Adam Brown, Stanford University

KITP QGravity15

Hot Bubbles of Nothing

Jun 04, 2015

based on my paper, The Decay of Hot KK Space, arXiv:1408.5903

$$ds^2 = dr^2 + r^2 d\Omega_2^2 + d\phi^2$$

instability of Bubble of nothing $R^{3,1}xS^{1}$ (Witten, 1982) $ds^{2} = \frac{dr^{2}}{1 - 1/r^{2}} + r^{2}d\Omega_{2}^{2} + \left(1 - \frac{1}{r^{2}}\right)d\phi^{2}$

$$ds^{2} = \frac{dr^{2}}{1 - 1/r^{2}} + r^{2}d\Omega_{2}^{2} + \left(1 - \frac{1}{r^{2}}\right)d\phi^{2}$$

instability of R^{3,1}x S¹

what are the decays of hot KK space?

	$\mathbf{T} = 0$	T > 0	
no extra dimension	stable		
compact extra dimension			

	$\mathbf{T}=0$	T > 0
no extra dimension	stable	
compact extra dimension	quantum bubble of nothing (Witten, 1982)	thermal bubble of nothing

	$\mathbf{T}=0$	T > 0
no extra dimension	stable	
compact extra dimension	quantum bubble of nothing (Witten, 1982)	thermal bubble of nothing

$$F \equiv m - TS = \frac{1}{2G} \left(R - \frac{2\pi T R^2}{\hbar} \right)$$

$$F \equiv m - TS = \frac{1}{2G} \left(R - \frac{2\pi TR^2}{\hbar} \right)$$

rate
$$\sim \exp[-F/T]$$

 $\sim \exp\left[-\frac{1}{16\pi GT^2}\right]$

$$R_{\rm BH} \sim \beta$$
$$R_{\rm Jeans} \sim \beta^2 / \ell_4$$

$$F \equiv m - TS = \frac{1}{2G} \left(R - \frac{2\pi T R^2}{\hbar} \right)$$

rate
$$\sim \exp[-F/T]$$

 $\sim \exp\left[-\frac{1}{16\pi GT^2}\right]$

	$\mathbf{T} = 0$	T > 0
no extra dimension	stable	black hole (GPY, 1982)
compact extra dimension	quantum BoN (Witten, 1982)	thermal BoN

	$\mathbf{T} = 0$	T > 0
no extra dimension	stable	black hole (GPY, 1982)
compact extra dimension	quantum BoN (Witten, 1982)	thermal BoN black string

$$F(\text{black string}) \equiv m - TS = \frac{1}{16\pi} \frac{\beta L}{G_5}$$
$$F(\text{`caged' black hole}, L < \infty) = \frac{1}{32\pi} \frac{\beta^2}{G_5} \left(1 - \frac{\beta^2}{16L^2} + \frac{\beta^4}{128L^4} + \dots \right)$$

$$F(\text{black string}) \equiv m - TS = \frac{1}{16\pi} \frac{\beta L}{G_5}$$
$$F(\text{`caged' black hole}, L < \infty) = \frac{1}{32\pi} \frac{\beta^2}{G_5} \left(1 - \frac{\beta^2}{16L^2} + \frac{\beta^4}{128L^4} + \dots \right)$$

$$F(\text{black string}) \equiv m - TS = \frac{1}{16\pi} \frac{\beta L}{G_5}$$
$$F(\text{`caged' black hole}, L < \infty) = \frac{1}{32\pi} \frac{\beta^2}{G_5} \left(1 - \frac{\beta^2}{16L^2} + \frac{\beta^4}{128L^4} + \dots \right)$$

$$F(\text{black string}) \equiv m - TS = \frac{1}{16\pi} \frac{\beta L}{G_5}$$
$$F(\text{`caged' black hole}, L < \infty) = \frac{1}{32\pi} \frac{\beta^2}{G_5} \left(1 - \frac{\beta^2}{16L^2} + \frac{\beta^4}{128L^4} + \dots \right)$$

$$F(\text{black string}) \equiv m - TS = \frac{1}{16\pi} \frac{\beta L}{G_5}$$
$$F(\text{`caged' black hole}, L < \infty) = \frac{1}{32\pi} \frac{\beta^2}{G_5} \left(1 - \frac{\beta^2}{16L^2} + \frac{\beta^4}{128L^4} + \dots \right)$$

	$\mathbf{T} = 0$	T > 0
no extra dimension	stable	black hole (GPY, 1982)
compact extra dimension	quantum BoN (Witten, 1982)	thermal BoN black string

thermal QFT has same phase diagram as thermal QM (Linde, 1981):

what are the decays of hot KK space? instanton asymptotically $R^3 \times S^1 \times S^1 \leftarrow \text{length } \beta$ length L

what are the decays of hot KK space? instanton asymptotically $R^3 \times S^1 \times S^1 \leftarrow -\text{length } \beta$ length L

Euclidean black string

 $ds^{2} = (1 - \frac{R}{r})dw^{2} + \frac{dr^{2}}{1 - \frac{R}{r}} + r^{2} \left(d\theta^{2} + \cos^{2}\theta d\phi^{2}\right) + dz^{2}$

decay	instanton	rate
'quantum' bubble of nothing	black hole	$\exp\left[-\frac{1}{32\pi}\frac{L^3}{\ell_5^3}\left(1-\frac{L^2}{16\beta^2}+\frac{L^4}{128\beta^4}+\dots\right)\right]$
'thermal' bubble of nothing	black string	$\exp\left[-\frac{1}{16\pi}\frac{\beta L^2}{\ell_5^3}\right]$
4D black hole	black string	$\exp\left[-\frac{1}{16\pi}\frac{\beta^2 L}{\ell_5^3}\right]$
5D black hole	black hole	$\exp\left[-\frac{1}{32\pi}\frac{\beta^{3}}{\ell_{5}^{3}}\left(1-\frac{\beta^{2}}{16L^{2}}+\frac{\beta^{4}}{128L^{4}}+\dots\right)\right]$

decay	instanton	rate
'quantum' bubble of nothing	black hole	$\exp\left[-\frac{1}{32\pi}\frac{L^3}{\ell_5^3}\left(1-\frac{L^2}{16\beta^2}+\frac{L^4}{128\beta^4}+\dots\right)\right]$
'thermal' bubble of nothing	black string	$\exp\left[-\frac{1}{16\pi}\frac{\beta L^2}{\ell_5^3}\right]$
4D black hole	black string	$\exp\left[-\frac{1}{16\pi}\frac{\beta^2 L}{\ell_5^3}\right]$
5D black hole	black hole	$\exp\left[-\frac{1}{32\pi}\frac{\beta^{3}}{\ell_{5}^{3}}\left(1-\frac{\beta^{2}}{16L^{2}}+\frac{\beta^{4}}{128L^{4}}+\dots\right)\right]$

quantum gravity is hard
simple toy systems are useful
quantum black holes well studied
bubbles of nothing next? entropy?

	black string	thermal BoN
ADM mass	$\frac{1}{8\pi}\frac{\beta L}{G_5}$	$\frac{1}{16\pi} \frac{L^2}{G_5}$
entropy	$\frac{1}{16\pi} \frac{\beta^2 L}{\hbar G_5}$	0
action	$\frac{1}{16\pi} \frac{\beta^2 L}{G_5}$	$\frac{1}{16\pi}\frac{\beta L^2}{G_5}$

instability of 3+1+1 Minkowski

