### Beyond geometry

Stephen Shenker

#### (based on joint work with Phil Saad and Douglas Stanford)

Stanford

KITP Jan 13, 2020

#### "The quest now is to understand what are the atoms of space..."

Joe Polchinski

э.

э

Image: A matrix

- Black holes have a discrete energy spectrum (large AdS...).
- In apparent tension with the smoothness of geometry.
- How far does geometry take us in understanding this discrete structure?

- Averaging over an ensemble of quantum systems seems to give geometry its best chance.
- For example, JT gravity is dual to a (random matrix) ensemble of quantum systems [Saad-SS-Stanford].

 Define JT gravity by the standard Lagrangian on surfaces of arbitrary topology (for Z(β)),



• These simple pictures are what I'll mean by "geometry."

• The JT action contains a topological term  $S_0\chi$  which provides a genus counting parameter.

• 
$$Z(\beta) = \sum_{g} Z^{(g)}(\beta) \times e^{(1-2g)S_0} = e^{S_0} \sum_{g} Z^{(g)}(\beta) \times (e^{-S_0})^{2g}$$

- Looks like a perturbative string genus expansion (the "JT string").
- But here  $g_s = e^{-S_0} \sim e^{-1/G_N} \sim e^{-N_{
  m SYK}}$ .
- These are nonperturbative effects in *G<sub>N</sub>*. Joining and splitting of closed baby JT universes, a "third quantized" description.
- We need to sum them up.

- There are powerful techniques for summing over all topologies of certain types of 2D gravity coupled to "minimal" matter.
- These techniques (which originated in the 1980s) use the 't Hooft double-line diagram expansion of large rank (*L*) matrix integrals to describe triangulations of 2D surfaces,

$$\mathcal{Z} = \int dH e^{-LTrV(H)}$$



• Surfaces with Euler character  $\chi$  are weighted by  $L^{\chi}$ .

## Minimal string versus JT string

$$\mathcal{Z} = \int dH e^{-LTrV(H)}$$

- Such one matrix integrals, after double scaling, describe (2, p) minimal models coupled to Liouville gravity – the "minimal" string.
- The JT string arises from a further limit,  $p \to \infty$ , combined with an energy rescaling.
- Some differences between the JT string and the minimal string:
  - R = -2 is a constraint, not just an equation of motion.
  - The metrical length of a boundary (macroscopic loop) is infinite, as in AdS/CFT, not finite.
  - The genus counting parameter  $g_s$  is  $e^{-1/G_N}$ , not  $\sqrt{G_N}$ .
  - The matrices represent second quantized boundary Hamiltonians, of (effective) rank  $e^{S}$ , not Yang-Mills fields of rank  $\sqrt{S}$ . A reflection of the third quantized description.

• The JT string: tune V and L so that the large L density of states near the edge agrees with the leading order JT density of states  $\rho_0(E) \sim e^{S_0} \sinh(\sqrt{E})$ .



• Then we have

$$Z_{JT}(eta) = \langle e^{-eta H} 
angle_{ ext{matrix}}$$

to all orders in the genus expansion, weighted by  $e^{(1-2g)S_0}$ .

• The matrix integral gives a (non-unique) nonperturbative definition of the theory.

# The double trumpet

- Schematically the genus expansion comes from expanding in smooth fluctuations  $\rho(E) = \rho_0(E) + \delta \rho(E)$ : an ensemble of smooth functions  $\delta \rho(E)$ .
- For example consider the density-density correlator  $\langle \delta \rho(E) \delta \rho(E') \rangle$ (a transform of  $\langle Z(\beta) Z(\beta') \rangle$ ).
- $\langle \delta \rho(E) \delta \rho(E') \rangle \sim 1(E E')^2$ , to leading order in fluctuations.
- In JT gravity this is computed by the "double trumpet" geometry:  $\chi = 0$ , weighted by  $e^0$ .



- This corresponds to the "ramp" in the spectral form factor  $\langle Z(\beta + it)Z(\beta it) \rangle$ , essentially the Fourier transform of  $\langle \rho(E)\rho(E') \rangle$ .
- Geometry captures some aspects of eigenvalue statistics.

