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The fact that interior operators can in principle be expressed as radiation 
operators is equivalent to the statement of black hole complementarity.

The recent developments have shed important new light on the idea that, after 
the Page time,  interior operators can be expressed as acting on the radiation

The space-time reason why this is in principle possible is that the interior and 
exterior regions are related via an exponentially large boost.                   ‘t Hooft
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1 Introduction and Summary

Recently, there has been renewed interest in the black hole information puzzle in the context
of the AdS/CFT correspondence [1, 2, 3, 4, 6, 7]. The helpful new insight obtained in [1, 2]
is that, for black holes evolved past their Page time, there exists a quantum extremal surface
[8] that demarcates the interior portion of the entanglement wedge of the external radiation,
commonly referred to as the ‘Island’. This realization suggests that the lessons learned from
entanglement wedge reconstruction in AdS/CFT [9, 10, 11, 12, 13] may also be applicable
to the reconstruction of the interior of the black hole. In this paper we will give a concrete
quantum information theoretic description of this reconstruction map.

The existence and location of the quantum extremal surface depends on the bipartite
division of the external state into the state of the microscopic near horizon region, described
by the CFT, and a ‘thermal bath’ that contains all the far away radiation emitted by the
black hole [1, 2]. The thermal bath is coupled to the CFT via an interaction Hamiltonian that
allows the bulk HKLL modes to propagate onwards into a non-dynamical flat asymptotic
region. By allowing the bath to cool o� along with the evaporating black hole, the system
eventually evolves into a state in which the CFT is completely entangled with the bath and
the entropy of the emitted radiation far exceeds the Bekenstein-Hawking entropy of the black
hole, encoded via finite temperature CFT. This situation is shown in figure 1.

The appearance of the quantum extremal surface (QES) at the Page time [14] is not
entirely surprising. From the point of view of quantum information theory, it can be thought
of as a manifestation of the same monogamy of entanglement argument that underlies the
firewall paradox [15] . Since the CFT is fully entangled with the bath, it does not have
entanglement left to describe the entangled Hawking pairs across the surface a. So the
entanglement wedge of the CFT by itself must end at a.

a b

*
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Figure 1: A late time slice � through an evaporating black hole space time. The green seg-
ment is the entanglement wedge of the CFT. The blue segment to the right of b is the thermal
bath with the Hawking radiation. The ‘Island’ bounded by the quantum extremal surface at
a is inside the entanglement wedge of the radiation. Infalling modes inside the island have
in their past collided with super-Planckian energy with outgoing modes inside the bath.
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As shown in Figure 1, the inside and outside segments of the spatial slice � are sepa-
rated by a scrambling time �ts and are therefore related via a large boost: the infalling
and outgoing modes that reach each segment, when propagated backwards in time, have
experience a high energy collision. The proposal that the island region to the left of the
quantum extremal surface is contained inside the entanglement wedge of the radiation is
therefore commensurate black hole complementarity [16, 17]. In [17] it was postulated that:
Di�erent microscopic observables that are space-like separated on a Cauchy surface �, but

have support on matter field configurations that, when propagated back in time, have collided

with macroscopically large center of mass energies, are not simultaneously contained as com-

muting operators in the physical Hilbert space. Instead such operators are complementary.
Here ‘complementary’ means that the interior operator must be expressible, in some subtle
and highly non-local way, in terms of observables that act on the radiation.

Neither black hole complementarity nor the new insights about the appearance of the
Island by themselves resolve the black hole information or firewall paradox, because neither
prescribes what the dictionary between the interior and exterior really looks like. Two
essential extra elements in the story are the interrelated realizations that black holes act as
fast scramblers of quantum information [18, 19], and that entanglement wedge reconstruction
relies on quantum information theoretic mechanisms akin to quantum error correction [9].
The question we will investigate in this paper is whether these ingredients put together are
su�cient to circumvent the apparent contradiction between unitarity and the existence of
a smooth black hole interior. Our proposed answer is ‘yes’ and the following discussion is
intended as a schematic roadmap towards resolving these paradoxes.

The black hole formation and evaporation process can, almost by definition, be viewed
an evolution from a low entropy initial state to a large entropy final state. In this paper,
following other recent work, we model this entire process by coupling the CFT to an external
quantum system, which initially contains the matter used to form the black hole. The black
hole formation is initiated by injecting a collapsing shell of matter from the environment
into the CFT. After the matter has fallen in, the CFT quickly thermalizes until its thermal
entropy is equal to the Bekenstein-Hawking entropy of the initial black hole. Next we let the
black hole evaporate by allowing the CFT to cool down while maintaining thermal equilib-
rium with the bath. The entropy SCFT of the CFT gradually decreases as a function of time.
The outside radiation extracted from the CFT has an increasing coarse grained entropy
SRad. Following Page, we assume that the sum of the entropy of the radiation and the CFT
remains to that of the initial black hole. The Page transition occurs at SCFT = SRad after
which point the entropy in the radiation exceeds the entropy contained in the CFT. In this
post-Page time regime, where

SRad > SCFT. (1.1)
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Figure 2: The black hole formation and evaporation process is modeled by injecting energy,
in the form of matter (or radiation) into the CFT (left). The CFT quickly thermalizes and
is allowed to cool o�, while keeping thermal equilibrium with the bath. After the Page time,
the CFT is fully entangled with the radiation (right). Observables inside the Island are
represented by operators acting on the radiation.

the CFT becomes fully entangled with the radiation. As argued in [1, 2], the Island region
then enters the entanglement wedge of the radiation. This in particular means that all
observables inside the Island may be represented by operators acting only on the radiation.
In this paper we will give an explicit protocol for this reconstruction map. We will then
describe how this reconstruction protocol can be used to set up a scenario in which two
observers can meet up on the Island.

Our construction relies on techniques of (approximate) quantum error correction [20, 21]
similar to those employed in our earlier work [22] for the reconstruction of the interior
operators of a pre-Page time black hole. The mapping will have a weak form of state
independence, in that, as any QEC protocol, it relies on the introduction of a code subspace.
This code space contains the Hilbert space HMat describing the initial matter states that
formed the black hole, and whose quantum information we like to recover from the radiation.
This matter Hilbert spaceHMat must be distinguished from the spaceHQFT of quantum fields
on the semi-classical black hole geometry. In the standard AdS/CFT context it is customary
to identify the code space only with the latter. However, as we will explain, at late times
the initial matter states are no longer part of the low energy e�ective bulk description, since
due to the ergodicity of the time evolution its quantum information is completely scrambled.
We will therefor define an extended code space HCode that contains both HQFT and HMat

HQFT ¢HMat µ HCode (1.2)

In other words, the code space HCode serves a dual purpose, since it contains the quantum
information of the initial matter as well as the late time quantum fields.

We will first focus on retrieving the quantum information contained in HMat from the
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so each coe�cient qa is roughly of order 1/dRad and each pn is roughly of order 1/dCFT .
Next consider the o�-diagonal terms with a ”= b. We are summing dCFT terms with random

phases. This sum is strongly suppressed relativeto the diagonal term. Modeling the sum as a
random walk, we infer that the o�-diagonal terms rij

ab
are suppressed relative to the diagonal

terms qa by a factor of order 1/
Ô

dCFT π 1. Similarly, the sij

nm
are smaller than the pn by a

factor of 1/
Ô

dRad π 1. Moreover, the o�-diagonal coe�cients all have a random phase.
The suppression of o� diagonal terms is already present in the microscopic theory. Note,

however, that the o�-diagonal terms, while small, are in the majority and collectively can
still lead to order 1 e�ects, and it would be a mistake to simply drop them in the computation
of fine grained quantities like Rényi and von Neumann entropies. On the other hand, for
coarse grained quantities that are not sensitive to microscopic phase di�erence or interference
e�ects, it is reasonable to take a phase average, or equivalently, an ensemble average over
microscopic realizations of the same macroscopic theory. In this coarse grained theory, the
o� diagonal terms vanish. We denote the ensemble average of the product of C coe�cients as

ÿ

n

C i

an
Cúj

nb
= qa ”ij ”ab

ÿ

b

C i

nb
C j

bm
= pn ”ij ”nm (2.8)

Note however that in the microscopic theory, one of these matrices is far from invertible.

2.1.1 Density matrices

Now let us consider the final state U |�ÍMat obtained after applying the time evolution oper-
ator to the initial state

|�ÍMat =
ÿ

i

–i | i ÍMat

ÿ

i

|–i|2 = 1, (2.9)

where –i are arbitrary complex amplitudes. Even though the internal dynamics of the CFT
and the radiation are very di�erent, the full Page curve dynamics is symmetric between the
two: reversing the time direction interchanges their role. In this section, we will therefore
continue to treat both systems symmetrically. Following [?] we can write the state after the
black hole formation and (partial) evaporation process in one of the following two forms

U |�ÍMat =
ÿ

a

|ÂaÍCFT|aÍRad =
ÿ

n

|nÍCFT |„nÍRad (2.10)

Introducing the reduced C matrices

C
an

=
ÿ

i

–i C i

na
; C ú

mb
=
ÿ

j

–ú
j

Cúj

bm
, (2.11)

we can write
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Let’s model the black hole formation and evaporation process via AdS/CFT + bath. 
It maps the initial matter state into a randomly entangled state of CFT and Rad 

U

|�Í |0ÍCFT

CFT Rad

i

n a

Figure 3: The unitary operator that described the black hole formation and (partial) evapo-
ration process. The initial state |�Í describes the infalling matter that forms the black hole.
The initial CFT is assumed to be in the ground state. The final state is an entangled state
between the fully thermalized CFT and the radiation in the outside region.

The ƒ sign indicates that the recovery has a small error of order

‘ = eSMat+SCFT≠SRad π 1.

The recovery protocol creates a thermofield double state of the initial and ancillary CFT.
The existence of this operator R is well known in the theory of quantum error correcting

codes [?]. The initial Hilbert space HMat in that context is called the code subspace. The first
application of approximate quantum error correction and code subspaces to the holographic
reconstruction of black hole interiors appeared in [5] in the study of the firewall paradox for
black holes before the Page time. In [5] black hole interior operators were constructed in
terms of CFT operators. In that case, the reconstruction becomes gradually less accurate as
the black hole ages and starts approaching the Page time. In the post-Page time situation
discussed here, the roles of the CFT and radiation are interchanged.4

The recovery operation R also performs a third task: it enables the construction of
interior operators inside the Island purely in terms of the radiation. Neither the recovery
algorithm nor the construction of the interior operators requires any detailed knowledge of
the initial state |�ÍMat , except that it is contained in the code subspace HMat . In this sense
the recovery algorithm is state independent.

The appearance of the TFD state after the recovery has direct physical implications.
According to the EPR = ER paradigm the TFD state represents a wormhole connecting the
two AdS black hole geometries dual to each thermal CFT state. This wormhole connects
the ancillary black hole with the Island of the original black hole. This suggest one could

4The use of QEC technology in the post-Page regime was initiated by Hayden and Preskill [?], and
developed by Kitaev, Yoshida, Penington and others [?][?]. The use of quantum error correcting codes to
entanglement wedge reconstruction in AdS/CFT was initiated by Almheiri, Dong and Harlow [?].
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It is then possible to reconstruct the Island operators with exponential accuracy, 
provided that we are in the post-Page regime

ß Code subspace >>  HQFT   !



U

|�Í |0ÍCFT

CFT Rad

i

n a

Figure 3: The unitary operator that described the black hole formation and (partial) evapo-
ration process. The initial state |�Í describes the infalling matter that forms the black hole.
The initial CFT is assumed to be in the ground state. The final state is an entangled state
between the fully thermalized CFT and the radiation in the outside region.

The ƒ sign indicates that the recovery has a small error of order eSMat+SCFT≠SRad π 1. The
recovery protocol creates a thermofield double state of the initial and ancillary CFT.

