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A quote

“The quest now is to understand what are the atoms of space...”

Joe Polchinski
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Discrete energy spectrum

Black holes have a discrete energy spectrum (large
AdS...).

In apparent tension with the smoothness of geometry.

How far does geometry take us in understanding this
discrete structure?
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An ensemble of quantum systems

Averaging over an ensemble of quantum systems seems to give
geometry its best chance.

For example, JT gravity is dual to a (random matrix) ensemble of
quantum systems [Saad-SS-Stanford].
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JT gravity

Define JT gravity by the standard Lagrangian on surfaces of arbitrary
topology (for Z (β)),

β/ε

++ + . . . 

These simple pictures are what I’ll mean by “geometry.”
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Genus expansion

++ + . . . 

The JT action contains a topological term S0χ which provides a
genus counting parameter.

Z (β) =
∑

g Z
(g)(β)× e(1−2g)S0 = eS0

∑
g Z

(g)(β)× (e−S0)2g

Looks like a perturbative string genus expansion (the “JT string”).

But here gs = e−S0 ∼ e−1/GN ∼ e−N SYK .

These are nonperturbative effects in GN . Joining and splitting of
closed baby JT universes, a “ third quantized” description.

We need to sum them up.

S. H. Shenker (Stanford) Beyond geometry KITP Jan 13, 2020 6 / 31



umming topologies with matrices

There are powerful techniques for summing over all topologies of
certain types of 2D gravity coupled to “minimal” matter.

These techniques (which originated in the 1980s) use the ‘t Hooft
double-line diagram expansion of large rank (L) matrix integrals to
describe triangulations of 2D surfaces,

Z =

∫
dHe−LTrV (H)

Fig. 11: A piece of a random triangulation of a surface. Each of the triangular

faces is dual to a three point vertex of a quantum mechanical matrix model.

The integral
∫

Dg over the metric on the surface in (6.1) is difficult to calculate in

general. The most progress in the continuum has been made via the Liouville approach

which we briefly reviewed in chapt. 2. If we discretize the surface, on the other hand, it

turns out that (6.1) is much easier to calculate, even before removing the finite cutoff. We

consider in particular a “random triangulation” of the surface [80], in which the surface is

constructed from triangles, as in fig. 11. The triangles are designated to be equilateral,24

so that there is negative (positive) curvature at vertices i where the number Ni of incident

triangles is more (less) than six, and zero curvature when Ni = 6. The summation over

all such random triangulations is thus the discrete analog to the integral
∫

Dg over all

possible geometries, ∑

genus h

∫
Dg →

∑

random
triangulations

. (6.2)

The discrete counterpart to the infinitesimal volume element
√

g is σi = Ni/3, so that

the total area |S| =
∑

i σi just counts the total number of triangles, each designated to

have unit area. (The factor of 1/3 in the definition of σi is because each triangle has three

24 We point out that this constitutes a basic difference from the Regge calculus, in which the

link lengths are geometric degrees of freedom. Here the geometry is encoded entirely into the

coordination numbers of the vertices. This restriction of degrees of freedom roughly corresponds

to fixing a coordinate gauge, hence we integrate only over the gauge-invariant moduli of the

surfaces.

76

Surfaces with Euler character χ are weighted by Lχ.

S. H. Shenker (Stanford) Beyond geometry KITP Jan 13, 2020 7 / 31



Minimal string versus JT string

Z =

∫
dHe−LTrV (H)

Such one matrix integrals, after double scaling, describe (2, p)
minimal models coupled to Liouville gravity – the “minimal” string.

The JT string arises from a further limit, p →∞, combined with an
energy rescaling.

Some differences between the JT string and the minimal string:

R = −2 is a constraint, not just an equation of motion.
The metrical length of a boundary (macroscopic loop) is infinite, as in
AdS/CFT, not finite.
The genus counting parameter gs is e−1/GN , not

√
GN .

