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is born smaller than the quantum-made bubble (R = 2�

✏

vs. R = 3�

✏

); the thermal bubble

has positive energy whereas the quantum bubble has zero energy; and the thermal bubble is

in (unstable) static equilibrium whereas the quantum bubble, while born at rest, immediately

accelerates outwards. We’ll see these features repeated for bubbles of nothing.

Finally, let’s connect this analysis with the well-studied example of thermal and quantum

tunneling in de Sitter space [21,22]. De Sitter space exhibits all of the regimes described above.

For high enough Gibbons-Hawking temperature there is only the pure thermal instanton (called

the ‘Hawking-Moss’ in this case). For intermediate temperature there is both the Hawking-

Moss instanton and the thermally-assisted quantum instanton (the ‘Coleman-De Luccia’), as

well as intermediate solutions with extra negative modes [13]. For low enough temperature the

Hawking-Moss itself has an extra negative mode and only the Coleman-De Luccia instanton

contributes to the decay rate [12].

1.2 Review of black strings and ‘caged’ black holes

In five-dimensional Kaluza-Klein spacetime, there are two possible static horizon topologies.

There are black holes, for which the horizon topology is S

3; and there are black strings, for

which the horizon topology is S

2⇥S

1. The phase diagram of these solutions has been extensively

studied [23–26]; I now give a brief review. To characterize the black objects we will use their

Hawking temperature, which is inversely proportional to their size: smaller means hotter.
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Figure 7: Black strings (top) and ‘caged’ black holes (bottom) as a function of temperature. The shaded region
is the interior of the event horizon. At high temperatures the black hole is small and the black string is thin;
for � < (1.75 . . .)L the black string is so thin that it has a mechanical ‘Gregory-Laflamme’ instability to become
nonuniform. At lower temperatures the black hole is larger and is elongated in the KK direction. Eventually,
for � > (3.39 . . .)L, the would-be black hole is too large to be accommodated and there is no such solution.
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Figure 7: Black strings (top) and ‘caged’ black holes (bottom) as a function of temperature. The shaded region
is the interior of the event horizon. At high temperatures the black hole is small and the black string is thin;
for � < (1.75 . . .)L the black string is so thin that it has a mechanical ‘Gregory-Laflamme’ instability to become
nonuniform. At lower temperatures the black hole is larger and is elongated in the KK direction. Eventually,
for � > (3.39 . . .)L, the would-be black hole is too large to be accommodated and there is no such solution.
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Steinhardt-Jensen transition [12, 13] of the Hawking-Moss instanton [14]) is dual to the onset

of the Gregory-Laflamme instability of a black string [15]. In general, the dual bubble-of-

nothing viewpoint will provide an enlightening alternative perspective on the properties of

higher-dimensional black holes and black strings. But first let’s return to quantum mechanics.

1.1 Review of thermal and quantum decay

In this subsection I will pedantically review the theory of thermally-assisted decay in one-

dimensional quantum mechanics and highlight some notable phenomena that will persist for

the bubble of nothing.
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Figure 3: To traverse the barrier, a particle may thermally fluctuate to x̄, and then quantum mechanically tunnel
to ¯̄

x. Since the quantum part of the process conserves energy, U(x̄) = U(¯̄x). In the semiclassical description,
after tunneling the particle appears at ¯̄

x at rest, before classically rolling out to large x.

If ~ = T = 0, a ball in a local minimum of a potential is stuck. It can be unstuck by

introducing either quantum mechanics or thermodynamics. Quantum mechanically (~ > 0) it

may tunnel through the barrier; thermally (T > 0) it may fluctuate to the top of the barrier.