The existence of this operator R is well known in the theory of quantum error correcting
codes, see e.g. [20, 21]. The initial Hilbert space HMat in that context is called the code
subspace. The first application of approximate quantum error correction and code subspaces
to the holographic reconstruction of black hole interiors appeared in [22] in the study of the
firewall paradox for black holes before the Page time. In [22] black hole interior operators
were constructed in terms of CFT operators. In that case, the reconstruction becomes
gradually less accurate as the black hole ages and starts approaching the Page time. In the
post-Page time situation discussed here, the roles of the CFT and radiation are interchanged.4

The recovery operation R also performs a third task: it enables the construction of
interior operators inside the Island purely in terms of the radiation. Neither the recovery
algorithm nor the construction of the interior operators requires any detailed knowledge of
the initial state |�ÍMat , except that it is contained in the code subspace HMat . In this sense
the recovery algorithm is state independent.

The appearance of the TFD state after the recovery has direct physical implications.
According to the EPR = ER paradigm the TFD state represents a wormhole connecting the
two AdS black hole geometries dual to each thermal CFT state. This wormhole connects
the ancillary black hole with the Island of the original black hole. This suggest one could
consider two (imaginary) observers that decide to meet inside the Island. If they succeed,
this would disprove the existence of a firewall after the Page time.

4The use of QEC technology in the post-Page regime was initiated by Hayden and Preskill [18], and
further developed by Kitaev and Yoshida [23], see also [25, 26, 27, 30, 29]. The use of quantum error
correcting codes to entanglement wedge reconstruction was initiated by Almheiri, Dong and Harlow in [9],
see also [10, 11]
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3 Recovering the Information from the Radiation

In this section we will prove that the recovery map R introduced above has the required
property (1.5): it approximately recovers the initial state |�ÍMat and performs the entangle-
ment swap that puts the original and ancillary CFT into a thermofield double state. The
key idea will be that, as far as the black hole formation and evaporation process is concerned
(and within a sector with given macroscopic conserved quantities like energy, charge or an-
gular momentum), there is no preferred basis of states in the Hilbert spaces of the matter,
radiation or CFT. This assumption implies that the matrix elements of the unitary operator
U can be treated as random matrices.

We are interested in the situation well after Page time, so that the entropy of the radiation
has become much larger that the combined entropy of the initial matter and the CFT. Errors
in the approximation are controlled by the ratio

‘ = dMatdCFT

dRad
= eSRad≠SCFT≠SMat π 1 (3.1)

3.1 Approximate quantum error correction

Let us look more closely at the entangled final state of the radiation and the CFT after
applying the unitary evolution U . Without loss of generality, we can represent this state as

U |�ÍMat |0ÍCFT =
ÿ

n

Cn |�ÍMat |nÍCFT (3.2)

The Cn are called Kraus operators. This representation of the final state is similar to the
one used in [22] to study the statistical properties of the black hole density matrix and the
reconstruction of interior operators before the Page time. In that case, the number black
hole states is very large compared to the number of states in the radiation. Now the roles
are reversed. As we will see, we can still repeat all the same basic steps as in [22] , except
that the black hole is now the small system and the radiation is the large system.

At first it looks perhaps a bit surprising that the roles of the radiation and the black hole
can be interchanged. Black hole dynamics is ergodic whereas the dynamics of the radiation is
not. The reason we can still repeat the analysis after the Page time is that the time evolution
operator U , that describes the black hole formation and evaporation process, still acts as a
scrambler that spreads the information of the initial state uniformly over the final Hilbert
space of the black hole and the radiation. This initial information can thus be recovered
from the larger of the two subsystems, which now is the outside radiation.

The Kraus operators Cn are assumed to be random ergodic operators, subject only to
the macroscopic conservation laws and a unitarity condition

ÿ

n

Cn
† Cn = 1Mat (3.3)
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Next consider the o�-diagonal terms with a ”= b. We are summing dCFT terms with random
phases. This sum is strongly suppressed relativeto the diagonal term. Modeling the sum as a
random walk, we infer that the o�-diagonal terms rij

ab
are suppressed relative to the diagonal

terms qa by a factor of order 1/
Ô

dCFT π 1. Similarly, the sij

nm
are smaller than the pn by a

factor of 1/
Ô

dRad π 1. Moreover, the o�-diagonal coe�cients all have a random phase.
The suppression of o� diagonal terms is already present in the microscopic theory. Note,

however, that the o�-diagonal terms, while small, are in the majority and collectively can
still lead to order 1 e�ects, and it would be a mistake to simply drop them in the computation
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C j
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ÿ

i
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where –i are arbitrary complex amplitudes. Even though the internal dynamics of the CFT
and the radiation are very di�erent, the full Page curve dynamics is symmetric between the
two: reversing the time direction interchanges their role. In this section, we will therefore
continue to treat both systems symmetrically. Following [?] we can write the state after the
black hole formation and (partial) evaporation process in one of the following two forms

U |�ÍMat =
ÿ

a

|ÂaÍCFT|aÍRad =
ÿ

n

|nÍCFT |„nÍRad (2.10)

Introducing the reduced C matrices

C
an

=
ÿ

i

–i C i

na
; C ú

mb
=
ÿ

j

–ú
j

Cúj

bm
, (2.11)

we can write
|ÂaÍ =

ÿ

n

C
an

|nÍ ; ÈÂb| =
ÿ

m

Èm| Cú
mb

(2.12)

|„nÍ =
ÿ

a

C
an

|aÍ ; È„m| =
ÿ

b

Èb | Cú
mb

(2.13)
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The Cn are called Krauss operators. They define a random embedding of Mat into Rad.

n addition, if we treat the coe�cients Ci

na
as random complex variables of roughly equal

size, one derives that

C †
mCn ƒ pn ”mn 1Mat . (3.4)

This relation closely resembles the Knill-Laflamme condition, which determines whether a
quantum code is quantum error correctable. For exact error correction, it is necessary that
this relation is an exact identity. In our context, however, it only holds approximately.

After this preparation, it now becomes straightforward to return to the recovery map R

and derive its properties. We now introduce an ancillary system given by a second conformal
field theory that is identical to the first one. Then, similarly as for the unitary time evolution
U , we can write the recovery map in terms of Kraus operators as

R |�ÍRad |0Í ÂCFT =
ÿ

n

Rn |�ÍRad |nÍ ÂCFT (3.5)

where |�ÍRad represents a general state of the radiation. The goal of the recovery operators
Rn is to reverse the action of the Kraus operators Cn on the initial matter state. The
relation (3.4) suggests that the recovery operators can be taken to be proportional to C †

n
.

To determine the factor of proportionality we proceed as before, and require that the recovery
map, when applied to the density matrix ‡

Rad
reproduces again the maximally mixed state

‡Mat . The density matrix ‡
Rad

can be expressed in terms of the Kraus operators as

‡Rad =
ÿ

n

Cn‡MatC †
n

=
ÿ

n

CnC †
n

(3.6)

We will choose the individual Rn recovery operators to take the form

Rn = C †
n

‡≠1/2
Rad . (3.7)

From this definition of the recovery map, and using the unitary relation (3.3), one easily
verifies that the original state is recovered through an exact relation qn Rn ‡Rad R†

n
= ‡Mat .

We like to use the recovery operators not just for the maximally mixed state, but also
to recover any generic (pure or mixed) initial matter state flMat . For this purpose we will
first use the relation (3.4) to derive an approximate expression for the recovery operators, by
replacing the factor ‡≠1/2

Rad by a overall constant. By using the expression (3.6) and repeatedly
applying the approximate identity (3.4) one can show that

C †
n (‡Rad)k ƒ (pn)k C †

n (3.8)

Here we write an approximate sign, which means that this equation holds up to terms that
vanish when the ratio ‘ goes to zero. By using this result and formally taking k = ≠1/2 we
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The crucial observation that allows for the reconstruction of interior operators is that 

dCFT and dRad depend on the chosen time, since they need to keep track of the distribution of
the quantum information in the time evolved state in the CFT and radiation.

To what extent do the matrix elements C i

an
represent a random ergodic matrix? For

concreteness, suppose we are in the post-Page time regime SRad > SCFT + SMat . Black hole
dynamics is ergodic whereas the dynamics of the radiation is not. However, the evolution
operator still acts as a scrambler that spreads the quantum information of the initial state
uniformly over the final Hilbert space of the black hole and the radiation. In particular, this
initial information can thus be recovered from the larger of the two subsystems. Note, how-
ever, that the rank of the C i

an
matrix, or more precisely, the Hilbert subspace spanned by all

states of the form (2.1), is much smaller than the total radiation Hilbert space. The key ob-
servation, however, is that this subspace is randomly embedded within the radiation Hilbert
space. This ergodic randomness of Page dynamics is essential for information recovery and
for the combinatoric structure that gives rise to the sum over replica wormholes.

Are the matrix elements C i

an
microscopically determined or state dependent? Evidently,

they do depend on the choice of bases in all three Hilbert spaces. In particular, if we perform
a unitary rotation on the basis vectors in the initial Hilbert space |iÍ æ V |iÍ = qj Vij|jÍ
the C-coe�ents transform accordingly via

Ci

an
æ
ÿ

j

Vij Cj

an
; Cúj

bm
æ
ÿ

i

Cúi

bm
V ú

ij
. (2.5)

We will treat these basis transformations of the initial Hilbert space as a gauge symmetry.
Modulo this symmetry, and assuming we have microscopic knowledge of the radiation and
CFT dynamics to identify some preferred bases in HCFT and HRad , the ergodic matrices C i

an

are fully determined by the microscopic dynamics.
What does it mean for the C matrices to be ergodic? Let us look at the following two sums

ÿ

n

C i

an
Cúj

nb
= qa ”ab ”ij + rij

ab
;

ÿ

b

Cúi

nb
C j

bm
= pn ”nm ”ij + sij

nm
(2.6)

For now, the right-hand side is simply a decomposition of the left-hand side into a diagonal
and an o� diagonal piece. We claim, however, that the ergodicity property implies that the
individual o�-diagonal terms are highly suppressed relative to the diagonal terms.

Consider the first relation (2.6). First take a = b: we are then summing dCFT positive
terms. So the answer is clearly non-zero and positive. We will assume that all amplitudes
are statistically of roughly equal size. The unitarity condition tells us that

ÿ

a

qa = 1,
ÿ

n

pn = 1, (2.7)

so each coe�cient qa is roughly of order 1/dRad and each pn is roughly of order 1/dCFT .
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2 Random matrix description of black hole evaporation

The key assumption that underlies the reconstruction of interior operators is that the matrix
elements of the unitary evolution operator between the initial state of the black hole and
the final entangled state between the black hole and radiation constitute an ergodic random
matrix. In this section we summarize the schematic statistical properties of the density
matrices that follow from this assumption. We also comment on the recent observation [?]
that the combinatorics of the random matrix computations is mirrored by the sum over
semi-classical replica wormhole geometries. In particular, our treatment will make clear that
the appearance of the replica wormholes is a consequence of ergodic unitary evolution.

2.1 Ergodic time evolution

The central ingredient in our story are the matrix elements of the time-evolution operator

U |iÍMat =
ÿ

a,n

C i

an
|aÍRad |nÍCFT (2.1)

where |aÍRad and |nÍCFT denotes some known basis of the CFT and radiation Hilbert spaces
HCFT and HRad . Note that the C matrices satisfy the following unitarity relation

ÿ

a,n

C i

an
Cúj

an
= ”ij. (2.2)

We may pictorially represent these matrix element as

Mat

CFT Rad

i

n a

From now on we will drop the labels CFT, Mat and Rad on the states to avoid cluttering the
notation. Before we continue the computation, let us think a bit more about the meaning
of the C i

an
coe�cients.

