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“The quest now is to understand what are the atoms of space...”

Joe Polchinski
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Discrete energy spectrum

@ Black holes have a discrete energy spectrum (large
AdS...).

@ In apparent tension with the smoothness of geometry.

@ How far does geometry take us in understanding this
discrete structure?

S. H. Shenker (Stanford) Beyond geometry KITP Jan 13, 2020 3/31



An ensemble of quantum systems

@ Averaging over an ensemble of quantum systems seems to give
geometry its best chance.

e For example, JT gravity is dual to a (random matrix) ensemble of
quantum systems [Saad-SS-Stanford].
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JT gravity
o Define JT gravity by the standard Lagrangian on surfaces of arbitrary

O ==~

@ These simple pictures are what I'll mean by “geometry.”
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O-U==2-0=9"

@ The JT action contains a topological term Spx which provides a
genus counting parameter.

Z(B) = Xg Z10(B) x el1720)% — e 37, Z6)(8) x (e7 )2
Looks like a perturbative string genus expansion (the “JT string”).
But here gs = =% ~ e 1/ON ~ g Nsvk,

These are nonperturbative effects in Gp. Joining and splitting of
closed baby JT universes, a “ third quantized” description.

@ We need to sum them up.
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umming topologies with matrices

@ There are powerful techniques for summing over all topologies of
certain types of 2D gravity coupled to “minimal” matter.

@ These techniques (which originated in the 1980s) use the ‘t Hooft
double-line diagram expansion of large rank (L) matrix integrals to
describe triangulations of 2D surfaces,

Z:/dHe—LTrV(H)

@ Surfaces with Euler character y are weighted by LX.
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Minimal string versus JT string

Z:/dHe—LTrV(H)

@ Such one matrix integrals, after double scaling, describe (2, p)
minimal models coupled to Liouville gravity — the “minimal” string.

@ The JT string arises from a further limit, p — oo, combined with an
energy rescaling.
@ Some differences between the JT string and the minimal string:

e R = —2is a constraint, not just an equation of motion.

o The metrical length of a boundary (macroscopic loop) is infinite, as in
AdS/CFT, not finite.

o The genus counting parameter gs is e /%% not /Gy.

e The matrices represent second quantized boundary Hamiltonians, of
(effective) rank e®, not Yang-Mills fields of rank v/S. A reflection of
the third quantized description.
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JT gravity as a matrix integral

@ The JT string: tune V and L so that the large L density of states
near the edge agrees with the leading order JT density of states
po(E) ~ % sinh (VE).

Po

@ Then we have
ZJT(B) = <67BH>matrix
to all orders in the genus expansion, weighted by e(1=28)%.

@ The matrix integral gives a (non-unique) nonperturbative definition of
the theory.
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The double trumpet

@ Schematically the genus expansion comes from expanding in smooth
fluctuations p(E) = po(E) + 0p(E): an ensemble of smooth functions
op(E).

@ For example consider the density-density correlator (6p(E)dp(E’))

(a transform of (Z(8)Z(5'))).

e (6p(E)ép(E")) ~ 1(E — E')?, to leading order in fluctuations.
@ In JT gravity this is computed by the “double trumpet " geometry:

x = 0, weighted by e°.

@ This corresponds to the “ramp” in the spectral form factor
(Z(B+it)Z(B — it)), essentially the Fourier transform of (p(E)p(E")).
o Geometry captures some aspects of eigenvalue statistics.
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Discrete spectrum

@ But actually each H drawn from the ensemble has a
discrete spectrum. Each draw of p(E) is a sum of
delta functions.

@ Does the sum over geometries contain complete
information about the theory, including this
discreteness?
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Discrete spectrum, contd.

@ The analog question in string theory — is the sum over
string worldsheets enough to determine the theory?

@ The lesson of the 1990's is no. One needs branes...

@ Geometry provides internal evidence: the genus
expansion diverges, like (2g)!, pointing to D-branes.

@ The dynamics of D-branes in the minimal/topological
string was worked out in the 2000s...

@ The same technology applies to the JT string.

@ The discrete eigenvalue structure is determined by
D-branes in the JT string.
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Worldsheets that end

@ D-brane effects are described by arbitrary numbers of disconnected
world sheets, ending on the D-brane.

1
efc/gs — 7£ + ,(i
&s

2
z 2 )+
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Spacetimes that end

@ The eigenvalue structure in the JT string can be studied with a
“probe FZZT brane.”

(W(E)) = e YV EV2(det(E — H)) = e LV(E)/2(Trlos(E~H))

@ Here the D-brane effects are described by arbitrary numbers of
disconnected spacetimes. What they “end on" is not so clear...
Beyond “simple” geometry.

o In the JT string e=</& ~ e_ceso, doubly exponential in Gy.
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Computing without D-branes

@ There are indications that it should be possible to compute these
effects without invoking arbitrary numbers of boundaries.

o For example in SYK the spectral form factor (Z(5 + it)Z (5 — it))
Can be exactly rewritten as a two replica G,3(t,t'), Xop(t, t') path
integral.

@ It would be interesting to understand how the D-brane effects are
realized in such a description.
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The density correlator

@ We can compute the density-density correlator using D-branes:

/ 25 1 _ S(E_F'
((E)P(E)) ~ € = 5 E =y (L~ cos@re”(E = E)).
o The 1/(E — E")? term comes from the double trumpet.

o The cos(e*(E — E')) ~ Re e®®® term is a D-brane effect. Not small,
but rapidly oscillating.

@ The oscillations are a clear signal of discreteness, in an averaged
system.
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Random matrix statistics

/ 25 1 _ S(E_ F'
(p(E)p(E")) ~ e 30n(E = E,))2(1 cos(2re”(E — E')))
@ These effects are not limited to JT gravity.