With both quantum mechanics and thermal physics in play, it may also adopt a hybrid strategy

the semiclassical description of which has three distinct steps: first thermally fluctuate to x̄,

then quantum tunnel to ¯̄
x, then classically roll from rest at ¯̄

x out towards large x. The rate is
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x, then classically roll from rest at ¯̄

x out towards large x. The rate is
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The first term, the Boltzmann suppression factor, wants x̄ to be as low as possible; the second

term, the WKB quantum tunneling factor, wants x̄ to be as high as possible. There is an
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An alternative way to derive the same decay rate is to look for ‘instantons’. These are

Euclidean solutions with periodicity � and one negative mode that extremize the Euclidean

action
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the decay rate is then exp[�I

E

/~]. To extremize the action, the instanton must obey 1
2
(dx

d⌧

)2 =

U(x) � U(x̄) for some x̄. Only some values of x̄ will give rise to trajectories with the right

periodicity, but by plugging the instanton’s equation of motion into Eq. 3 we see that those

are exactly the values of x̄ that extremize the decay rate. In this way of looking at things, by

insisting on periodicity ~/T we automatically choose the optimum value of x̄.
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potential of Fig. 3. There are four regimes.

1. T > Tquant: thermal only.

At high enough temperatures, the fastest way across the barrier is to go straight to the

top, with no quantum tunneling at all. The corresponding ‘pure thermal’ instanton has

x(⌧) = x

top

for all ⌧ : the instanton has a U(1) symmetry around the thermal circle. The

action of this instanton recovers the classical Boltzmann rate, I

E

= Utop/T .

2. Tquant > T > Tqt: thermal beats thermally-assisted quantum.

For T < Tquant there is another locally optimal way across the barrier. The corresponding

‘thermally assisted quantum’ instanton goes from x̄ at ⌧ = 0 to ¯̄
x at ⌧ = �/2 (and then

back to x̄ at ⌧ = � as required by periodicity) with a path given by 1
2
ẋ

2 = U(x) � U(x̄):

the instanton has only a Z2 symmetry around the thermal circle.

The two (locally optimal) instantons are separated by a (locally pessimal) intermediate

solution with an extra negative mode.

3. Tqt > T > Ttherm: thermally-assisted quantum beats thermal.

At T = Tqt the instantons exchange dominance in a first-order transition1.

4. Ttherm > T : thermally-assisted quantum only. Pure thermal has extra negative mode(s).

For temperatures below

Ttherm = ~⇡!top ⌘ ~⇡

�
�V

00
top/m , (5)

the pure thermal solution is not even a locally optimal way across the barrier and has

extra negative modes.

As T falls, x̄ falls with it: the instanton becomes less thermal and more quantum. But

the Boltzmann factor is quadratic in x̄ near zero, whereas the WKB factor is linear, so

for any nonzero temperature the optimal process has x̄ strictly greater than zero.

1This is not the only possible catastrophe structure of the tunneling instantons; by designing a potential you
can arrange there to be many locally-optimal instantons at once with a complicated arrangement of appearance
and disappearances. However, this is a typical pattern that is stable to small perturbations, and will also turn
out to be the pattern exhibited by bubbles of nothing. There will also generically be yet other solutions with
yet more negative modes that control the catastrophes but which are not directly relevant for tunneling. If the
transition is second order rather than first order we will have that T1 = T2 = T3; in the bubble of nothing case
we will consider this is what happens in more than twelve dimensions.

What we have described above is a typical way for the instantons to appear and disappear. But there can
be more complicated patterns. By adjusting the potential we may arrange for there to be an arbitrarily large
number of instantons on the go at once. Furthermore, we can even skip steps 2 and 3 above if we have a second
rather than a first order phase transition. (For the black hole-black strings we will consider in this paper, the
transition is first order, but it would be second order if we were in more than 13 dimensions.)

The scheme shown above is a typical phase thermal tunneling phase diagram, but by deforming the poten-
tial additional instantons (with corresponding extra-negative-mode-solutions) can be conjured for intermediate
temperatures, or we can arranged a second-order transition in which Tq = Tqt = Tt.
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Figure 4: The Euclidean action of the instantons that traverse the potential of Fig. 3, as a function of the
temperature T . The tunneling rate is exp[�IE/~], so smaller IE means faster tunneling. Because of the thermal
assist the quantum tunneling instanton has an action that falls with T . The intermediate solution chooses the
worst possible value of x̄—it gives the slowest case—and consequently has an extra negative mode.