The dimension of all three Hilbert spaces and corresponding entropies are denoted by

dMat = dimHMat , dCFT = dimHCFT , dRad = dimHRad (2.3)

SMat = log dMat , SRad = log dRad , SCFT = log dCFT . (2.4)

Here the dimensions are defined as the minimum size required to accommodate the coarse
grained entropy of the respective systems. Note that the dimension dMat is time independent,
since it is specified in terms of the initial situation. On the other hand, the definitions of
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where |aÍRad and |nÍCFT denotes some known basis of the CFT and radiation Hilbert spaces
HCFT and HRad . Note that the C matrices satisfy the following unitarity relation

ÿ

a,n

C i

an
Cúj

an
= ”ij. (2.2)

We may pictorially represent these matrix element as

Mat

CFT Rad

i

n a

From now on we will drop the labels CFT, Mat and Rad on the states to avoid cluttering the
notation. Before we continue the computation, let us think a bit more about the meaning
of the C i

an
coe�cients.

The dimension of all three Hilbert spaces and corresponding entropies are denoted by

dMat = dimHMat , dCFT = dimHCFT , dRad = dimHRad (2.3)

SMat = log dMat , SRad = log dRad , SCFT = log dCFT . (2.4)

Here the dimensions are defined as the minimum size required to accommodate the coarse
grained entropy of the respective systems. Note that the dimension dMat is time independent,
since it is specified in terms of the initial situation. On the other hand, the definitions of
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dCFT and dRad depend on the chosen time, since they need to keep track of the distribution of
the quantum information in the time evolved state in the CFT and radiation.

To what extent do the matrix elements C i

an
represent a random ergodic matrix? For

concreteness, suppose we are in the post-Page time regime SRad > SCFT + SMat . Black hole
dynamics is ergodic whereas the dynamics of the radiation is not. However, the evolution
operator still acts as a scrambler that spreads the quantum information of the initial state
uniformly over the final Hilbert space of the black hole and the radiation. In particular, this
initial information can thus be recovered from the larger of the two subsystems. Note, how-
ever, that the rank of the C i

an
matrix, or more precisely, the Hilbert subspace spanned by all

states of the form (2.1), is much smaller than the total radiation Hilbert space. The key ob-
servation, however, is that this subspace is randomly embedded within the radiation Hilbert
space. This ergodic randomness of Page dynamics is essential for information recovery and
for the combinatoric structure that gives rise to the sum over replica wormholes.

Are the matrix elements C i

an
microscopically determined or state dependent? Evidently,

they do depend on the choice of bases in all three Hilbert spaces. In particular, if we perform
a unitary rotation on the basis vectors in the initial Hilbert space |iÍ æ V |iÍ = qj Vij|jÍ
the C-coe�ents transform accordingly via

Ci

an
æ
ÿ

j

Vij Cj

an
; Cúj

bm
æ
ÿ

i

Cúi

bm
V ú

ij
. (2.5)

We will treat these basis transformations of the initial Hilbert space as a gauge symmetry.
Modulo this symmetry, and assuming we have microscopic knowledge of the radiation and
CFT dynamics to identify some preferred bases in HCFT and HRad , the ergodic matrices C i

an

are fully determined by the microscopic dynamics.
What does it mean for the C matrices to be ergodic? Let us look at the following two sums

ÿ

n

C i

an
Cúj

nb
= qa ”ab ”ij + rij

ab
;

ÿ

b

Cúi

nb
C j

bm
= pn ”nm ”ij + sij

nm
(2.6)

For now, the right-hand side is simply a decomposition of the left-hand side into a diagonal
and an o� diagonal piece. We claim, however, that the ergodicity property implies that the
individual o�-diagonal terms are highly suppressed relative to the diagonal terms.

Consider the first relation (2.6). First take a = b: we are then summing dCFT positive
terms. So the answer is clearly non-zero and positive. We will assume that all amplitudes
are statistically of roughly equal size. The unitarity condition tells us that

ÿ

a

qa = 1,
ÿ

n

pn = 1, (2.7)

so each coe�cient qa is roughly of order 1/dRad and each pn is roughly of order 1/dCFT .
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The Kraus matrices are microscopically determined* random matrices, 

drawn from a statistical matrix ensemble:



p

A Page Curve from Random Matrices

It is instructive to consider the calculation of the von Neumann entropy of the CFT and the
radiation from the perspective of the random matrix description of the respective density
matrices in terms of the Kraus operators

C =
ÿ

a,n

|nÍCan Èa| ; C † =
ÿ

a,n

|aÍCú
na
Èn| (A.1)

This calculation is a slight generalization of the original analysis by Page.
After the evaporation process, the density matrices of the CFT and radiation can then

be written in short-hand notation as follows

flCFT = C †C ; flRad = CC †. (A.2)

Here C is viewed as the mapping from the CFT Hilbert space to the radiation Hilbert space
with random matrix elements taken from a gaussian ensemble with uniform variance.

The calculation of the Renyi entropies proceed via straightforward application of Wick’s
theorem. There are two elementary types of Wick contractions defined by taking the en-
semble average of both density matrices. Assuming that energy is the only macroscopic
conserved quantity, the respective ensemble averages take the general form

flCFT = C †C =
ÿ

E

q
E

1CFT(M ≠E) (A.3)

flRad = CC † =
ÿ

E

p
E

1Rad(E) (A.4)

Here M is the energy of the initial state and E the total energy in the radiation. Here
1CFT(M≠E) and 1Rad(E) are the projections on the CFT Hilbert subspace HCFT(M ≠E) with
energy M ≠E and on the radiation Hilbert space HRad(E) with energy E, respectively. It is
useful to introduce the ratio

z
E

=
p

E

q
E

= tr(1CFT(M ≠E))
tr(1Rad(E)) = dimHCFT(M ≠ E)

dimHRad(E) (A.5)

where we used that tr(flCFT) = tr(flRad) = 1. Before the Page transition, this ratio z
E

is very
large, whereas after the Page time, it is very small. The situation is symmetric between
the CFT and radiation, and corresponding the pre- and post-Page time discussions are also
identical. So for definiteness, let us concentrate on the regime after the Page time, so that
z

E
< 1. We will work to all order in z

E
, so our treatment will extend into the regime very close

to the Page transition. For notational convenience, we will assume that the energy resolution
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p

q

The density matrices of CFT and Rad are given by the product of two C-matrices

Coarse graining (phase or ensemble averaging) amounts to performing a Wick contraction 



is fine-grained enough so that the CFT Hilbert subspace at given E is one-dimensional. The
dimension of the radiation Hilbert space at fixed E is defined in a statistical sense, as the
ratio between the level density of the radiation and the CFT.

As simple warm up examples, let us compute the second and third Renyi entropy. Trivial
book keeping shows that the ensemble averages of the second and third power of the density
matrix are given by the sum of two and five Wick contractions, respectively

tr
1
fl2

CFT

2
= tr

1
C †CC †C

2
= C †CC †C + C †CC †C (A.6)

tr(fl3
CFT

) = C †CC †CC †C + C †CC †CC †C + C †CC †CC †C + C †CC †CC †C + C †CC †CC †C

Here we used the large N condition that Wick contractions only take place between operators
with a common summation index. The five Wick contractions for the computation of the
third Renyi entropy are illustrated in the figure below.

Figure 14: The five Wick contractions of tr(fl3
CFT

). The blue lines represent the radiation
states, the red lines the CFT states and the black lines are the initial matter states.

Plugging in the result (A.3) and (A.4) for the elementary Wick contractions, we find that
the expression decomposes into a sum over energies

tr
1
fl2

CFT

2
=
ÿ

E

1
q2

E
+ q

E
p

E

2
, tr

1
fl3

CFT

2
=
ÿ

E

1
q3

E
+ 3q2

E
p

E
+ q

E
p2

E

2
. (A.7)

This simple structure follows from the fact that both elementary Wick contractions produce
density matrices that are diagonal in the energy basis. This structure persists for all higher
Renyi entropies.

The higher Renyi entropies can be computed in an identical manner. The combinatorics
is straighforward. For the n-th Renyi entropy, the sum over Wick contractions splits into a

tr
1
fln

CFT

2
=
ÿ

E

n≠1ÿ

m=0
N(n, m) qn≠m

E
pm

E
(A.8)

where N(n, m) counts the number of terms with n ≠ m Wick contractions of the type
(A.3) and m Wick contractions of the type (A.4). It turns out that this is a well known
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For illustration, we note here that we could in principle also decide to introduce a ‘gravity
dual’ of the radiation system, by following the same coarse graining description for comput-
ing the inner products.6. Let us call this coarse grained system the ‘bath’. The inner product
between the radiation states |„nÍ can be graphically represented as

È„n|„mÍ|bath =
mn

= pn”nm (2.21)

Here the blue arc indicates that the inner product is taken by inserting a complete set of
radiation states and the red arch indicates the two CFT states.

Next consider the second Rényi entropy, or purity, of the CFT. Inserting equation (2.16),
we find that the microscopic purity equals

tr(fl2
CFT) =

ÿ

a,b

ÈÂa|ÂbÍÈÂb|ÂaÍ =
ÿ

a,b,n,m

Can Cú
nb

Cbm Cú
ma

(2.22)

The gravity computation of the purity receives contributions from two saddle points.

tr(fl2
CFT)|grav = + =

ÿ

a

q2
a

+
ÿ

n

p2
n

(2.23)

The first saddle point contribution equals the trace of the square of (2.20). The second saddle
point is the replica wormhole. Its contribution equals the trace of the square of (2.21). In
the special case the probabilities qa and pn are all identical, we have

ÿ

a

q2
a

= 1/dRad ;
ÿ

n

p2
n

= 1/dCFT (special case) (2.24)

so the second saddle point dominates in the post-Page time regime. As we will see in the
next section, the gravity answer matches with the ensemble average of the microscopic purity

ÿ

a,b,n,m

ÈÂa|ÂbÍÈÂb|ÂaÍ =
ÿ

a,b,n,m

Can C ú
nb

Cbm C ú
ma

(2.25)

The key observation here is that in the above sum, there are two competing channels in which
interference can occur. Which one wins is determined by the size of the respective Hilbert
spaces. If they are comparable, one needs to keep both contributions. In the Appendix
we outline how the above technology can be used to recover Page’s original result for the
entanglement spectrum along the Page curve.

6A physical way to make such a gravity dual is to imagine that the radiation is immediately thrown into
another black hole or injected into another CFT with a gravity dual
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Figure 4: The recovery operator R acts on the tensor product of the radiation and the
ancilla CFT. The final state after the recovery operation consists of the tensor product of
the initial pure state |�ÍM and the thermofield double state of the two CFTs.

1.2 The recovery map

We briefly describe the recovery operator R. The construction is a slightly improved version
of the protocol used in [22] for pre-Page time black holes and will be a variant of the Petz map
[31]. The Petz map is a general purpose algorithm for recovering the quantum information
contained in a subsystem after the application of a quantum noise channel. It recently
appeared in related contexts, e.g. [12, 13, 32, 35]. The quantum noise channel in our case is
the combined operation of the unitary time evolution U and tracing out the CFT Hilbert
space. The quantum noise channel N is defined for a general density matrix flMat as

N (flMat) = trCFT

3
U
1
flMat ¢ |0ÍÈ0|CFT

2
U †

4
. (1.6)

and gives the density matrix flRad for the final state of the radiation after the black hole
formation and evaporation process.

The Petz map makes use of a reference density matrix ‡Mat within the initial Hilbert space.
The canonical choice is to take the maximally mixed state given by the projection operator
on the space of allowed initial states, where we choose to normalize ‡Mat so that tr(‡Mat) = dMat

‡Mat = 1Mat . (1.7)

We will also need the density matrix ‡Rad for the final state of the radiation corresponding
to the initial density matrix ‡Mat . Using the above short-hand notation for the noise channel

‡Rad = N (‡Mat) (1.8)

Note that this state ‡Rad is far from maximally mixed, since the combined Hilbert space of
the CFT and radiation is much larger than that of the initial matter states.