The matrices represent second quantized boundary Hamiltonians, of
(effective) rank eS , not Yang-Mills fields of rank

√
S . A reflection of

the third quantized description.
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JT gravity as a matrix integral

The JT string: tune V and L so that the large L density of states
near the edge agrees with the leading order JT density of states
ρ0(E ) ∼ eS0 sinh (

√
E ).

ρ0

E

-a a+_

Then we have
ZJT (β) = 〈e−βH〉matrix

to all orders in the genus expansion, weighted by e(1−2g)S0 .

The matrix integral gives a (non-unique) nonperturbative definition of
the theory.
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The double trumpet

Schematically the genus expansion comes from expanding in smooth
fluctuations ρ(E ) = ρ0(E ) + δρ(E ): an ensemble of smooth functions
δρ(E ).

For example consider the density-density correlator 〈δρ(E )δρ(E ′)〉
(a transform of 〈Z (β)Z (β′)〉).

〈δρ(E )δρ(E ′)〉 ∼ 1(E − E ′)2, to leading order in fluctuations.

In JT gravity this is computed by the “double trumpet ” geometry:
χ = 0, weighted by e0.

This corresponds to the “ramp” in the spectral form factor
〈Z (β+ it)Z (β− it)〉, essentially the Fourier transform of 〈ρ(E )ρ(E ′)〉.
Geometry captures some aspects of eigenvalue statistics.
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Discrete spectrum

But actually each H drawn from the ensemble has a
discrete spectrum. Each draw of ρ(E ) is a sum of
delta functions.

Does the sum over geometries contain complete
information about the theory, including this
discreteness?
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Discrete spectrum, contd.

The analog question in string theory – is the sum over
string worldsheets enough to determine the theory?

The lesson of the 1990’s is no. One needs branes...

Geometry provides internal evidence: the genus
expansion diverges, like (2g)!, pointing to D-branes.

The dynamics of D-branes in the minimal/topological
string was worked out in the 2000s...

The same technology applies to the JT string.

The discrete eigenvalue structure is determined by
D-branes in the JT string.
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Worldsheets that end

D-brane effects are described by arbitrary numbers of disconnected
world sheets, ending on the D-brane.

e−c/gs = − c

gs
+

1

2
(
c

gs
)2 + . . .

S. H. Shenker (Stanford) Beyond geometry KITP Jan 13, 2020 13 / 31



Spacetimes that end

The eigenvalue structure in the JT string can be studied with a
“probe FZZT brane.”

〈ψ(E )〉 = e−LV (E)/2〈det(E − H)〉 = e−LV (E)/2〈eTr log(E−H)〉
Here the D-brane effects are described by arbitrary numbers of
disconnected spacetimes. What they “end on” is not so clear...
Beyond “simple” geometry.

In the JT string e−c/gs ∼ e−ce
S0 , doubly exponential in GN .
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Computing without D-branes

There are indications that it should be possible to compute these
effects without invoking arbitrary numbers of boundaries.

For example in SYK the spectral form factor 〈Z (β + it)Z (β − it)〉
Can be exactly rewritten as a two replica Gαβ(t, t ′),Σαβ(t, t ′) path
integral.

It would be interesting to understand how the D-brane effects are
realized in such a description.
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The density correlator
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We can compute the density-density correlator using D-branes:

〈ρ(E )ρ(E ′)〉 ∼ e2S − 1

2(π(E − E ′))2
(1− cos(2πeS(E − E ′))).

The 1/(E − E ′)2 term comes from the double trumpet.

The cos(eS(E − E ′)) ∼ Re e ie
S

term is a D-brane effect. Not small,
but rapidly oscillating.

The oscillations are a clear signal of discreteness, in an averaged
system.
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Random matrix statistics
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〈ρ(E )ρ(E ′)〉 ∼ e2S − 1

2(π(E − E ′))2
(1− cos(2πeS(E − E ′)))

These effects are not limited to JT gravity.