Or, rather, by insisting on periodicity ~/T we automatically choose a local extremum value

of x̄, which need not be the global or even local optimum. There may be more than one

extremum, which means more than one solution with Euclidean periodicity �; how many there

are depends on the potential and depends on the temperature. Figure 4 shows the phase

diagram of instantons that traverse the potential of Fig. 3. There are four regimes.
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extra negative modes.

As T falls, x̄ falls with it: the instanton becomes less thermal and more quantum. But

the Boltzmann factor is quadratic in x̄ near zero, whereas the WKB factor is linear, so

for any nonzero temperature the optimal process has x̄ strictly greater than zero.

1This is not the only possible catastrophe structure of the tunneling instantons; by designing a potential you
can arrange there to be many locally-optimal instantons at once with a complicated arrangement of appearance
and disappearances. However, this is a typical pattern that is stable to small perturbations, and will also turn
out to be the pattern exhibited by bubbles of nothing. There will also generically be yet other solutions with
yet more negative modes that control the catastrophes but which are not directly relevant for tunneling. If the
transition is second order rather than first order we will have that T1 = T2 = T3; in the bubble of nothing case
we will consider this is what happens in more than twelve dimensions.

What we have described above is a typical way for the instantons to appear and disappear. But there can
be more complicated patterns. By adjusting the potential we may arrange for there to be an arbitrarily large
number of instantons on the go at once. Furthermore, we can even skip steps 2 and 3 above if we have a second
rather than a first order phase transition. (For the black hole-black strings we will consider in this paper, the
transition is first order, but it would be second order if we were in more than 13 dimensions.)

The scheme shown above is a typical phase thermal tunneling phase diagram, but by deforming the poten-
tial additional instantons (with corresponding extra-negative-mode-solutions) can be conjured for intermediate
temperatures, or we can arranged a second-order transition in which Tq = Tqt = Tt.

7

potential of Fig. 3. There are four regimes.

1. T > Tquant: thermal only.

At high enough temperatures, the fastest way across the barrier is to go straight to the

top, with no quantum tunneling at all. The corresponding ‘pure thermal’ instanton has

x(⌧) = x

top

for all ⌧ : the instanton has a U(1) symmetry around the thermal circle. The

action of this instanton recovers the classical Boltzmann rate, I

E

= Utop/T .

2. Tquant > T > Tqt: thermal beats thermally-assisted quantum.

For T < Tquant there is another locally optimal way across the barrier. The corresponding

‘thermally assisted quantum’ instanton goes from x̄ at ⌧ = 0 to ¯̄
x at ⌧ = �/2 (and then

back to x̄ at ⌧ = � as required by periodicity) with a path given by 1
2
ẋ
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Steinhardt-Jensen transition [12, 13] of the Hawking-Moss instanton [14]) is dual to the onset

of the Gregory-Laflamme instability of a black string [15]. In general, the dual bubble-of-

nothing viewpoint will provide an enlightening alternative perspective on the properties of

higher-dimensional black holes and black strings. But first let’s return to quantum mechanics.

1.1 Review of thermal and quantum decay

In this subsection I will pedantically review the theory of thermally-assisted decay in one-

dimensional quantum mechanics and highlight some notable phenomena that will persist for

the bubble of nothing.
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Figure 3: To traverse the barrier, a particle may thermally fluctuate to x̄, and then quantum mechanically tunnel
to ¯̄

x. Since the quantum part of the process conserves energy, U(x̄) = U(¯̄x). In the semiclassical description,
after tunneling the particle appears at ¯̄

x at rest, before classically rolling out to large x.

If ~ = T = 0, a ball in a local minimum of a potential is stuck. It can be unstuck by

introducing either quantum mechanics or thermodynamics. Quantum mechanically (~ > 0) it

may tunnel through the barrier; thermally (T > 0) it may fluctuate to the top of the barrier.