7

Importantly, it does so by employing an entanglement swap: after the recovery, the CFT  and 
ancilla CFT are in a thermo-field double state:

The active ingredient in the construction of interior operators is the recovery operator R.
It acts on the radiation and on an ancillary CFT, and effectively inverts the time evolution.



n addition, if we treat the coe�cients Ci
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size, one derives that

C †
mCn ƒ pn ”mn 1Mat . (3.4)

This relation closely resembles the Knill-Laflamme condition, which determines whether a
quantum code is quantum error correctable. For exact error correction, it is necessary that
this relation is an exact identity. In our context, however, it only holds approximately.

After this preparation, it now becomes straightforward to return to the recovery map R

and derive its properties. We now introduce an ancillary system given by a second conformal
field theory that is identical to the first one. Then, similarly as for the unitary time evolution
U , we can write the recovery map in terms of Kraus operators as

R |�ÍRad |0Í ÂCFT =
ÿ

n

Rn |�ÍRad |nÍ ÂCFT (3.5)

where |�ÍRad represents a general state of the radiation. The goal of the recovery operators
Rn is to reverse the action of the Kraus operators Cn on the initial matter state. The
relation (3.4) suggests that the recovery operators can be taken to be proportional to C †

n
.

To determine the factor of proportionality we proceed as before, and require that the recovery
map, when applied to the density matrix ‡

Rad
reproduces again the maximally mixed state

‡Mat . The density matrix ‡
Rad

can be expressed in terms of the Kraus operators as

‡Rad =
ÿ

n

Cn‡MatC †
n

=
ÿ

n

CnC †
n

(3.6)

We will choose the individual Rn recovery operators to take the form

Rn = C †
n

‡≠1/2
Rad . (3.7)

From this definition of the recovery map, and using the unitary relation (3.3), one easily
verifies that the original state is recovered through an exact relation qn Rn ‡Rad R†

n
= ‡Mat .

We like to use the recovery operators not just for the maximally mixed state, but also
to recover any generic (pure or mixed) initial matter state flMat . For this purpose we will
first use the relation (3.4) to derive an approximate expression for the recovery operators, by
replacing the factor ‡≠1/2

Rad by a overall constant. By using the expression (3.6) and repeatedly
applying the approximate identity (3.4) one can show that

C †
n (‡Rad)k ƒ (pn)k C †

n (3.8)

Here we write an approximate sign, which means that this equation holds up to terms that
vanish when the ratio ‘ goes to zero. By using this result and formally taking k = ≠1/2 we
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1.2 The recovery map

We briefly describe the recovery operator R. The construction is a slightly improved version
of the protocol used in [22] for pre-Page time black holes and will be a variant of the Petz map
[31]. The Petz map is a general purpose algorithm for recovering the quantum information
contained in a subsystem after the application of a quantum noise channel. It recently
appeared in related contexts, e.g. [12, 13, 32, 35]. The quantum noise channel in our case is
the combined operation of the unitary time evolution U and tracing out the CFT Hilbert
space. The quantum noise channel N is defined for a general density matrix flMat as

N (flMat) = trCFT

3
U
1
flMat ¢ |0ÍÈ0|CFT

2
U †

4
. (1.6)

and gives the density matrix flRad for the final state of the radiation after the black hole
formation and evaporation process.

The Petz map makes use of a reference density matrix ‡Mat within the initial Hilbert space.
The canonical choice is to take the maximally mixed state given by the projection operator
on the space of allowed initial states, where we choose to normalize ‡Mat so that tr(‡Mat) = dMat

‡Mat = 1Mat . (1.7)

We will also need the density matrix ‡Rad for the final state of the radiation corresponding
to the initial density matrix ‡Mat . Using the above short-hand notation for the noise channel

‡Rad = N (‡Mat) (1.8)

Note that this state ‡Rad is far from maximally mixed, since the combined Hilbert space of
the CFT and radiation is much larger than that of the initial matter states.

7

find that the recovery operators are to a very good approximation given by

Rn ƒ 1
Ô

pn

C †
n (3.9)

With the help of this expression and the relation (3.4) it now becomes straightforward to
derive all the announced properties of the recovery map. The above expression (3.9) for the
recovery operators Rn coincides with the recovery operators used in [5] .

First let us consider the situation for a general mixed initial state flMat . The external
observer is given the final mixed state of the radiation, produced by tracing over the CFT
Hilbert space

flRad = N (flMat) =
ÿ

n

Cn flMatC †
n

(3.10)

In quantum information terminology, this mapping from the initial matter state flMat to the
final radiation state flRad is called a noise channel. The recovery channel has to reconstruct
the initial state. Using the statistical relation (3.4), it is indeed easy to derive that

R(flRad) =
ÿ

n

Rn flRad R†
n
ƒ flMat (3.11)

Our goal will be to reconstruct the initial state purely from the radiation. In particular,
in case the initial state is a pure, the recovery map should transform the mixed state of the
radiation into an approximately pure state. What happens to the quantum entanglement
between the CFT and the radiation? It is for this reason that one needs to introduce an
auxiliary Hilbert space: it would be impossible to purify the state of the radiation without
being able to transfer the entanglement to another system.

Consider the state after the evolution and recovery map

RU |�ÍMat |0ÍCFT|0Í ÂCFT =
ÿ

m,n

RnCm |�ÍMat |mÍCFT|ñÍ ÂCFT (3.12)

With the help of the relations (3.4) and (3.9) it is again straightforward to show that the
resulting state is proportional to a thermofield double of the original and ancillary CFT

RU |�ÍMat |0ÍCFT|0Í ÂCFT ƒ |�ÍMat |TFDÍCFT◊ ÂCFT (3.13)

where for this situation the thermo-field double state is defined by

|TFDÍ =
ÿ

n

Ô
pn |nÍCFT |nÍ ÂCFT (3.14)

This is the announced result. We have thus proven that at late times the information of the
initial state that formed the black hole can be recovered from the Hawking radiation.
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In formulas:

• How do we construct
this recovery operator?

• And what is it good for?
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1.2 The recovery map

We briefly describe the recovery operator R. The construction is a slightly improved version
of the protocol used in [22] for pre-Page time black holes and will be a variant of the Petz map
[31]. The Petz map is a general purpose algorithm for recovering the quantum information
contained in a subsystem after the application of a quantum noise channel. It recently
appeared in related contexts, e.g. [12, 13, 32, 35]. The quantum noise channel in our case is
the combined operation of the unitary time evolution U and tracing out the CFT Hilbert
space. The quantum noise channel N is defined for a general density matrix flMat as

N (flMat) = trCFT
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and gives the density matrix flRad for the final state of the radiation after the black hole
formation and evaporation process.

The Petz map makes use of a reference density matrix ‡Mat within the initial Hilbert space.
The canonical choice is to take the maximally mixed state given by the projection operator
on the space of allowed initial states, where we choose to normalize ‡Mat so that tr(‡Mat) = dMat

‡Mat = 1Mat . (1.7)

We will also need the density matrix ‡Rad for the final state of the radiation corresponding
to the initial density matrix ‡Mat . Using the above short-hand notation for the noise channel

‡Rad = N (‡Mat) (1.8)

Note that this state ‡Rad is far from maximally mixed, since the combined Hilbert space of
the CFT and radiation is much larger than that of the initial matter states.
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n addition, if we treat the coe�cients Ci

na
as random complex variables of roughly equal

size, one derives that

C †
mCn ƒ pn ”mn 1Mat . (3.4)

This relation closely resembles the Knill-Laflamme condition, which determines whether a
quantum code is quantum error correctable. For exact error correction, it is necessary that
this relation is an exact identity. In our context, however, it only holds approximately.

After this preparation, it now becomes straightforward to return to the recovery map R

and derive its properties. We now introduce an ancillary system given by a second conformal
field theory that is identical to the first one. Then, similarly as for the unitary time evolution
U , we can write the recovery map in terms of Kraus operators as

R |�ÍRad |0Í ÂCFT =
ÿ

n

Rn |�ÍRad |nÍ ÂCFT (3.5)

where |�ÍRad represents a general state of the radiation. The goal of the recovery operators
Rn is to reverse the action of the Kraus operators Cn on the initial matter state. The
relation (3.4) suggests that the recovery operators can be taken to be proportional to C †

n
.

To determine the factor of proportionality we proceed as before, and require that the recovery
map, when applied to the density matrix ‡

Rad
reproduces again the maximally mixed state

‡Mat . The density matrix ‡
Rad

can be expressed in terms of the Kraus operators as

‡Rad =
ÿ

n

Cn‡MatC †
n

=
ÿ

n

CnC †
n

(3.6)

We will choose the individual Rn recovery operators to take the form

Rn = C †
n

‡≠1/2
Rad . (3.7)

From this definition of the recovery map, and using the unitary relation (3.3), one easily
verifies that the original state is recovered through an exact relation qn Rn ‡Rad R†

n
= ‡Mat .

We like to use the recovery operators not just for the maximally mixed state, but also
to recover any generic (pure or mixed) initial matter state flMat . For this purpose we will
first use the relation (3.4) to derive an approximate expression for the recovery operators, by
replacing the factor ‡≠1/2

Rad by a overall constant. By using the expression (3.6) and repeatedly
applying the approximate identity (3.4) one can show that

C †
n (‡Rad)k ƒ (pn)k C †

n (3.8)

Here we write an approximate sign, which means that this equation holds up to terms that
vanish when the ratio ‘ goes to zero. By using this result and formally taking k = ≠1/2 we
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We now turn to the recovery map R. Intuitively the recovery map has to reverse the
unitary operator U defined by the time evolution. However, as explained, it can not do so
exactly, because it does not have access to the CFT Hilbert space. To overcome this obstacle
one introduces an ancillary CFT, which initially is put in its ground state |0ÍÂCFT.

A diagrammatic representation of R is given in figure 5. Let us describe how it acts. First
it prepares a unique auxiliary state in the form of the maximally entangled state qi |iÍ|iÍ in
the tensor product of two matter Hilbert spaces HMat. It then acts with the operator ÊU ú,
the complex conjugate of the time evolution operator U , on one of the matter states and
vacuum state of the ancilla CFT. Finally it takes the inner product with the entangled state
|‡≠1/2

Rad Í = (‡≠1/2
Rad )ab|aÍRad|bÍRad in the tensor product of two radiation Hilbert spaces. The

resulting operator R maps a state in HRad (times the vacuum state in the ancilla CFT) onto
a state in HMat ¢HÂCFT. In the next section we will study this R operator and show that it
indeed performs the announced recovery operation (1.5).

For a general density matrix flRad the recovery quantum channel is obtained via

R(flRad) = trÊCFT

3
R
1
flRad ¢ |0ÍÈ0|ÊCFT

2
R†
4

. (1.9)

The recovery operator R is constructed so that the identity R ¶ N (‡Mat) = R(‡Rad) = ‡Mat

holds exactly for the state ‡Mat given in (1.7). However, as we will explain in more detail in
section 3, for a general initial state the information recovery will only be approximate. In
general one has

R ¶N (flMat) ƒ flMat (1.10)

This approximate recovery works only for initial states flMat defined on the code subspace
HMat µ HRad . Apart from this restriction, the recover map is state-independent.

8

find that the recovery operators are to a very good approximation given by

Rn ƒ 1
Ô

pn

C †
n (3.9)

With the help of this expression and the relation (3.4) it now becomes straightforward to
derive all the announced properties of the recovery map. The above expression (3.9) for the
recovery operators Rn coincides with the recovery operators used in [5] .

First let us consider the situation for a general mixed initial state flMat . The external
observer is given the final mixed state of the radiation, produced by tracing over the CFT
Hilbert space

flRad = N (flMat) =
ÿ

n

Cn flMatC †
n

(3.10)

In quantum information terminology, this mapping from the initial matter state flMat to the
final radiation state flRad is called a noise channel. The recovery channel has to reconstruct
the initial state. Using the statistical relation (3.4), it is indeed easy to derive that

R(flRad) =
ÿ

n

Rn flRad R†
n
ƒ flMat (3.11)

Our goal will be to reconstruct the initial state purely from the radiation. In particular,
in case the initial state is a pure, the recovery map should transform the mixed state of the
radiation into an approximately pure state. What happens to the quantum entanglement
between the CFT and the radiation? It is for this reason that one needs to introduce an
auxiliary Hilbert space: it would be impossible to purify the state of the radiation without
being able to transfer the entanglement to another system.