- But actually each H drawn from the ensemble has a discrete spectrum. Each draw of ρ(E) is a sum of delta functions.
- Does the sum over geometries contain complete information about the theory, including this discreteness?



- The analog question in string theory is the sum over string worldsheets enough to determine the theory?
- The lesson of the 1990's is no. One needs branes...
- Geometry provides internal evidence: the genus expansion diverges, like (2g)!, pointing to D-branes.
- The dynamics of D-branes in the minimal/topological string was worked out in the 2000s...
- The same technology applies to the JT string.
- The discrete eigenvalue structure is determined by D-branes in the JT string.

• D-brane effects are described by arbitrary numbers of disconnected world sheets, ending on the D-brane.

$$e^{-c/g_s} = -\frac{c}{g_s} + \frac{1}{2}(\frac{c}{g_s})^2 + \dots$$



#### Spacetimes that end

 The eigenvalue structure in the JT string can be studied with a "probe FZZT brane."

$$\langle \psi(E) 
angle = e^{-LV(E)/2} \langle det(E-H) 
angle = e^{-LV(E)/2} \langle e^{Tr \log(E-H)} 
angle$$

- Here the D-brane effects are described by arbitrary numbers of disconnected spacetimes. What they "end on" is not so clear... Beyond "simple" geometry.
- In the JT string  $e^{-c/g_s} \sim e^{-ce^{S_0}}$ , doubly exponential in  $G_N$ .



- There are indications that it should be possible to compute these effects without invoking arbitrary numbers of boundaries.
- For example in SYK the spectral form factor  $\langle Z(\beta + it)Z(\beta it) \rangle$ Can be exactly rewritten as a two replica  $G_{\alpha\beta}(t, t'), \Sigma_{\alpha\beta}(t, t')$  path integral.
- It would be interesting to understand how the D-brane effects are realized in such a description.

### The density correlator





• We can compute the density-density correlator using D-branes:

$$\langle \rho(E)\rho(E') \rangle \sim e^{2S} - \frac{1}{2(\pi(E-E'))^2} (1 - \cos(2\pi e^S(E-E'))).$$

• The  $1/(E - E')^2$  term comes from the double trumpet.

- The cos(e<sup>S</sup>(E E')) ~ Re e<sup>ie<sup>S</sup></sup> term is a D-brane effect. Not small, but rapidly oscillating.
- The oscillations are a clear signal of discreteness, in an averaged system.

#### Random matrix statistics



- These effects are not limited to JT gravity.
- This is the "Sine kernel formula" for the eigenvalue correlations in (GUE) random matrix theory [Dyson; Gaudin; Mehta].
- Conjectured to be universal in quantum chaotic systems [Wigner; Dyson; Berry; Bohigas-Giannoni-Schmit; ...].
- So these effects, including the doubly exponential oscillating ones, should be generic in (averaged) gauge/gravity dual systems.

### Non-averaged systems

- Quantum systems that are not averaged, like SYM, pose additional challenges to a geometric bulk description.
- Diagnose with the spectral form factor  $\langle Z(\beta + it)Z(\beta it) \rangle$ , the Fourier transform of the density-density correlator.



• The ramp is described by the double trumpet. The sharp transition to the plateau at exponentially late time is due to the oscillating D-brane effects.

#### Non-averaged systems, contd.

- For a non-averaged system the spectral form factor is very erratic. It is not self-averaging. [Prange].
- Universal (a consequence of random matrix statistics).
- What is the bulk explanation for this erratic behavior? \*



# Moments from wormholes

- Can compute the size of fluctuations gravitationally (schematic).
- Compute the second moment,  $\langle (Z(\beta + it)Z(\beta it))^2 \rangle$ .



- $\langle (ZZ^*)^2 \rangle = 2(\langle ZZ^* \rangle)^2$ , and so the variance is given by  $\langle (ZZ^*)^2 \rangle (\langle ZZ^* \rangle)^2 = (\langle ZZ^* \rangle)^2$ . Fluctuations are the same size as the signal.
- $\langle (ZZ^*)^k \rangle = k! (\langle ZZ^* \rangle)^k.$
- An exponential distribution.
- All simple smooth statistics, e.g. the time autocorrelation function, should be accessible this way, but not the actual erratic signal.