With both quantum mechanics and thermal physics in play, it may also adopt a hybrid strategy

the semiclassical description of which has three distinct steps: first thermally fluctuate to x̄,

then quantum tunnel to ¯̄
x, then classically roll from rest at ¯̄

x out towards large x. The rate is
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The first term, the Boltzmann suppression factor, wants x̄ to be as low as possible; the second

term, the WKB quantum tunneling factor, wants x̄ to be as high as possible. There is an
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1. T > T
quant

: thermal only.

At high enough temperatures, the fastest way across the barrier is to go straight to the

top, with no quantum tunneling at all. The corresponding ‘pure thermal’ instanton has

x(⌧) = xtop for all ⌧ : the instanton has a U(1) symmetry around the thermal circle. The

action of this instanton recovers the classical Boltzmann rate, IE = U
top

/T .

2. T
quant

> T > T
qt

: thermal beats thermally-assisted quantum.

For T < T
quant

there is another locally optimal way across the barrier. The corresponding

‘thermally assisted quantum’ instanton goes from x̄ at ⌧ = 0 to ¯̄x at ⌧ = �/2 (and then

back to x̄ at ⌧ = � as required by periodicity) with a path given by 1

2

ẋ2 = U(x) � U(x̄):

the instanton has only a Z
2

symmetry around the thermal circle.

The two (locally optimal) instantons are separated by a (locally pessimal) intermediate

solution with an extra negative mode.

3. T
qt

> T > T
therm

: thermally-assisted quantum beats thermal.

At T = T
qt

the instantons exchange dominance in a first-order transition1.

4. T
therm

> T : thermally-assisted quantum only. Pure thermal has extra negative mode(s).

For temperatures below

T
therm

= ~⇡!
top

⌘ ~⇡
q

�V 00
top

/m , (5)

the pure thermal solution is not even a locally optimal way across the barrier and has

extra negative modes.

As T falls, x̄ falls with it: the instanton becomes less thermal and more quantum. But

the Boltzmann factor is quadratic in x̄ near zero, whereas the WKB factor is linear, so

for any nonzero temperature the optimal process has x̄ strictly greater than zero.

1This is not the only possible catastrophe structure of the tunneling instantons; by designing a potential you
can arrange there to be many locally-optimal instantons at once with a complicated arrangement of appearance
and disappearances. However, this is a typical pattern that is stable to small perturbations, and will also turn
out to be the pattern exhibited by bubbles of nothing. There will also generically be yet other solutions with
yet more negative modes that control the catastrophes but which are not directly relevant for tunneling. If the
transition is second order rather than first order we will have that T1 = T2 = T3; in the bubble of nothing case
we will consider this is what happens in more than twelve dimensions.

What we have described above is a typical way for the instantons to appear and disappear. But there can
be more complicated patterns. By adjusting the potential we may arrange for there to be an arbitrarily large
number of instantons on the go at once. Furthermore, we can even skip steps 2 and 3 above if we have a second
rather than a first order phase transition. (For the black hole-black strings we will consider in this paper, the
transition is first order, but it would be second order if we were in more than 13 dimensions.)

The scheme shown above is a typical phase thermal tunneling phase diagram, but by deforming the poten-
tial additional instantons (with corresponding extra-negative-mode-solutions) can be conjured for intermediate
temperatures, or we can arranged a second-order transition in which Tq = Tqt = Tt.
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back to x̄ at ⌧ = � as required by periodicity) with a path given by 1
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the pure thermal solution is not even a locally optimal way across the barrier and has

extra negative modes.

As T falls, x̄ falls with it: the instanton becomes less thermal and more quantum. But

the Boltzmann factor is quadratic in x̄ near zero, whereas the WKB factor is linear, so

for any nonzero temperature the optimal process has x̄ strictly greater than zero.

1This is not the only possible catastrophe structure of the tunneling instantons; by designing a potential you
can arrange there to be many locally-optimal instantons at once with a complicated arrangement of appearance
and disappearances. However, this is a typical pattern that is stable to small perturbations, and will also turn
out to be the pattern exhibited by bubbles of nothing. There will also generically be yet other solutions with
yet more negative modes that control the catastrophes but which are not directly relevant for tunneling. If the
transition is second order rather than first order we will have that T1 = T2 = T3; in the bubble of nothing case
we will consider this is what happens in more than twelve dimensions.