Consider the state after the evolution and recovery map

RU |�ÍMat |0ÍCFT|0Í ÂCFT =
ÿ

m,n

RnCm |�ÍMat |mÍCFT|ñÍ ÂCFT (3.12)

With the help of the relations (3.4) and (3.9) it is again straightforward to show that the
resulting state is proportional to a thermofield double of the original and ancillary CFT

RU |�ÍMat |0ÍCFT|0Í ÂCFT ƒ |�ÍMat |TFDÍCFT◊ ÂCFT (3.13)

where for this situation the thermo-field double state is defined by

|TFDÍ =
ÿ

n

Ô
pn |nÍCFT |nÍ ÂCFT (3.14)

This is the announced result. We have thus proven that at late times the information of the
initial state that formed the black hole can be recovered from the Hawking radiation.
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• How do we construct
the recovery operator?

In formulas and pictures:In formulas:
3.2 The Island operators

We now have all the ingredients to derive the entanglement wedge reconstruction of the
Island region using solely the radiation. In particular, we will explain how, by using the
recovery operation R, the late time outside observer is able to construct operators that
can act and perform measurements inside the Island. The ancillary CFT will play a useful
intermediary role, but the constructed operators act only on the radiation Hilbert space
HRad . The Island operators can be defined without explicitly decoding the radiation and
without physically introducing the ancillary ÁCFT. A useful identity in what follows is that
the recovery operators Rn satisfy

RnR†
m

ƒ ”nm 1Mat (3.15)

This relation follows directly from (3.4) and thus holds to exponential accuracy ‘ given in
(3.1) in the post-Page time regime of interest.

As an intermediate step, consider the hypothetical situation in which we have fully de-
coded the radiation with the help of the ancillary ÁCFT, by applying the recovery operation
R. At that point we would be in possession of the reconstructed matter state |�ÍMat and
the ancillary CFT. As shown in the previous section, the latter would be entangled with
the original CFT into a thermo-field double state. We will now describe how we can use
this hypothetical intermediate situation to reconstruct three types of operators: 1) operators
that act on the initial matter state, 2) CFT operators that act on the internal black hole
side of the TFD, and 3) low energy QFT operators that act on the Island region.

3.2.1 Matter operators

In our hypothetical situation after the decoding step, we could directly act with operators
OMat on the initial matter Hilbert space. Our aim is to find operators that act only on the
radiation. For this purpose we make use of the adjoint R of the recovery operation, to map
the operator ÂOMat back to the situation before the recovery. The end result is an operation
just acting on the radiation Hilbert space

OR
Mat = È0|R† OMat R |0Í =

ÿ

n

R†
n

OMatRn (3.16)

Thanks to the special relation (3.15) one verifies that these radiation operators OR
Mat indeed

generate the same operator algebra as the matter operators (O1)R
Mat (O2)R

Mat ƒ (O1O2)R
Mat .

Equation (3.16) is closely related to the Petz map. For a general initial reference state ‡

the adjoint of the Petz recovery map takes an operator O acting on the initial code subspace
and turns it in to an operator on the subsystem (in our case, the radiation) that’s left after
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1.2 The recovery map

We briefly describe the recovery operator R. The construction is a slightly improved version
of the protocol used in [22] for pre-Page time black holes and will be a variant of the Petz map
[31]. The Petz map is a general purpose algorithm for recovering the quantum information
contained in a subsystem after the application of a quantum noise channel. It recently
appeared in related contexts, e.g. [12, 13, 32, 35]. The quantum noise channel in our case is
the combined operation of the unitary time evolution U and tracing out the CFT Hilbert
space. The quantum noise channel N is defined for a general density matrix flMat as
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and gives the density matrix flRad for the final state of the radiation after the black hole
formation and evaporation process.

The Petz map makes use of a reference density matrix ‡Mat within the initial Hilbert space.
The canonical choice is to take the maximally mixed state given by the projection operator
on the space of allowed initial states, where we choose to normalize ‡Mat so that tr(‡Mat) = dMat

‡Mat = 1Mat . (1.7)

We will also need the density matrix ‡Rad for the final state of the radiation corresponding
to the initial density matrix ‡Mat . Using the above short-hand notation for the noise channel

‡Rad = N (‡Mat) (1.8)

Note that this state ‡Rad is far from maximally mixed, since the combined Hilbert space of
the CFT and radiation is much larger than that of the initial matter states.
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We now turn to the recovery map R. Intuitively the recovery map has to reverse the
unitary operator U defined by the time evolution. However, as explained, it can not do so
exactly, because it does not have access to the CFT Hilbert space. To overcome this obstacle
one introduces an ancillary CFT, which initially is put in its ground state |0ÍÂCFT.

A diagrammatic representation of R is given in figure 5. Let us describe how it acts. First
it prepares a unique auxiliary state in the form of the maximally entangled state qi |iÍ|iÍ in
the tensor product of two matter Hilbert spaces HMat. It then acts with the operator ÊU ú,
the complex conjugate of the time evolution operator U , on one of the matter states and
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resulting operator R maps a state in HRad (times the vacuum state in the ancilla CFT) onto
a state in HMat ¢HÂCFT. In the next section we will study this R operator and show that it
indeed performs the announced recovery operation (1.5).

For a general density matrix flRad the recovery quantum channel is obtained via

R(flRad) = trÊCFT

3
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The recovery operator R is constructed so that the identity R ¶ N (‡Mat) = R(‡Rad) = ‡Mat

holds exactly for the state ‡Mat given in (1.7). However, as we will explain in more detail in
section 3, for a general initial state the information recovery will only be approximate. In
general one has

R ¶N (flMat) ƒ flMat (1.10)

This approximate recovery works only for initial states flMat defined on the code subspace
HMat µ HRad . Apart from this restriction, the recover map is state-independent.

8

find that the recovery operators are to a very good approximation given by

Rn ƒ 1
Ô

pn

C †
n (3.9)

With the help of this expression and the relation (3.4) it now becomes straightforward to
derive all the announced properties of the recovery map. The above expression (3.9) for the
recovery operators Rn coincides with the recovery operators used in [5] .

First let us consider the situation for a general mixed initial state flMat . The external
observer is given the final mixed state of the radiation, produced by tracing over the CFT
Hilbert space

flRad = N (flMat) =
ÿ

n

Cn flMatC †
n

(3.10)

In quantum information terminology, this mapping from the initial matter state flMat to the
final radiation state flRad is called a noise channel. The recovery channel has to reconstruct
the initial state. Using the statistical relation (3.4), it is indeed easy to derive that

R(flRad) =
ÿ

n

Rn flRad R†
n
ƒ flMat (3.11)

Our goal will be to reconstruct the initial state purely from the radiation. In particular,
in case the initial state is a pure, the recovery map should transform the mixed state of the
radiation into an approximately pure state. What happens to the quantum entanglement
between the CFT and the radiation? It is for this reason that one needs to introduce an
auxiliary Hilbert space: it would be impossible to purify the state of the radiation without
being able to transfer the entanglement to another system.

Consider the state after the evolution and recovery map

RU |�ÍMat |0ÍCFT|0Í ÂCFT =
ÿ

m,n

RnCm |�ÍMat |mÍCFT|ñÍ ÂCFT (3.12)

With the help of the relations (3.4) and (3.9) it is again straightforward to show that the
resulting state is proportional to a thermofield double of the original and ancillary CFT

RU |�ÍMat |0ÍCFT|0Í ÂCFT ƒ |�ÍMat |TFDÍCFT◊ ÂCFT (3.13)

where for this situation the thermo-field double state is defined by

|TFDÍ =
ÿ

n

Ô
pn |nÍCFT |nÍ ÂCFT (3.14)

This is the announced result. We have thus proven that at late times the information of the
initial state that formed the black hole can be recovered from the Hawking radiation.
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n addition, if we treat the coe�cients Ci

na
as random complex variables of roughly equal

size, one derives that

C †
mCn ƒ pn ”mn 1Mat . (3.4)

This relation closely resembles the Knill-Laflamme condition, which determines whether a
quantum code is quantum error correctable. For exact error correction, it is necessary that
this relation is an exact identity. In our context, however, it only holds approximately.

After this preparation, it now becomes straightforward to return to the recovery map R

and derive its properties. We now introduce an ancillary system given by a second conformal
field theory that is identical to the first one. Then, similarly as for the unitary time evolution
U , we can write the recovery map in terms of Kraus operators as

R |�ÍRad |0Í ÂCFT =
ÿ

n

Rn |�ÍRad |nÍ ÂCFT (3.5)

where |�ÍRad represents a general state of the radiation. The goal of the recovery operators
Rn is to reverse the action of the Kraus operators Cn on the initial matter state. The
relation (3.4) suggests that the recovery operators can be taken to be proportional to C †

n
.

To determine the factor of proportionality we proceed as before, and require that the recovery
map, when applied to the density matrix ‡

Rad
reproduces again the maximally mixed state

‡Mat . The density matrix ‡
Rad

can be expressed in terms of the Kraus operators as

‡Rad =
ÿ

n

Cn‡MatC †
n

=
ÿ

n

CnC †
n

(3.6)

We will choose the individual Rn recovery operators to take the form

Rn = C †
n

‡≠1/2
Rad . (3.7)

From this definition of the recovery map, and using the unitary relation (3.3), one easily
verifies that the original state is recovered through an exact relation qn Rn ‡Rad R†

n
= ‡Mat .

We like to use the recovery operators not just for the maximally mixed state, but also
to recover any generic (pure or mixed) initial matter state flMat . For this purpose we will
first use the relation (3.4) to derive an approximate expression for the recovery operators, by
replacing the factor ‡≠1/2

Rad by a overall constant. By using the expression (3.6) and repeatedly
applying the approximate identity (3.4) one can show that

C †
n (‡Rad)k ƒ (pn)k C †

n (3.8)

Here we write an approximate sign, which means that this equation holds up to terms that
vanish when the ratio ‘ goes to zero. By using this result and formally taking k = ≠1/2 we
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• How do we construct
the recovery operator?

In formulas and pictures:In formulas:
3.2 The Island operators

We now have all the ingredients to derive the entanglement wedge reconstruction of the
Island region using solely the radiation. In particular, we will explain how, by using the
recovery operation R, the late time outside observer is able to construct operators that
can act and perform measurements inside the Island. The ancillary CFT will play a useful
intermediary role, but the constructed operators act only on the radiation Hilbert space
HRad . The Island operators can be defined without explicitly decoding the radiation and
without physically introducing the ancillary ÁCFT. A useful identity in what follows is that
the recovery operators Rn satisfy

RnR†
m

ƒ ”nm 1Mat (3.15)

This relation follows directly from (3.4) and thus holds to exponential accuracy ‘ given in
(3.1) in the post-Page time regime of interest.

As an intermediate step, consider the hypothetical situation in which we have fully de-
coded the radiation with the help of the ancillary ÁCFT, by applying the recovery operation
R. At that point we would be in possession of the reconstructed matter state |�ÍMat and
the ancillary CFT. As shown in the previous section, the latter would be entangled with
the original CFT into a thermo-field double state. We will now describe how we can use
this hypothetical intermediate situation to reconstruct three types of operators: 1) operators
that act on the initial matter state, 2) CFT operators that act on the internal black hole
side of the TFD, and 3) low energy QFT operators that act on the Island region.

3.2.1 Matter operators

In our hypothetical situation after the decoding step, we could directly act with operators
OMat on the initial matter Hilbert space. Our aim is to find operators that act only on the
radiation. For this purpose we make use of the adjoint R of the recovery operation, to map
the operator ÂOMat back to the situation before the recovery. The end result is an operation
just acting on the radiation Hilbert space

OR
Mat = È0|R† OMat R |0Í =

ÿ

n

R†
n

OMatRn (3.16)

Thanks to the special relation (3.15) one verifies that these radiation operators OR
Mat indeed

generate the same operator algebra as the matter operators (O1)R
Mat (O2)R

Mat ƒ (O1O2)R
Mat .

