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The Key Points
General Relativity as Hydrodynamics of the Area Law -
Jacobson
The Covariant Entropy/Holographic Principle - ’t Hooft,
Fischler, Susskind and Bousso
T.B. and Fischler: c.c. as boundary condition on entropy* for
large time
Scattering in terms of Asymptotic Current Algebra
Jet State decomposition of DOF, Zero Energy Horizon DOF



Anachronistic Account of The Covariant
Entropy/Holographic Principle

I ’t Hooft : Fundamental Theory will have only variables living
on horizons (explaining area law).

I Jacobson 1995 : If we assume S = A/4L2P for holographic
screen of any causal diamond, then
dE = TdS + Unruh + Raychauduri →
nµnν(Rµν − 1

2gµνR − 8πGNTµν) = 0 for every null vector.
Uses Unruh trajectory of infinite acceleration
→ S = ln dim H.

I That is Einstein’s Equations (with cosmological constant
undetermined) are the hydrodynamics of any quantum system
obeying the area law!

I Implies QFT (in string theory we learn that all of QFT follows
from the supersymmetric generalization of Einstein’s
equations in 11 dimensions) should only be quantized when
discussing small fluctuations around the ground state.
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Holographic Space Time

I TB and Fischler: C.C. is not a local energy density, but a
boundary condition relating proper time and area S(τ) when
one or the other →∞.

I Theory of dS space has finite dimensional Hilbert space.

I Black Hole Metric

ds2 = −(1− RS

r
± r2

R2
)dt2 +

dr2

(1− RS
r ±

r2

R2 )
+ r2dΩ2.

R =

√
3|Λ|

8πGN
.

I That is, Localized excitation decreases entropy of dS. Entropy
deficit is Boltzmann’s law ∆S = − Mc

2π~R , at GH temp.

I Leads to asymptotic energy conservation law in Minkowski
(R →∞) limit.
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The Operator Algebra of Quantum Gravity

I Spectrum of BMS Generators Null Cone P2 = 0

I Other Generators Qα(P, p)

[Qα(P, p), Q̄β(Q, q)]+ = γµαβMµ(P,Q)Z (p, q)δ(P · Q).

Pµγ
µQ(P, p) = 0. SUSY if Z (0, 0) = 1.

I Operator valued half-measures. Jet states Q[f ]|jet〉 = 0
except for finite number of S-W cones for P 6= 0. Support of
Q at P = 0 vanishes in annuli surrounding cones.

I Finite Diamond Q(P, p)→ ψA
i (p): Angular momentum

(Dirac spectrum) cutoff = IR cutoff .
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Matrix Models

I H(N) = H(−N) = P0 + 1
N2Tr P(ψψ†)

I Jet State Constraint EN + L matrix elements of ψ†ψ vanish
on initial state as N →∞. If P is a finite polynomial E is
conserved as N →∞.

I Block diagonal decomposition: P0 =
∑

Ei (block sizes).

I Dynamics is invariant under ”area preserving diffeos” → fast
scrambling.

I Localized interactions. HST consistency conditions tie
together into Feynman diagrams. Both particle vertices and
black hole production.
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Holographic Cosmology

I Principle that local excitations are constrained states of
variables on the horizon, with a number of constraints
∼ N = R/LP � N2 has profound implications for early
universe cosmology. Explains Boltzmann-Penrose question of
why the universe began in a low entropy state.

I Leads to a finite, quantum mechanical theory of inflation,
more constrained than QFT models, and with no conceptual
(”trans-Planckian mode”) problem.

I Holographic theory explains current data as well as QFT
models, but gives different results for tensor (B mode)
correlation functions. Unfortunately these are not yet
measured and theory predicts them to be small.
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Predictions for Terascale Physics

I Supersymmetry breaking originates from interactions with the
horizon.

I Leads to m3/2 ∼ (MU/mP)−1/2Λ1/4

I Splitting in super multiplets ∼
√
m3/2MP ∼ a few TeV .
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Conclusions

I The Explanation of Black Hole Entropy points the way to a
general theory of Quantum Gravity

I Space-time is not a fluctuating quantum variable, but instead
a representation of the hydrodynamics of the underlying
quantum system.

I Localized excitations are constrained low entropy states of
that system.

I Implications for the early universe, tensor fluctuations in the
CMB, as well as TeV scale physics and supersymmetry.
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