What we have described above is a typical way for the instantons to appear and disappear. But there can
be more complicated patterns. By adjusting the potential we may arrange for there to be an arbitrarily large
number of instantons on the go at once. Furthermore, we can even skip steps 2 and 3 above if we have a second
rather than a first order phase transition. (For the black hole-black strings we will consider in this paper, the
transition is first order, but it would be second order if we were in more than 13 dimensions.)

The scheme shown above is a typical phase thermal tunneling phase diagram, but by deforming the poten-
tial additional instantons (with corresponding extra-negative-mode-solutions) can be conjured for intermediate
temperatures, or we can arranged a second-order transition in which Tq = Tqt = Tt.
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temperature T . The tunneling rate is exp[�IE/~], so smaller IE means faster tunneling. Because of the thermal
assist the quantum tunneling instanton has an action that falls with T . The intermediate solution chooses the
worst possible value of x̄—it gives the slowest case—and consequently has an extra negative mode.

Or, rather, by insisting on periodicity ~/T we automatically choose a local extremum value

of x̄, which need not be the global or even local optimum. There may be more than one

extremum, which means more than one solution with Euclidean periodicity �; how many there

are depends on the potential and depends on the temperature. Figure 4 shows the phase

diagram of instantons that traverse the potential of Fig. 3. There are four regimes.
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ẋ

2 = U(x) � U(x̄):

the instanton has only a Z2 symmetry around the thermal circle.

The two (locally optimal) instantons are separated by a (locally pessimal) intermediate

solution with an extra negative mode.

3. Tqt > T > Ttherm: thermally-assisted quantum beats thermal.

At T = Tqt the instantons exchange dominance in a first-order transition1.

4. Ttherm > T : thermally-assisted quantum only. Pure thermal has extra negative mode(s).

For temperatures below

Ttherm = ~⇡!top ⌘ ~⇡

�
�V

00
top/m , (5)

the pure thermal solution is not even a locally optimal way across the barrier and has
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As T falls, x̄ falls with it: the instanton becomes less thermal and more quantum. But

the Boltzmann factor is quadratic in x̄ near zero, whereas the WKB factor is linear, so

for any nonzero temperature the optimal process has x̄ strictly greater than zero.

1This is not the only possible catastrophe structure of the tunneling instantons; by designing a potential you
can arrange there to be many locally-optimal instantons at once with a complicated arrangement of appearance
and disappearances. However, this is a typical pattern that is stable to small perturbations, and will also turn
out to be the pattern exhibited by bubbles of nothing. There will also generically be yet other solutions with
yet more negative modes that control the catastrophes but which are not directly relevant for tunneling. If the
transition is second order rather than first order we will have that T1 = T2 = T3; in the bubble of nothing case
we will consider this is what happens in more than twelve dimensions.

What we have described above is a typical way for the instantons to appear and disappear. But there can
be more complicated patterns. By adjusting the potential we may arrange for there to be an arbitrarily large
number of instantons on the go at once. Furthermore, we can even skip steps 2 and 3 above if we have a second
rather than a first order phase transition. (For the black hole-black strings we will consider in this paper, the
transition is first order, but it would be second order if we were in more than 13 dimensions.)

The scheme shown above is a typical phase thermal tunneling phase diagram, but by deforming the poten-
tial additional instantons (with corresponding extra-negative-mode-solutions) can be conjured for intermediate
temperatures, or we can arranged a second-order transition in which Tq = Tqt = Tt.
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back to x̄ at ⌧ = � as required by periodicity) with a path given by 1
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the instanton has only a Z
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the pure thermal solution is not even a locally optimal way across the barrier and has

extra negative modes.

As T falls, x̄ falls with it: the instanton becomes less thermal and more quantum. But

the Boltzmann factor is quadratic in x̄ near zero, whereas the WKB factor is linear, so

for any nonzero temperature the optimal process has x̄ strictly greater than zero.