Equation (3.16) is closely related to the Petz map. For a general initial reference state ‡

the adjoint of the Petz recovery map takes an operator O acting on the initial code subspace
and turns it in to an operator on the subsystem (in our case, the radiation) that’s left after
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Equation (3.16) is closely related to the Petz map. For a general initial reference state ‡

the adjoint of the Petz recovery map takes an operator O acting on the initial code subspace
and turns it in to an operator on the subsystem (in our case, the radiation) that’s left after
applying the noise channel N (the black hole hole formation and evaporation process). The
adjoint Petz map takes the following general form

P†
‡, N ( O ) = N (‡)≠1/2N

1
‡1/2 O ‡1/2

2
N (‡)≠1/2 (3.17)

Inserting the explicit expression (3.7) for the recovery operator R in to the definition of the
operators (3.20), one finds that the operators can be written in terms of the adjoint Petz
map with ‡Mat the maximally mixed state on the matter Hilbert space HMat and N (‡) = ‡Rad

the reference density matrix on the radiation given in (3.6).

3.2.2 CFT operators

We have shown that the virtual decoding step performs an entanglement swap: it temporarily
disentangles CFT from the radiation and instead puts it in an entangled TFD state with the
ancillary CFT. We can thus decide to directly act with operators ÂOÊCF T

on the ancilla. Same as
we did above, we can then act with the adjoint recovery operator, restore the entanglement
between the original CFT and the radiation, and then trace out the ancilla

OR
ÂCFT

= ÈÂ0|R† ÂO ÂCFT R |Â0Í =
ÿ

n,m

R†
n
( ÂO ÂCFT)nm Rm (3.18)

with ( ÂO ÂCFT)nm = Èn| ÂO |mÍ ÂCFT
. These operators act only within the radiation. We will call

them mirror CFT operators. Same as done above, it is easy to show using (3.15) that the
operator algebra of the mirror CFT operators is identical to the operator algebra of the
CFT, in other words, that the product of two mirror operators is equal to the mirror of the
product. Note, however, that this isomorphism is approximate and breaks down if one tries
to apply this construction too close to the Page time.

Let us consider the expectation value of the product ÕR
ÂCFT

OCFT of a mirror CFT operator
and an ordinary CFT operator in the state U |�MatÍ|0ÍCFT after the black hole formation and
evaporation process. We like to show that it is approximately given by the corresponding
expectation value in the thermofield double state:

È�Mat|U † ÕR
ÂCFT

OCFT U |�MatÍ ƒ ÈTFD| Õ ÂCFT OCFT |TFDÍ (3.19)

The derivation is straightforward, and makes use of the most right expression of (3.20) and
the approximate error correction identities ((3.4)) and ((3.9)).

The presentation thus far mirrors the construction of [22]. Indeed, if we use the approxi-
mate form (3.9) of the operators Rn, the recovery map and the construction of the operators
coincides with those in [22], again with the roles of the radiation and the CFT interchanged.
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3.2 The Island operators

We now have all the ingredients to derive the entanglement wedge reconstruction of the
Island region using solely the radiation. In particular, we will explain how, by using the
recovery operation R, the late time outside observer is able to construct operators that
can act and perform measurements inside the Island. The ancillary CFT will play a useful
intermediary role, but the constructed operators act only on the radiation Hilbert space
HRad . The Island operators can be defined without explicitly decoding the radiation and
without physically introducing the ancillary ÁCFT. A useful identity in what follows is that
the recovery operators Rn satisfy

RnR†
m

ƒ ”nm 1Mat (3.15)

This relation follows directly from (3.4) and thus holds to exponential accuracy ‘ given in
(3.1) in the post-Page time regime of interest.

As an intermediate step, consider the hypothetical situation in which we have fully de-
coded the radiation with the help of the ancillary ÁCFT, by applying the recovery operation
R. At that point we would be in possession of the reconstructed matter state |�ÍMat and
the ancillary CFT. As shown in the previous section, the latter would be entangled with
the original CFT into a thermo-field double state. We will now describe how we can use
this hypothetical intermediate situation to reconstruct three types of operators: 1) operators
that act on the initial matter state, 2) CFT operators that act on the internal black hole
side of the TFD, and 3) low energy QFT operators that act on the Island region.

3.2.1 Matter operators

In the virtual situation after the decoding step, we could directly act with operators OMat on
the initial matter Hilbert space. Our aim is to find operators that act only on the radiation.
For this purpose we make use of the adjoint R of the recovery operation, to map the operator
ÂOMat back to the situation before the recovery. The end result is an operation just acting on
the radiation Hilbert space

OR
Mat = ÈÂ0|R† OMat R |Â0Í =

ÿ

n

R†
n

OMatRn (3.16)

Here and in the remainder of this section, the vacuum |Â0Í = |0ÍÊCFT denotes the vacuum
state of the ancillary ÁCFT. Thanks to the special relation (3.15) one verifies that these
radiation operators OR

Mat indeed generate the same operator algebra as the matter operators
(O1)R

Mat (O2)R
Mat ƒ (O1O2)R

Mat .The correction terms to this relation are described in Appendix
B. They exponentially suppressed by the same ratio ‘ given in (3.1).
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3.2.3 Island QFT operators

The above reconstruction of CFT operators in terms of the radiation relies on the phe-
nomenon of operator spreading: generic CFT operators evolve through the evaporation
process into operators that act ergodically on the outside radiation. This ergodic quan-
tum dynamics manifests itself via the gravitational shockwave interactions between infalling
and outgoing modes inside the AdS black hole space time. The time scale for the operator
spreading is set by the scrambling time ts ≥ M log M .

However, there is a special subset of operators that have not yet had time to become fully
scrambled inside the radiation. These are the recent HKLL operators, that are reconstructed
through free field propagation in the AdS bulk space time. The interaction Hamiltonian that
couples the CFT to the radiation, and is responsible for the evaporation process, is given
by the product of HKLL annihilation operators and radiation creation operators. This is a
simple non-scrambling interaction. The HKLL operators create or annihilate the e�ective
field theory modes inside the entanglement wedge of the CFT, outside the quantum extremal
surface. They give a well controlled description of the near horizon region of the black hole,
as long as they act within a time interval shorter than the scrambling time.

After applying the recovery map, the Island is contained in the entanglement wedge of
the ancillary CFT. This implies that the low energy e�ective QFT operators inside the Island
can be described using the ancillary HKLL operators ÂOHKLL

QFT . Via the same procedure, we
can pull them back to operators that act only on the radiation via

OR
QFT = ÈÂ0|R† ÂO

HKLL

QFT R |Â0Í =
ÿ

n,m

R†
n
( ÂOHKLL

QFT )nm Rm (3.20)

This expression for the Island operators is our main result.
It is still instructive to elaborate this construction of the HKLL operators, and write

them in a form more similar to the standard Petz map. The standard Petz map recovers
operators O that act on the code subspace, which up to this point we chose to identify with
the initial matter Hilbert space HMat . The HKLL operators, however, act on the CFT and
the ancilla CFT Hilbert space, and do not act within the small code subspace HMat . This
suggests that to make contact with standard entanglement wedge reconstruction [13], we
should extend the code subspace HMat and include a low energy e�ective QFT Hilbert space
defined by acting with the HKLL operators.

Let us define an extended code subspace HCode that contains both HMat as well as HQFT .
The two spaces have negligible overlap, to the extended code subspace can be thought of
a a tensor product: HCode ƒ HMat ¢ HQFT . To rewrite the above construction of the Island
operators in terms of this new code space, we make use of the fact that the embedding of the
low energy e�ective QFT inside the ancillary CFT can be given a tensorial representation
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U

|�ÍMat

|TFDÍ |�ÍMat

|0ÍCFT |0ÍÂCFT

CFT

ÊCFT

Rad

R

Figure 4: The recovery operator R acts on the tensor product of the radiation and the
ancilla CFT. The final state after the recovery operation consists of the tensor product of
the initial pure state |�ÍM and the thermofield double state of the two CFTs.

1.2 The recovery map

We briefly describe the recovery operator R. The construction is a slightly improved version
of the protocol used in [22] for pre-Page time black holes and will be a variant of the Petz map
[31]. The Petz map is a general purpose algorithm for recovering the quantum information
contained in a subsystem after the application of a quantum noise channel. It recently
appeared in related contexts, e.g. [12, 13, 32, 35]. The quantum noise channel in our case is
the combined operation of the unitary time evolution U and tracing out the CFT Hilbert
space. The quantum noise channel N is defined for a general density matrix flMat as

N (flMat) = trCFT

3
U
1
flMat ¢ |0ÍÈ0|CFT

2
U †

4
. (1.6)

and gives the density matrix flRad for the final state of the radiation after the black hole
formation and evaporation process.

The Petz map makes use of a reference density matrix ‡Mat within the initial Hilbert space.
The canonical choice is to take the maximally mixed state given by the projection operator
on the space of allowed initial states, where we choose to normalize ‡Mat so that tr(‡Mat) = dMat

‡Mat = 1Mat . (1.7)

We will also need the density matrix ‡Rad for the final state of the radiation corresponding
to the initial density matrix ‡Mat . Using the above short-hand notation for the noise channel

‡Rad = N (‡Mat) (1.8)

Note that this state ‡Rad is far from maximally mixed, since the combined Hilbert space of
the CFT and radiation is much larger than that of the initial matter states.
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n addition, if we treat the coe�cients Ci

na
as random complex variables of roughly equal

size, one derives that

C †
mCn ƒ pn ”mn 1Mat . (3.4)

This relation closely resembles the Knill-Laflamme condition, which determines whether a
quantum code is quantum error correctable. For exact error correction, it is necessary that
this relation is an exact identity. In our context, however, it only holds approximately.

After this preparation, it now becomes straightforward to return to the recovery map R

and derive its properties. We now introduce an ancillary system given by a second conformal
field theory that is identical to the first one. Then, similarly as for the unitary time evolution
U , we can write the recovery map in terms of Kraus operators as

R |�ÍRad |0Í ÂCFT =
ÿ

n

Rn |�ÍRad |nÍ ÂCFT (3.5)

where |�ÍRad represents a general state of the radiation. The goal of the recovery operators
Rn is to reverse the action of the Kraus operators Cn on the initial matter state. The
relation (3.4) suggests that the recovery operators can be taken to be proportional to C †

n
.

To determine the factor of proportionality we proceed as before, and require that the recovery
map, when applied to the density matrix ‡

Rad
reproduces again the maximally mixed state

‡Mat . The density matrix ‡
Rad

can be expressed in terms of the Kraus operators as

‡Rad =
ÿ

n

Cn‡MatC †
n

=
ÿ

n

CnC †
n

(3.6)

We will choose the individual Rn recovery operators to take the form

Rn = C †
n

‡≠1/2
Rad . (3.7)

From this definition of the recovery map, and using the unitary relation (3.3), one easily
verifies that the original state is recovered through an exact relation qn Rn ‡Rad R†

n
= ‡Mat .

We like to use the recovery operators not just for the maximally mixed state, but also
to recover any generic (pure or mixed) initial matter state flMat . For this purpose we will
first use the relation (3.4) to derive an approximate expression for the recovery operators, by
replacing the factor ‡≠1/2

Rad by a overall constant. By using the expression (3.6) and repeatedly
applying the approximate identity (3.4) one can show that

C †
n (‡Rad)k ƒ (pn)k C †

n (3.8)

Here we write an approximate sign, which means that this equation holds up to terms that
vanish when the ratio ‘ goes to zero. By using this result and formally taking k = ≠1/2 we
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What is it good for?