- In the absence of a clear understanding of the "erratic red curve" the best we can do is offer analogies and models.
- A very interesting model addressing closely related issues has been developed by [Marolf-Maxfield]. Listen to Henry's talk!

- An analogy: semiclassical chaos in an ordinary few body quantum mechanical systems, like a quantum billiard.
- Use the path integral (Gutzwiller trace formula), summing over periodic orbits (schematically)

$$Tre^{-iHt/\hbar}\sim\sum_{a}e^{rac{i}{\hbar}S_{a}}$$

- In the analogy *H* is the boundary quantum system, the orbit sum is the microscopic bulk description.
- The spectral form factor becomes:

$$Tre^{-iHt/\hbar} Tre^{iHt/\hbar} \sim \sum_{ab} e^{rac{i}{\hbar}(S_a-S_b)}$$

#### Semiclassical quantum chaos, contd.

$$\sum_{ab} e^{\frac{i}{\hbar}(S_a - S_b)}$$

- Long times  $t \rightarrow \mathsf{long}$  orbits  $\rightarrow \mathsf{large}$  phases  $\rightarrow \mathsf{large}$  fluctuations.
- But on averaging (over time, say) in the ramp region the only terms that survive are the ones where a = b, up to a time translation [Berry].
- There are  $e^t$  such paths, multiplied by an  $e^{-t}$  one loop determinant, giving a bulk microscopic derivation of the order one (times t) value of the ramp. The pattern of pairing not the microscopics seems analogous to the spacetime wormhole geometry. An effective description.





- Wormholes conflict with factorization [Maldacena-Maoz].
- The non-averaged spectral form factor obviously factorizes, because of the double sum.

$$\sum_{ab} e^{\frac{i}{\hbar}(S_a - S_b)}$$

- But because averaging picks out the diagonal terms a = b, it destroys factorization. It makes the wormhole connection [Coleman; Giddings-Strominger].
- How to restore factorization? Don't get rid of the wormhole. *Add* back in the off-diagonal terms [Maldacena-Maoz]. These are responsible for the erratic behavior.

• What is the bulk realization of these contributions?

### Restoring factorization in the bulk



- Microscopic phase space semiclassically determines all the microstates of the system.
- What is the bulk description of the black hole microstates? The Fuzzball program [Mathur...]
- Can they be described geometrically, or are other degrees of freedom, strings, branes etc., necessary?
- Whatever the description is, it must produce random matrix statistics
  - perhaps by some chaotic bulk dynamics of strings, branes, etc....



# Eigenbranes

- A simple model: "Eigenbranes" [Blommaert-Mertens-Verschelde, 1911.11603]
- Freeze a subset of the matrix integral eigenvalues to mock up some non-averaged microstates.



• Trumpets can end on eigenvalues (FZZT branes)



• Get an erratic contribution to the red curve...

## Erratic behavior at early times



- Erratic behavior begins quite early, at the Thouless time  $\sim \log S$ .
- Does not involve fine grained energy statistics. Should be enough to treat density as smooth.
- Instead of summing over an ensemble of smooth δρ(E), take one representative.
- Should produce the erratic behavior.
- Perhaps there is a simpler bulk interpretation of this.

### Averaging and replica wormholes



[Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini; Penington-SS-Stanford-Yang]

- Replica wormhole pinwheels compute *Trρ<sup>n</sup>* and the Page curve geometrically. In a non-averaged theory are there other "off-diagonal" non-geometrical contributions to *Trρ<sup>n</sup>* that cause large fluctuations?
- Assume the system is part of an ensemble and compute its variance:

$$\langle Tr \rho^n Tr \rho^n \rangle - \langle Tr \rho^n \rangle \langle Tr \rho^n \rangle.$$

# Variance of pinwheels



- A handle connecting two pinwheels of relative magnitude e<sup>-250</sup>. The relative variance is small!
- We say Trρ<sup>n</sup>, and hence the Page curve, is a self-averaging quantity. A single element of the ensemble, a non-averaged system, gives a result close to the pinwheel value.
- But there may be an alternate bulk description of the non-averaged theory, perhaps involving microstates, for which the pinwheel is at best an effective description.

#### "The quest now is to understand what are the atoms of space. That's what we're doing today – that's where the fun is."

Joe Polchinski

э

# Thank You

< ∃⇒

2