1This is not the only possible catastrophe structure of the tunneling instantons; by designing a potential you
can arrange there to be many locally-optimal instantons at once with a complicated arrangement of appearance
and disappearances. However, this is a typical pattern that is stable to small perturbations, and will also turn
out to be the pattern exhibited by bubbles of nothing. There will also generically be yet other solutions with
yet more negative modes that control the catastrophes but which are not directly relevant for tunneling. If the
transition is second order rather than first order we will have that T1 = T2 = T3; in the bubble of nothing case
we will consider this is what happens in more than twelve dimensions.

What we have described above is a typical way for the instantons to appear and disappear. But there can
be more complicated patterns. By adjusting the potential we may arrange for there to be an arbitrarily large
number of instantons on the go at once. Furthermore, we can even skip steps 2 and 3 above if we have a second
rather than a first order phase transition. (For the black hole-black strings we will consider in this paper, the
transition is first order, but it would be second order if we were in more than 13 dimensions.)

The scheme shown above is a typical phase thermal tunneling phase diagram, but by deforming the poten-
tial additional instantons (with corresponding extra-negative-mode-solutions) can be conjured for intermediate
temperatures, or we can arranged a second-order transition in which Tq = Tqt = Tt.
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cesses. This means that with suitable IR boundary conditions [5,6] we can kill the perturbative

instabilities entirely and isolate the non-perturbative instabilities as the only possible decays.

This is possible so long as we keep the temperature and the KK scale safely sub-Planckian.

This same limit will justify using the semiclassical and analogous ‘semicold’ approximations,

as well as allowing us to neglect the gravitational backreaction of the uncondensed radiation

while calculating our Euclidean instantons.

Because we have both a nonzero temperature and a Kaluza-Klein extra dimension, the Eu-

clidean instantons that mediate our decays will have two compact directions—they are vacuum

solutions to Einstein’s equations with asymptotic geometry R

3 ⇥S

1 ⇥S

1. One of the S

1s is the

extra dimension and has asymptotic circumference L; the other is the thermal circle and has

asymptotic circumference � ⌘ ~/T . Neither of the instantons we will consider are symmetric

with respect to swapping the S

1s, which means that each instanton describes two di↵erent de-

cays, depending on which of the compact Euclidean directions is taken to represent the thermal

circle. Even though there are four non-perturbative decay processes, we will find that there are

only two distinct instantons, and that each instanton does double work.

For example, the Euclidean black string wraps one of the S

1s but not the other. If we

take the S

1 it wraps to be the extra dimension, then the instanton describes the nucleation of a

black string; if we take the S

1 it wraps to be the thermal circle, then the instanton describes the

thermal nucleation of a bubble of nothing. The Euclidean black hole does a similar double duty,

describing both the nucleation of a five-dimensional black hole and the quantum nucleation of

a bubble of nothing.

Since relabeling the axes doesn’t change the Euclidean action, it doesn’t change the decay

rate. Thus the rate to nucleate a black hole when the temperature is T and the extra dimension

has size L is the same as the rate to nucleate a bubble of nothing when the temperature is ~L

�1

and the extra dimension has size ~T

�1. Since this relates large values of LT to small values of

LT , this is a high-temperature/low-temperature duality.

(A�cionados of complex structure moduli will know that the geometry of a T

2 is charac-

terized not only by the length of its sides but also by an angle that deforms the rectangle into

a parallelogram. Thermodynamically, this corresponds to turning on a Kaluza-Klein chemical

potential. In this paper we will set the chemical potential to zero, but I will return to this com-

plication in a forthcoming work [7], and we will see how the high-temperature/low-temperature

duality fits into a larger SL(2, Z) symmetry.)
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length �



There is in addition a third solution to Einstein’s equations, a ‘lumpy’ black string [31]

that is nonuniform in the extra dimension. This intermediate solution has a mechanical

instability that flows in one direction towards the uniform black string and in the other

towards the black hole.

2̄. (3.39 . . .)L > � > (2.75 . . .)L: black string beats caged black hole.

For � = (2.75 . . .)L the black string has the same free energy as the black hole. (This

equality would have happened already at � = 2L if not for the black hole’s free-energy-

lowering gravitational attraction to its images.)