In formulas:

Reconstruction of interior operators:



tfd

tfd

tfd tfd

In pictures:
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Figure 6: Schematic space-time depiction of the Rendez-Vous. Bob is falling into the first
black hole and Alice has jumped into the Island. They hope to meet in their common future
inside the black hole. One of Charlie’s worries is that Alice (and/or Bob) may encounter a
firewall in the form of highly boosted particle traveling along the horizon.

4.2 Deconstructing the rendez-vous protocol

Charlie is both excited and worried for good reasons: if Alice and Bob in fact do succeed
to meet inside the black hole, and if at the same time he would also be able to decode all
information contained inside the black hole, this would in e�ect amount to a resolution of
the black hole information paradox. This seems like a tall order. So he decides to again
carefully go through the reasoning, step by step.

He first draws the diagram of the time evolution up to the moment right after Bob has
jumped into the space-time geometry dual to the first CFT.

U

OHKLL

Bob

|�ÍMat

RadCFT

Figure 7: The situation just after Bob jumps into the first CFT via the HKLL map. The
CFT is in a thermal mixed state and Bob is safely falling towards the dual black hole.
At the moment that Bob jumped in, the CFT was in a thermal mixed state and maximally
entangled with the outside radiation. The outside region of the black hole is contained
inside the entanglement wedge of the CFT and the usual entanglement wedge reconstruction
procedure applies. Assuming that Bob applied the right HKLL map, he is safely embedded
inside the e�ective QFT code subspace. The total state looks like

OHKLL

Bob U |�ÍMat =
ÿ

n

OHKLL

Bob |nÍCFT ¢ Cn|�ÍMat (4.4)
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inside the entanglement wedge of the CFT and the usual entanglement wedge reconstruction
procedure applies. Assuming that Bob applied the right HKLL map, he is safely embedded
inside the e�ective QFT code subspace. The total state looks like

OHKLL

Bob U |�ÍMat =
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n

OHKLL

Bob |nÍCFT ¢ Cn|�ÍMat (4.4)
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OHKLL

Bob OHKLL

Alice =

|TFDÍ

CFT ÁCFT

T T̃

T † T̃ †

OAliceOBob

|tfdÍ

|TFDÍ

CFT ÁCFT

Figure 9: The situation right after Bob and Alice have both jumped into their respective
CFTs. The standard entanglement wedge reconstruction map applies. The quantum error
correcting property of the HKLL embedding T and T̃ ensures that Alice and Bob experience
a thermofield double state |tfdÍ defined in the low energy e�ective field theory.

Next Charlie draws the diagram that describes the HKLL embedding of Alice and Bob in
their respective CFTs. Luckily, the two CFTs start out in the thermofield double state, which
according to the ER = EPR paradigm should imply that their respective black hole space-
times are connected via an Einstein-Rosen bridge. Moreover, the standard entanglement
wedge reconstruction mechanism should be in full force to protect the code subspace that
contains the Hilbert space of the e�ective QFT in which Alice and Bob are encoded.

The HKLL embedding of the QFT code subspace within each CFT Hilbert space is des-
ignated via three index tensors T and T̃ that map the basis states in H

QFT
to operators Tp

and T̃q that map the corresponding CFT Hilbert space into an auxilary Hilbert space H
AUX

.
The HKLL tensors satisfy analogous statistical properties as the ergodic C operators con-
sidered in the previous section (see Appendix). In particular, they satisfy the same type of
statistical identity TpTq

† ƒ wp ”pq1CFT , with wp some set of probabilities with qp wp = 1,
that plays a central role in the recovery protocol. Using this property, one verifies that

ÈTFD| ÕHKLL

Alice O
HKLL

Bob |TFDÍ ƒ Ètfd|ÕAliceOBob |tfdÍ (4.7)

where |tfd denotes the thermofield double state of the e�ective low energy field theory. Using
this result, Charlie now verifies that Alice and Bob both experience the same quantum state

ÕAliceOBob |tfdÍ (4.8)

within the low energy e�ective quantum field theory that describes their common observa-
tions. All this seems very reassuring: by analytic continuity, Alice and Bob should be able
to meet in their a common future. It looks like ER = EPR saves the day.
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Suppose we make the ancilla real. Alice and Bob want to arrange a 

Rendez-Vous on the Island with the help of the powerful quantum 

supercomputer owned by Bob’s uncle Charlie.  Will they succeed? 



A B

New Island

Figure 10: The meeting between Alice and Bob takes place inside a new Island region inside
the two sided black hole. Both black holes are still evaporation while they fall in. The CFTs
both get entangled with the outside radiation and the thermofield double state of the CFTs
degenerates into a thermal mixed double state. The new Island region must be reconstructed
by means of the radiation and not just by the CFTs.

5 Decoding the Interior of a Two-sided Black Hole

Charlie is still concerned. The ER = EPR argument seems a bit too easy, static and kinemat-
ical. Time evolution continues and Alice and Bob are inside a strongly interacting system
with ergodic dynamics. Moreover, as they approach and cross their respective horizons,
there will be other highly boosted regions of space relative to their rest frames. The smallest
perturbation can become deadly after undergoing an exponential blue shift. What guaran-
tees that the low energy e�ective description remains accurate? Shouldn’t it break down
after a scrambling time? Quantum error correction may help with protecting the low energy
e�ective description, but is it certain that Bob and Alice are part of the same code subspace?
And if so, is this subspace large enough to contain the region in which they plan to meet?

The main problem Charlie worries about is that the two-sided black hole continues to
evaporate while Alice and Bob are falling in. Hence the two CFTs can not continue to be
in a pure thermo-field double state. Instead the CFTs become entangled with the outside
radiation, until eventually, after the new Page time, completely thermalize and settle into a
thermal mixed state. After this point, a new Island forms inside the two sided black hole.
Since from the outside perspective, Alice and Bob take a very long time to fall through the
horizon, their future meeting is expected to take place inside the new Island. The quantum
information inside of this Island should be recoverable from the newly emitted radiation by
the two sided black hole.

This insight gives Charlie some renewed hope: he realizes that he can repeat the recovery
experiment with the two-sided black hole and actively test whether the rendez-vous has taken
place. He can not use either CFT for his quantum computation, but he can use the radiation
emitted by the two-sided black hole. So he will have to be patient and again have to wait
until after the new Page time, but at that point he should be able to recover the state of
Alice and Bob inside the Island. To prepare his quantum computer, he starts working out
the time evolution that describes the decoherence of a two sided black hole.
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Figure 11: Diagrammatic representation of the two-sided recovery map R2.

as the (unnormalized) density matrix obtained by acting with the noise channel on ‡Code2 .
The new recovery operator R2 is shown in Figure 11.

With the help of this new recovery map, Charlie is able perform the switch on Alice and
Bob. He introduces the Krauss operators Cnñ that map the initial state inside the code
subspace to the radiation state that is paired with the state |n, ñÍCFT2

|‰nñÍRad = Cnñ |�ÍCode (5.12)

and writes the explicit form of the switch operator as follows

OR
switch =

ÿ

n,ñ

R†
nñ Oswitch Rnñ Rnñ = C †

nñ ‡≠1/2
Rad2 . (5.13)

Here we left the HKLL embedding implicit. Equation (5.13) defines a linear operator that
acts only on the radiation.

It gives useful insight to decompose the switch operation into intermediate steps. The
first step is to introduce the virtual ancilla pair of CFTs, initialized in the thermofield double
state. Hence the virtual ancilla pair of CFTs has a holographic dual given by a virtual two-
sided black hole connect via an ER bridge. Next Charlie applies the two-sided recovery
operator R2 defined above. The virtual state after this step takes the following general form

RU |�ÍCode|0ÍRad |0ÍRad
ƒ |�ÍCode ¢ |TFDDÍ (5.14)

where |TFDDÍCFT2◊CFT2 is a suitable generalization of the entangled thermofield double state
to the case of four CFTs. What does it looks like?

At this point, the discussion bifurcates into two possible scenarios, corresponding to the
two possible ways in which the evaporating two-sided black hole undergoes decoherence,
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Figure 11: Diagrammatic representation of the two-sided recovery map R2.

as the (unnormalized) density matrix obtained by acting with the noise channel on ‡Code2 .
The new recovery operator R2 is shown in Figure 11.

With the help of this new recovery map, Charlie is able perform the switch on Alice and
Bob. He introduces the Krauss operators Cnñ that map the initial state inside the code
subspace to the radiation state that is paired with the state |n, ñÍCFT2

|‰nñÍRad2 = Cnñ |�ÍCode2 (5.12)

and writes the explicit form of the switch operator as follows
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nñ ‡≠1/2
Rad2 . (5.13)

Here we left the HKLL embedding implicit. Equation (5.13) defines a linear operator that
acts only on the radiation.

It gives useful insight to decompose the switch operation into intermediate steps. The
first step is to introduce the virtual ancilla pair of CFTs, initialized in the thermofield double
state. Hence the virtual ancilla pair of CFTs has a holographic dual given by a virtual two-
sided black hole connect via an ER bridge. Next Charlie applies the two-sided recovery
operator R2 defined above. The virtual state after this step takes the following general form

RU |�ÍCode|0ÍRad |0ÍRad
ƒ |�ÍCode ¢ |TFDDÍ (5.14)

where |TFDDÍCFT2◊CFT2 is a suitable generalization of the entangled thermofield double state
to the case of four CFTs. What does it looks like?

At this point, the discussion bifurcates into two possible scenarios, corresponding to the
two possible ways in which the evaporating two-sided black hole undergoes decoherence,
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Figure 13: There exists a spatial slice through the two-sided black hole space time that
contains the two extremal surfaces at a and c and the bifurcate horizon h. The area of the
three quantum extremal surfaces quantifies the amount of entanglement across the surface.

is physically more accurate and reasonable. From the above discussion it appears that in
both cases, one is able to perform the recovery operation. So at this point, we have no clear
diagnostic that would clearly favor one scenario over the other.

To contrast the two situations a bit more clearly, consider the spatial slice through an
evaporating two-sided black hole space time depicted in Figure 13. It contains an Island
region in the middle, but we have drawn the slice such that it also goes through the bifurcate
horizon h of the two-sided black hole. This is a valid spatial slice because the two quantum
extremal surfaces at a and c are just outside the event horizon, i.e. just outside the future
light-cone of the bifurcation point h. The Island region corresponds to the combined interval
[a, h] fi [h, c ]. The distinction between Case 1 and Case 2 is now clearly formulated in
geometrical terms as follows.

The horizon h is a quantum extremal surface. This suggests that its area should also
have the interpretation of an entanglement entropy.

In Case 1, the CFT does not contain any entanglement between the two sides. So in this
case, the area of the quantum extremal surface h represents the long range entanglement
between the radiation on the left and the radiation on the right. Note that this non-local
entanglement only persists in case the two sides of the radiation remain physically and
geometrically separated. If, on the other hand, the corresponding space-time regions do
reconnect, as shown as in figure 12, the entanglement would be able to dissipate and the area
of the quantum extremal surface at h would not be associated with a persistent entanglement.
Indeed, the recovered state at the intermediate stage of the recovery protocol factorizes as

flCFT ¢ fl ÂCFT æ |TFDÍ ¢ | ÁTFDÍ (5.17)

which does not display any entanglement between the two sides of the quantum extremal
surface h. Geometrically, the ER-bridge containing Alice and Bob has been disconnected,
as shown in the middle panel in Figure 12. Indeed, the uncorrelated state of the CFTs has
vanishing entanglement of purification.
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5.2 Two-sided recovery protocol

However, he decides to play things a bit more conservatively, and instead use the recovery
protocol to act with an operator that proves that Alice and Bob are there. He chooses to act
with the operator Oswitch that switches them around. Charlie’s ability to apply this switch
will be su�cient proof for him that they are still part of the same code subspace and have
actually met inside the Island. For now we will believe him.