This is the “Sine kernel formula” for the eigenvalue correlations in
(GUE) random matrix theory [Dyson; Gaudin; Mehta].

Conjectured to be universal in quantum chaotic systems
[ Wigner; Dyson; Berry; Bohigas-Giannoni-Schmit; . . . ].

So these effects, including the doubly exponential oscillating ones,
should be generic in (averaged) gauge/gravity dual systems.
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Non-averaged systems

Quantum systems that are not averaged, like SYM, pose additional
challenges to a geometric bulk description.

Diagnose with the spectral form factor 〈Z (β + it)Z (β − it)〉, the
Fourier transform of the density-density correlator.

log(|Z(β+i T)|  )
2

log(T)

Slope

Ramp

Plateau

JT

The ramp is described by the double trumpet. The sharp transition to
the plateau at exponentially late time is due to the oscillating D-brane
effects.
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Non-averaged systems, contd.

For a non-averaged system the spectral form factor is very erratic. It
is not self-averaging. [Prange].

Universal (a consequence of random matrix statistics).

What is the bulk explanation for this erratic behavior? ?
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〈Z (β + it)Z (β − it)〉
[CGHPSSST]
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Moments from wormholes

Can compute the size of fluctuations gravitationally (schematic).

Compute the second moment, 〈(Z (β + it)Z (β − it))2〉.

〈(ZZ ∗)2〉 = 2(〈ZZ ∗〉)2, and so the variance is given by
〈(ZZ ∗)2〉 − (〈ZZ ∗〉)2 = (〈ZZ ∗〉)2. Fluctuations are the same size as
the signal.

〈(ZZ ∗)k〉 = k!(〈ZZ ∗〉)k .

An exponential distribution.

All simple smooth statistics, e.g. the time autocorrelation function,
should be accessible this way, but not the actual erratic signal.
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Analogies and models

In the absence of a clear understanding of the “erratic red curve” the
best we can do is offer analogies and models.

A very interesting model addressing closely related issues has been
developed by [Marolf-Maxfield]. Listen to Henry’s talk!
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Semiclassical quantum chaos

An analogy: semiclassical chaos in an ordinary few body quantum
mechanical systems, like a quantum billiard.

Use the path integral (Gutzwiller trace formula), summing over
periodic orbits (schematically)

Tre−iHt/~ ∼
∑

a

e
i
~Sa

In the analogy H is the boundary quantum system, the orbit sum is
the microscopic bulk description.

The spectral form factor becomes:

Tre−iHt/~ Tre iHt/~ ∼
∑

ab

e
i
~ (Sa−Sb)
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Semiclassical quantum chaos, contd.

∑

ab

e
i
~ (Sa−Sb)

Long times t → long orbits → large phases → large fluctuations.

But on averaging (over time, say) in the ramp region the only terms
that survive are the ones where a = b, up to a time translation [Berry].

There are et such paths, multiplied by an e−t one loop determinant,
giving a bulk microscopic derivation of the order one (times t) value
of the ramp. The pattern of pairing – not the microscopics – seems
analogous to the spacetime wormhole geometry. An effective
description.
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Factorization

Wormholes conflict with factorization [Maldacena-Maoz].

The non-averaged spectral form factor obviously factorizes, because
of the double sum. ∑

ab

e
i
~ (Sa−Sb)

But because averaging picks out the diagonal terms a = b, it destroys
factorization. It makes the wormhole connection
[Coleman; Giddings-Strominger].

How to restore factorization? Don’t get rid of the wormhole. Add
back in the off-diagonal terms [Maldacena-Maoz]. These are responsible
for the erratic behavior.

What is the bulk realization of these contributions?
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Restoring factorization in the bulk

Microscopic phase space semiclassically determines all the microstates
of the system.

What is the bulk description of the black hole microstates? The
Fuzzball program [Mathur...]

Can they be described geometrically, or are other degrees of freedom,
strings, branes etc., necessary?

Whatever the description is, it must produce random matrix statistics
– perhaps by some chaotic bulk dynamics of strings, branes, etc....