1̄. � > (3.39 . . .)L: black string only.

At the ‘merger point’ the black hole meets the lumpy black string and annihilates [32].

Below this temperature the would-be black hole is too large to be accommodated by the

extra dimension and the only solution is the uniform black string.

The phase diagram of quantum and thermal instantons resembles that of black holes and

black strings, only with high and low temperatures switched. We will now see that this is not

a coincidence.

2 Black-string instanton

The Euclidean black-string instanton controls both the nucleation of black strings and the

thermal nucleation of bubbles of nothing3. It is a vacuum solution of Einstein’s equations that

asymptotes to S

1 ⇥ S

1 ⇥ R

3 given by

ds

2 = (1 � R

r

)dw

2 +
dr

2

1 � R

r

+ r

2
�
d✓

2 + cos2
✓d�

2
�

+ dz

2
. (10)

To avoid a conical singularity at r = R, w must be periodic under w ! w + 4⇡R; z may have

any periodicity. The black-string instanton has a U(1) symmetry in the w-direction, a U(1)

symmetry in the z-direction, and a SO(3) spherical symmetry. In Appendix C, the Euclidean

action is shown to be

I

E

=
⇡R

2

G5

⇥ periodicity of z. (11)

The Euclidean black string always has at least one negative mode, associated with uniformly

changing its radius. It can also have another one. As we saw in Sec. 1.2, when the periodicity

3 This instanton actually mediates also a third transition, given by continuing not w or z but instead ✓. This
gives the quantum nucleation of a 2+1+2-dimensional bubble of nothing in which the two extra dimensions, w

and z, are compactified on a torus and the w-direction pinches o↵. Since this is not an instability of hot space
with a single KK direction, it is beyond the remit of this paper.
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Figure 9: The black-string instanton of Eq. 10. The angular S

2 directions have been suppressed.

in the z-direction is more than 1.7524 times the periodicity in the w-direction, there is another

negative mode associated with the Euclidean black string becoming nonuniform.

2.1 4D black holes/5D black strings

Upon analytic continuation w ! it, the Euclidean instanton of Eq. 10 becomes
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The size of the extra dimension is the same everywhere. From the five-dimensional perspective

this is a black string uniformly wrapped around the extra dimension; from the four-dimensional

perspective this is a black hole.
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Figure 10: The black string is given by a constant-w slice through the instanton of Fig. 9.

Since the z-direction is to be matched to the extra dimension and the w-direction (being

the continuation of the time direction) is to be matched to the thermal circle, the required

periodicity is

z ! z + L (13)

w ! w + �. (14)
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Euclidean black string
the rate to make this plucky string is given by its Boltzmann suppression exp[�F/T ]. This rate

is the same as that given by the instanton calculation since for solutions with a U(1) symmetry

round the thermal circle the Euclidean action is related to the free energy by

I

E

=
~F

T

= �m � S

~ . (17)

The equivalence holds only for U(1)-symmetric thermal circles. For decays that feature quantum

tunneling as well as thermal fluctuation (and therefore which break U(1) to Z2) the action is

not given by Eq. 17 and the free energy of the decay product does not calculate the decay rate.

For � < (1.7524 . . .)L, the Euclidean instanton has in addition a second negative mode.

This mode is continued to a mechanical Gregory-Laflamme instability of the black string. For

higher temperatures, therefore, the uniform black string is not a locally-optimal decay product.

2.2 Thermal bubbles of nothing

Upon analytic continuation z ! it, the Euclidean instanton of Eq. 10 becomes
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2
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The size of the extra dimension is smaller for small r, eventually pinching o↵ entirely at r = R;

for r < R there is no space and no time—there is literally nothing. Unlike the original bubble of

nothing discovered by Witten (the ‘quantum’ bubble of nothing in our vocabulary, see Eq. 32),

this ‘thermal’ bubble of nothing is static [33].
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in the z-direction is more than 1.7524 times the periodicity in the w-direction, there is another

negative mode associated with the Euclidean black string becoming nonuniform.
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The size of the extra dimension is the same everywhere. From the five-dimensional perspective

this is a black string uniformly wrapped around the extra dimension; from the four-dimensional

perspective this is a black hole.
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black string

the rate to make this plucky string is given by its Boltzmann suppression exp[�F/T ]. This rate

is the same as that given by the instanton calculation since for solutions with a U(1) symmetry

round the thermal circle the Euclidean action is related to the free energy by

I

E

=
~F

T

= �m � S

~ . (17)