@ This is the “Sine kernel formula” for the eigenvalue correlations in
(GUE) random matrix theory [Dyson; Gaudin; Mehta].

o Conjectured to be universal in quantum chaotic systems
[ Wigner; Dyson; Berry; Bohigas-Giannoni-Schmit; . ..].

@ So these effects, including the doubly exponential oscillating ones,
should be generic in (averaged) gauge/gravity dual systems.
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Non-averaged systems

@ Quantum systems that are not averaged, like SYM, pose additional
challenges to a geometric bulk description.

e Diagnose with the spectral form factor (Z(8 + it)Z(5 — it)), the
Fourier transform of the density-density correlator.

log(1Z(B+i T)I)

Slope

Platleau

~
Ramp

log(T)

@ The ramp is described by the double trumpet. The sharp transition to
the plateau at exponentially late time is due to the oscillating D-brane
effects.
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Non-averaged systems, contd.

@ For a non-averaged system the spectral form factor is very erratic. It
is not self-averaging. [Prange].

@ Universal (a consequence of random matrix statistics).
@ What is the bulk explanation for this erratic behavior?

SYK, N, =34,B=5
10 T

T
1 sample
90 samples

.
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Time tJ

(Z(B+it)Z(B — it))
[CGHPSSST]

. .
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Moments from wormholes

@ Can compute the size of fluctuations gravitationally (schematic).

e Compute the second moment, ((Z(3 + it)Z(B — it))?).

&

o ((ZZ*)?) = 2({ZZ*))?, and so the variance is given by
((ZZ*)?) — ((ZZ*))? = ((ZZ*))?. Fluctuations are the same size as
the signal.

o ((ZZ*)4) = KI((ZZ"))k.
@ An exponential distribution.

@ All simple smooth statistics, e.g. the time autocorrelation function,
should be accessible this way, but not the actual erratic signal.
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Analogies and models

@ In the absence of a clear understanding of the “erratic red curve” the
best we can do is offer analogies and models.

@ A very interesting model addressing closely related issues has been
developed by [Marolf-Maxfield]. Listen to Henry's talk!
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Semiclassical quantum chaos

@ An analogy: semiclassical chaos in an ordinary few body quantum
mechanical systems, like a quantum billiard.

@ Use the path integral (Gutzwiller trace formula), summing over
periodic orbits (schematically)

IHt/h Z e;liSa

@ In the analogy H is the boundary quantum system, the orbit sum is
the microscopic bulk description.

@ The spectral form factor becomes:

Tre—Ht/I Treitt/h Z o (5a=5b)
ab
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Semiclassical quantum chaos, contd.

3 eh (S
ab

@ Long times t — long orbits — large phases — large fluctuations.

e But on averaging (over time, say) in the ramp region the only terms
that survive are the ones where a = b, up to a time translation [Berry].

@ There are e such paths, multiplied by an e™* one loop determinant,
giving a bulk microscopic derivation of the order one (times t) value
of the ramp. The pattern of pairing — not the microscopics — seems
analogous to the spacetime wormhole geometry. An effective

description.
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@ Wormbholes conflict with factorization [Maldacena-Maoz].

@ The non-averaged spectral form factor obviously factorizes, because
of the double sum. .
3 eh(-5)

ab

@ But because averaging picks out the diagonal terms a = b, it destroys
factorization. It makes the wormhole connection
[Coleman; Giddings-Strominger].

@ How to restore factorization? Don't get rid of the wormhole. Add
back in the off-diagonal terms [Maldacena-Maoz]. These are responsible
for the erratic behavior.

@ What is the bulk realization of these contributions?
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Restoring factorization in the bulk

@ Microscopic phase space semiclassically determines all the microstates
of the system.

@ What is the bulk description of the black hole microstates? The
Fuzzball program [Mathur...]

@ Can they be described geometrically, or are other degrees of freedom,
strings, branes etc., necessary?

@ Whatever the description is, it must produce random matrix statistics
— perhaps by some chaotic bulk dynamics of strings, branes, etc....

\
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@ A simple model: “Eigenbranes”
[Blommaert-Mertens-Verschelde, 1911.11603]

@ Freeze a subset of the matrix integral eigenvalues to mock up some
non-averaged microstates.

@ Get an erratic contribution to the red curve...
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Erratic behavior at early times

SYK, N, =34,B=5

T'sample —
90 samples

10° 10
Time tJ

o Erratic behavior begins quite early, at the Thouless time ~ log S.

@ Does not involve fine grained energy statistics. Should be enough to
treat density as smooth.

@ Instead of summing over an ensemble of smooth dp(E), take one
representative.

@ Should produce the erratic behavior.
@ Perhaps there is a simpler bulk interpretation of this.
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Averaging and replica wormholes

[Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini; Penington-SS-Stanford-Yang]

@ Replica wormhole pinwheels compute Trp" and the Page curve
geometrically. In a non-averaged theory are there other “off-diagonal”
non-geometrical contributions to Trp" that cause large fluctuations?

@ Assume the system is part of an ensemble and compute its variance:

(Trp" Trp") — (Trp")(Trp").
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Variance of pinwheels

(Trp*Trp?) — (Trp*)(Trp?)

@ A handle connecting two pinwheels — of relative magnitude e=2%.
The relative variance is small!

@ We say Trp”, and hence the Page curve, is a self-averaging quantity.
A single element of the ensemble, a non-averaged system, gives a
result close to the pinwheel value.

@ But there may be an alternate bulk description of the non-averaged
theory, perhaps involving microstates, for which the pinwheel is at
best an effective description.
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Going forward

“The quest now is to understand what are the atoms of space.
That's what we're doing today — that’s where the fun is.”

Joe Polchinski
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Thank You
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