Figure 2: (a) The traditional black hole has a throat, horizon and singularity. (b) The
actual microstates are fuzzballs, for which the throat ends in a quantum fuzz.

What we need to understand now is how the shell can transform into a fuzzball. We
conjecture that this can take place through a process of tunneling between the shell state
and the fuzzball configuration.The action for tunneling can be estimated to be of order

Stunnel ∼ 1

G

∫ √−gR = αGM2, α = O(1) (1)

where we have used the black hole length scale GM to estimate the curvature scale in
Stunnel. Thus the amplitude for tunneling is

A ∼ e−Stunnel ∼ e−αGM2

, (2)

a very small quantity. But the number of fuzzball states that we can tunnel to is given
by

N ∼ eSbek ∼ eGM2

, (3)

a very large number.
To see how these small and large numbers can play off against each other, consider

a toy model. A particle is trapped in a potential well in a state |ψ0⟩, but is allowed to
tunnel to neighboring wells with a very small amplitude ∼ e−Stunnel . Let the space in
which the particle lives have a very large dimension d (to reflect the large dimension of
the space of fuzzball solutions); thus the number of neighboring wells will be N = 2d ≫ 1.

3
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Eigenbranes

A simple model: “Eigenbranes”
[Blommaert-Mertens-Verschelde, 1911.11603]

Freeze a subset of the matrix integral eigenvalues to mock up some
non-averaged microstates.

This resulting function follows (7) before the dotted red line, and the blue curve at late
times.

2.1.3 Version 3: Eigenbranes

The version of JT gravity discussed above is a double-scaled matrix integral. This means we
take L ! 1 and simultaneously zoom in on a region E < ⇤ near the edge of the spectrum,
keeping the total average number of eigenvalues 1 ⌧ N ⌧ L in this region fixed. We can
visualize this as:

h⇢(E)i =

Λ E0

(27)

The blue region represents JT gravity with spectral density (17). By definition, our discrete
system (1) can be thought of as a single Hamiltonian M of such a matrix ensemble. Let us
denote its lowest N eigenvalues by �1 . . . �N .
We expect that the IR behavior of our system (1) is accurately described by a modified
matrix ensemble where N eigenvalues are kept fixed to �1 . . . �N . This corresponds to a
Dyson gas of charged particles equilibrating in an external potential around N static point
charges. These fixed charges repel the charged gas, resulting in a void. We expect the
spectral density of this new ensemble to essentially follow the spectrum of the discrete
system (1) for E < ⇤ and that of the original ensemble (27) for E > ⇤:

h⇢(E)i =

Λ E0

(28)

In the remainder of this work, we will make this picture precise and pinpoint its JT gravity
interpretation. In particular, we will see that each eigenvalue � corresponds to a fixed energy
boundary with label � hovering in the Euclidean bulk. The contour (12) in the gravitational
path integral is hence over all Riemann surfaces that end on the union of the asymptotic
boundaries and on N fixed energy boundaries with labels �1 . . . �N , as shown in (55). This
version of JT gravity is able to capture the IR discreteness of (1). In particular, we will
recover the spectral form factor (7) including erratic oscillations.
In this picture, smooth geometry in the bulk is never in jeopardy: it is provided by our
ignorance of the UV part of the system (1), which corresponds to the L � N eigenvalues
that remain in the continuum of the matrix integral.