He defines the code subspace HCode2 as the e�ective QFT Hilbert space that contains the
low energy world of Alice and Bob

|�ÍCode = ÂOAliceOBob|tfdÍQFT œ HCode2 (5.9)

and applies the HKLL embedding to turn this into a state inside the pair of CFTs. For
simplicity, we continue denote this CFT state by |�ÍCode2 . Next he lets time evolve with the
help of the time evolution operator U2

U2 |�ÍCode |0ÍRad =
ÿ

n,ñ

|n, ñÍCFT2 |‰nñÍRad (5.10)

Equation (5.10) still looks a bit scary for Alice and Bob: their quantum information is now
fully scrambled and spread out over the CFTs and the radiation. However, Charlie is getting
more confident that things will turn out OK: rather than the ER = EPR implication, it is
the quantum error correction mechanism that will save the day.

Charlie sets out to use his QEC protocol to perform the switch operation on Alice and Bob
inside the new Island. The protocol makes use a virtual ancillary part of the radiation which
starts out in its ground state |0Í

Rad2
. He then uses the ancillary radiation to assemble a virtual

ancilla pair of CFTs. The virtual ancilla pair of CFTs will eventually be transformed back
into radiation and projected back onto the ground state

Rad2
È0|. Hence neither the ancillary

radiation nor the ancilla pair of CFTs need to be introduced as real physical systems. The
new recovery operation R2 acts on the radiation and the virtual ancilla pair of CFTs via

R2|�ÍRad|0ÍRad
=
ÿ

n,ñ

|n, ñÍCFT2 Rnñ|�ÍRad (5.11)

and is constructed via the same procedure described in section 3. We will briefly summarize
the procedure here.

Let N2 denote the noise channel defined by acting with the combined evolution operator
U2 as in equation (5.10), and then tracing out the pair of CFTs. Hence this noice channel
produces a density matrix flRad2 of the radiation. Next, let ‡Code2 be the projection operator on
the HKLL code subspaceHCode2 that contains Alice and Bob. We then define ‡Rad2 = N2(‡Code2)
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Charlie is still worried: the black hole still evaporates and the TFD state decoheres. 

He wants to find out if Alice and Bob were able to meet:

The corresponding two-sided CFT density matrices are

flCFT2 =

Y
____]

____[

|TFD(t)Í ÈTFD(t)| (case 0)

flCFT ¢ fl ÂCFT (case 1)

fl
TMD

(case 2)

(5.7)

Here |TFD(t)Í = q
n

Ô
pne≠2iEnt|n, nÍ denotes the time evolved thermofield double state,

flCFT = qn pn |nÍCFTÈn| and fl ÂCFT denote the respective thermal density matrices of each CFT,
and

flTMD =
ÿ

n

pn |nÍCFTÈn| ¢ |nÍ ÂCFTÈn| (5.8)

denotes a thermal mixed state state, which we will call the thermo-mixed double state. Let
us briefly discuss each case.

In case 0 the evaporating two-sided black hole does not decohere. This seems contradic-
tory. However, it is possible to set up the dynamics of the two sided black hole such that
it evaporates via simultaneous pairwise emission of mutually entangled Hawking particles.
In this case, the Hawking pair does not produce any entanglement between the radiation
and the black hole, and the two black holes maintain all their entanglement. The internal
state of the two sided black hole just keeps evolving according to the internal time-evolution
generated by the CFT Hamiltonian, and remains in a TFD state with a slowly decreasing
temperature. This time evolution is a plausible description of the evolution over short time
scales, but unrealistic over longer time scales.

Case 1 corresponds to the situation where each CFT independently decoheres, by building
up entanglement with its emitted Hawking radiation. After the Page time, each CFT will be
a mixed thermal state. The total von Neumann entropy of the two sided black hole in this
case is twice the Bekenstein-Hawking entropy of a one-sided black hole. Note, however, that
the two black holes no longer share is any mutual entanglement nor any classical correlations.
The mutual information I = SCFT2 ≠ SCFT ≠ SÊCFT between the two sides vanishes.

Case 2 can be thought of as the incoherent sum of all the time-evolved thermofield double
states |TFD(t)Í. It satisfies the so-called balanced holography hypothesis put forward in [?]:
its von Neumann entropy is equal to the Bekenstein-Hawking entropy of a single black hole.
Simultaneously, each CFT is in a thermal mixed state, and shares half of its entanglement
with the radiation and half of its entanglement with the other CFT. So in this case, the
mutual information between the two sides is non-zero and equal to the Bekenstein-Hawking
entropy I = SCFT2≠SCFT≠SÊCFT = SBH . The thermo-mixed double state describes the universal
mixed state of a two sided black hole that arises after full decoherence, while maintaining
the ‘balanced’ condition that both CFTs have the exact same energy, c.f. [?].
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Figure 1: Spatial slice of the two sided black hole with an elongated ER bridge. The CFTs
are entangled with the radiation and are in a mixed state. The ER bridge is now contained
inside the new Island and the state Alice and Bob can be reconstructed via the radiation.
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B Corrections to QFT operator algebra

In the main text we gave an expression for the recovered QFT operators inside the Island
in terms of operators acting on the radiation. Far from the Page transition, the recovered
operators satisfy the same operator algebra as the QFT operators, up to exponentially small
corrections. Closer to the Page transition, the corrections can become of order 1. These
corrections were first identified in [?] for the case of the pre-Page time black holes. The
algebraic form of the corrections in the post-Page time regime is identical [35]. In [?] it was
shown that the corrections to the product algebra of the recovered operators can be written
as follows

(O1)R (O2)R = (O1O2)R + Error (B.1)
with

Error = ‘ trCFT

1
O1O2 e—H

2
(B.2)

Here ‘ = eSRad≠SCFT≠SMat π 1. We refer to [?] for the derivation of this result. A similar
calculation was also recently done in [35], with an identical result. It shows that the product
of two recovered operator di�ers from the recovered operator of the product. We call the
correction term an error, but it indeed corresponds to an irrecoverable error where the
quantum error correction protocol has failed to act. The appearance of such error terms is
responsible for the transfer of information between the interior and the exterior regions of
the black hole space-time.

Given the recent insight into the appearance of new saddle points in the gravitational path
integral in the form of replica wormholes, it is tempting to try to give similar semiclassical
interpretation to these error terms. Indeed, it seems likely that the error terms can be
interpreted as the contribution due to some non-trivial gravitational saddle point.

The error terms look like a thermal expectation value at negative temperature. This
seems somewhat hard to interpret. However, the recovered operators themselves are already
in a thermal environment. So relatively speaking, the error term can perhaps be thought
of as the term as an expectation value in which the temperature is switched o�. Here we
briefly indicate how this could work.

Let fl = e≠—H denote the thermal density matrix. Now consider the thermally dressed
operators

(fl1/4 O1fl1/4)R =
O1

(B.3)

These represent operators acting half-way the preparation of the thermal field double state.
The half disc indicates the holographic dual of the TFD state as prepared via the graviational
path integral over the lower half of a euclidean two-sided black hole geometry.
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Next consider the operator algebra of these thermally dressed operators, including the
error term. In the above graphical notation, this algebra can be represented as follows

(fl1/4O1fl1/4)R (fl1/4O2fl1/4)R = (fl1/4O1fl1/2O2fl1/4)R + ‘tr(O1fl1/2O2fl≠1/2) (B.4)

O1

◊
O2

O2

+=

O1

O2

O1

The di�erent terms in this equation can be given a semi-classical interpretation as follows.
First, we note that the two operators on the left are recovered Island operators, written in
terms of the radiation. An intuitive semi-classical origin of the fact that this recovery is at all
possible is that there are now gravitational saddle points, similar to the replica wormholes,
that connect the outside radiation region to the Island. So the left-hand side and the first
term on the right-hand side in fact represent such non-trivial saddle point. These new saddle
points are dominant in the post-Page time regime, and their dominant contribution give rise
to the correct operator algebra. The second term on the right-hand side is the error term,
due to the other saddle point in which there is no geometrical bridge between the radiation
and the Island. The operators in this contribution are in some sense ‘confined’ and can only
act via term proportional to their trace times the identity operator.
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B Corrections to QFT operator algebra

In the main text we gave an expression for the recovered QFT operators inside the Island
in terms of operators acting on the radiation. Far from the Page transition, the recovered
operators satisfy the same operator algebra as the QFT operators, up to exponentially small
corrections. Closer to the Page transition, the corrections can become of order 1. These
corrections were first identified in [?] for the case of the pre-Page time black holes. The
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Here ‘ = eSRad≠SCFT≠SMat π 1. We refer to [?] for the derivation of this result. A similar
calculation was also recently done in [35], with an identical result. It shows that the product
of two recovered operator di�ers from the recovered operator of the product. We call the
correction term an error, but it indeed corresponds to an irrecoverable error where the
quantum error correction protocol has failed to act. The appearance of such error terms is
responsible for the transfer of information between the interior and the exterior regions of
the black hole space-time.

Given the recent insight into the appearance of new saddle points in the gravitational path
integral in the form of replica wormholes, it is tempting to try to give similar semiclassical
interpretation to these error terms. Indeed, it seems likely that the error terms can be
interpreted as the contribution due to some non-trivial gravitational saddle point.

The error terms look like a thermal expectation value at negative temperature. This
seems somewhat hard to interpret. However, the recovered operators themselves are already
in a thermal environment. So relatively speaking, the error term can perhaps be thought
of as the term as an expectation value in which the temperature is switched o�. Here we
briefly indicate how this could work.

Let fl = e≠—H denote the thermal density matrix. Now consider the thermally dressed
operators

(fl1/4 O1fl1/4)R =
O1

(B.3)

These represent operators acting half-way the preparation of the thermal field double state.
The half disc indicates the holographic dual of the TFD state as prepared via the graviational
path integral over the lower half of a euclidean two-sided black hole geometry.

40

The reconstructed Island operator algebra has a finite `unrecoverable error’.

These error terms are responsible for the transfer of information to the exterior.



• Reconstruction of interior operators in terms of the radiation uses that 
black evaporation produces an random embedding of the initial state into 
the Hilbert space of the radiation. 

• This construction is largely state independent, but requires the introduction 
of a code subspace with entropy Scode such that

• No ensemble average is needed for reconstruction of interior operators: 
gravity only knows the ensemble, because it’s a coarse grained description.

• Replica wormholes may provide crucial insight into how QFT breaks down 
and into the possible mechanism for information transfer to the exterior.

• Does the existence of Island operators prove that Alice and Bob are able to 
meet?

MAT

CFT
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Figure 2: The black hole formation and evaporation process is modeled by injecting energy,
in the form of matter (or radiation) into the CFT (left). The CFT quickly thermalizes and
is allowed to cool o�, while keeping thermal equilibrium with the bath. After the Page time,
the CFT is fully entangled with the radiation (right). Observables inside the Island are
represented by operators acting on the radiation.

the entropy in the radiation exceeds the entropy contained in the CFT

SRad(t) > SCFT(t). (1.1)

In this post-Page time regime, the CFT becomes fully entangled with the radiation. As
argued in [?], the Island region then enters the entanglement wedge of the radiation. This
in particular means that all observables inside the Island may be represented by operators
acting only on the radiation. in the following we will give an explicit protocol for this
reconstruction map. We will then describe how this reconstruction protocol can be used to
set up a scenario in which two observers can meet up on the Island.

Our construction relies on techniques of approximate error correction first employed in
our earlier work [5] on the reconstruction of the interior operators of a pre-Page time black
hole. The mapping will have a weak form of state independence, in that, as any QEC
protocol, it relies on the introduction of a code subspace HCode within the full Hilbert space
of the CFT and radiation. We associate an entropy SCode = log dimHCode to this code
subspace. We assume that

SMat + SQFT(t) . SCode < SRad(t)≠ SCFT(t) (1.2)

The first inequality reflects the microscopic requirement that the code subspace HCode should
contain both the Hilbert space HQFT(t) of the e�ective bulk QFT at time t and the initial
matter Hilbert space HMat. For convenience, we will assume that both these Hilbert spaces
are independent. So we will write this requirement as

HQFT(t)¢HMat µ HCode (1.3)
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