
G\left(\tau, \tau^{\prime}\right)=G_{0}\left(\tau, \tau^{\prime} ; J(\lambda)\right),
$$

where we take the undeformed correlator and map $J \rightarrow J(\lambda)$. For $E_{0}=E_{\text {vac }}$ we find $J(\lambda)=J$. Can see this from integral transforms as well.

Applications: SYK

Combining SD equations by solving for Σ gives

$$
i^{q} J^{2} f^{\prime}(H / N) \int d \tau^{\prime} G\left(\tau, \tau^{\prime}\right) G\left(\tau^{\prime}, \tau^{\prime \prime}\right)^{q-1}-\partial_{\tau} G\left(\tau, \tau^{\prime \prime}\right)=-\delta\left(\tau-\tau^{\prime \prime}\right) .
$$

Seems difficult because of the $\int G^{q}$ factors in $f^{\prime}(H / N)$, but it is formally the same as the undeformed equations if we identify

$$
J(\lambda)^{2}=J^{2} f^{\prime}(H / N) .
$$

Our proposed solution to the Schwinger-Dyson equations is

$$
G\left(\tau, \tau^{\prime}\right)=G_{0}\left(\tau, \tau^{\prime} ; J(\lambda)\right),
$$

where we take the undeformed correlator and map $J \rightarrow J(\lambda)$. For $E_{0}=E_{\text {vac }}$ we find $J(\lambda)=J$. Can see this from integral transforms as well.

Integral transforms work for $H+\lambda H^{2}$ with $\lambda \sim O(1)$, but no effective action understanding.

Comments

- Hamiltonian deformations $H \rightarrow f(H)$ are integrable.

Comments

- Hamiltonian deformations $H \rightarrow f(H)$ are integrable.
- 1d $T \bar{T}$ is a Hamiltonian deformation that couples the theory to worldline gravity.

Comments

- Hamiltonian deformations $H \rightarrow f(H)$ are integrable.
- 1d $T \bar{T}$ is a Hamiltonian deformation that couples the theory to worldline gravity.
- Can mix in additional commuting conserved charges, e.g. $H_{1}+H_{2}+\lambda H_{1} H_{2}$.

Comments

- Hamiltonian deformations $H \rightarrow f(H)$ are integrable.
- 1d $T \bar{T}$ is a Hamiltonian deformation that couples the theory to worldline gravity.
- Can mix in additional commuting conserved charges, e.g. $H_{1}+H_{2}+\lambda H_{1} H_{2}$.
- Quantum mechanics is interesting due to the rich infrared!

Comments

- Hamiltonian deformations $H \rightarrow f(H)$ are integrable.
- 1d $T \bar{T}$ is a Hamiltonian deformation that couples the theory to worldline gravity.
- Can mix in additional commuting conserved charges, e.g. $H_{1}+H_{2}+\lambda H_{1} H_{2}$.
- Quantum mechanics is interesting due to the rich infrared!
- Duality for truncated theory?

Comments

- Hamiltonian deformations $H \rightarrow f(H)$ are integrable.
- 1d $T \bar{T}$ is a Hamiltonian deformation that couples the theory to worldline gravity.
- Can mix in additional commuting conserved charges, e.g. $H_{1}+H_{2}+\lambda H_{1} H_{2}$.
- Quantum mechanics is interesting due to the rich infrared!
- Duality for truncated theory?
- Holography for more general spacetimes through 1d $T \bar{T}$?

Comments

- Hamiltonian deformations $H \rightarrow f(H)$ are integrable.
- 1d $T \bar{T}$ is a Hamiltonian deformation that couples the theory to worldline gravity.
- Can mix in additional commuting conserved charges, e.g. $H_{1}+H_{2}+\lambda H_{1} H_{2}$.
- Quantum mechanics is interesting due to the rich infrared!
- Duality for truncated theory?
- Holography for more general spacetimes through 1d $T \bar{T}$?
- Questionable tangent to entertain my friends and connect directly to "Geometry from the Quantum": how do higher-form symmetries / Eguchi-Kawai fit into the 1d framework, if at all? [ES]