9

Trumpets can end on eigenvalues (FZZT branes)
perturbative contributions are due to the disk and annuli, for example:

h⇢(�1) . . . ⇢(�2)i h⇢(E1)⇢(E2)i�1...�n
� , (66)

As in (55) the eigenvalue boundaries that don’t connect to the asymptotic boundaries don’t
need to be capped o↵ by disks, there can be annuli between them.
Using the exact formulas for the multi-spectral densities discussed in section 3, we obtain:

h⇢(E1)⇢(E2)i�1...�n
=

nX

i=1

�(E1 � �i)
nX

j=1

�(E2 � �j)

+
R(E1, �1 . . . �n)

R(�1 . . . �n)

nX

j=1

�(E2 � �j) +
R(E2, �1 . . . �n)

R(�1 . . . �n)

nX

i=1

�(E1 � �i)

+ �(E1 � E2)
R(E1, �1 . . . �n)

R(�1 . . . �n)
+

R(E1, E2, �1 . . . �n)

R(�1 . . . �n)
. (67)

Again, using the JT spectral density and the GUE cluster functions it is easy to calculate and
plot this recursively for increasing n. Numerically investigating the continuous contributions
to (67) it quickly becomes obvious that if we fix a large number of eigenvalues of (1), then
in the region I where the eigenvalues are positioned, to good approximation:29

h⇢(E1)⇢(E2)i�1...�n
⇡

nX

i=1

�(E1 � �i)
nX

j=1

�(E2 � �j), E1, E2 2 I. (68)

If we take the region I large enough such that |bin(E)| ⌧ |I| then we trivially recover
the discrete version of the local spectral form factor (6) in JT gravity, including all erratic
oscillations in (7).
We would like to understand in a bit more detail the approach of the local spectral form
factor to this erratic behavior though. Let us focus on the plateau region t > 2⇡⇢(E)
and take only a few fixed eigenvalues.30 In the averaged version of JT gravity, the plateau
behavior is only due to the first term in (23):

h⇢(E1)⇢(E2)iplateau = �(E1 � E2)⇢(E1). (69)

29In particular, much like the depletion of the continuum spectral density in for example (63), one observes
that well within the bulk of I ⇥ I, the final term in (67) can be made arbitrarily small by increasing n.

30An analytic analysis of the plateau region is simpler than that of the ramp region.

20

Get an erratic contribution to the red curve...
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Erratic behavior at early times
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Erratic behavior begins quite early, at the Thouless time ∼ log S .

Does not involve fine grained energy statistics. Should be enough to
treat density as smooth.

Instead of summing over an ensemble of smooth δρ(E ), take one
representative.

Should produce the erratic behavior.

Perhaps there is a simpler bulk interpretation of this.
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Averaging and replica wormholes

(a) (b)

Figure 6: Two di↵erent saddlepoint contributions to the two-replica path integral in the presence
of gravity in the shaded region. On the left the replicas are sewn together along the branch points,
outside of the shaded region, as we would do in an ordinary quantum field theory calculation. These
will give the standard QFT answer, as computed by Hawking, which can lead to a paradox. On
the right we have a saddle where gravity dynamically glues together the shaded regions. This is the
replica wormhole. In the examples considered in this paper, this saddle dominates in the relevant
kinematics, leading to a Page curve consistent with unitarity.

Figure 7: Topology of a replica wormhole with n = 6. The sheets are also glued together cyclically
along the cuts in the matter region.
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[Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini; Penington-SS-Stanford-Yang]

Replica wormhole pinwheels compute Trρn and the Page curve
geometrically. In a non-averaged theory are there other “off-diagonal”
non-geometrical contributions to Trρn that cause large fluctuations?

Assume the system is part of an ensemble and compute its variance:

〈TrρnTrρn〉 − 〈Trρn〉〈Trρn〉.
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Variance of pinwheels

〈Trρ2Trρ2〉 − 〈Trρ2〉〈Trρ2〉

A handle connecting two pinwheels – of relative magnitude e−2S0 .
The relative variance is small!

We say Trρn, and hence the Page curve, is a self-averaging quantity.
A single element of the ensemble, a non-averaged system, gives a
result close to the pinwheel value.

But there may be an alternate bulk description of the non-averaged
theory, perhaps involving microstates, for which the pinwheel is at
best an effective description.
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Going forward

“The quest now is to understand what are the atoms of space.
That’s what we’re doing today – that’s where the fun is.”

Joe Polchinski
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Thank you

Thank You
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