The equivalence holds only for U(1)-symmetric thermal circles. For decays that feature quantum

tunneling as well as thermal fluctuation (and therefore which break U(1) to Z2) the action is

not given by Eq. 17 and the free energy of the decay product does not calculate the decay rate.

For � < (1.7524 . . .)L, the Euclidean instanton has in addition a second negative mode.

This mode is continued to a mechanical Gregory-Laflamme instability of the black string. For

higher temperatures, therefore, the uniform black string is not a locally-optimal decay product.

2.2 Thermal bubbles of nothing

Upon analytic continuation z ! it, the Euclidean instanton of Eq. 10 becomes

ds
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The size of the extra dimension is smaller for small r, eventually pinching o↵ entirely at r = R;

for r < R there is no space and no time—there is literally nothing. Unlike the original bubble of

nothing discovered by Witten (the ‘quantum’ bubble of nothing in our vocabulary, see Eq. 32),

this ‘thermal’ bubble of nothing is static [33].
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Since the w-direction is to be matched to the extra dimension and the z-direction is to be

matched to the thermal circle, the required periodicity is
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To avoid a conical singularity requires R = L/4⇡. The rate to nucleate a thermal bubble of
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There is in addition a third solution to Einstein’s equations, a ‘lumpy’ black string [31]

that is nonuniform in the extra dimension. This intermediate solution has a mechanical

instability that flows in one direction towards the uniform black string and in the other

towards the black hole.

2̄. (3.39 . . .)L > � > (2.75 . . .)L: black string beats caged black hole.

For � = (2.75 . . .)L the black string has the same free energy as the black hole. (This

equality would have happened already at � = 2L if not for the black hole’s free-energy-

lowering gravitational attraction to its images.)

1̄. � > (3.39 . . .)L: black string only.

At the ‘merger point’ the black hole meets the lumpy black string and annihilates [32].

Below this temperature the would-be black hole is too large to be accommodated by the

extra dimension and the only solution is the uniform black string.

The phase diagram of quantum and thermal instantons resembles that of black holes and

black strings, only with high and low temperatures switched. We will now see that this is not

a coincidence.

2 Black-string instanton

The Euclidean black-string instanton controls both the nucleation of black strings and the

thermal nucleation of bubbles of nothing3. It is a vacuum solution of Einstein’s equations that

asymptotes to S

1 ⇥ S

1 ⇥ R

3 given by

ds

2 = (1 � R

r

)dw

2 +
dr

2

1 � R

r

+ r

2
�
d✓

2 + cos2
✓d�

2
�

+ dz

2
. (10)

To avoid a conical singularity at r = R, w must be periodic under w ! w + 4⇡R; z may have

any periodicity. The black-string instanton has a U(1) symmetry in the w-direction, a U(1)

symmetry in the z-direction, and a SO(3) spherical symmetry. In Appendix C, the Euclidean

action is shown to be

I

E

=
⇡R

2

G5

⇥ periodicity of z. (11)

The Euclidean black string always has at least one negative mode, associated with uniformly

changing its radius. It can also have another one. As we saw in Sec. 1.2, when the periodicity

3 This instanton actually mediates also a third transition, given by continuing not w or z but instead ✓. This
gives the quantum nucleation of a 2+1+2-dimensional bubble of nothing in which the two extra dimensions, w

and z, are compactified on a torus and the w-direction pinches o↵. Since this is not an instability of hot space
with a single KK direction, it is beyond the remit of this paper.
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what are the decays of  hot KK space?

cesses. This means that with suitable IR boundary conditions [5,6] we can kill the perturbative

instabilities entirely and isolate the non-perturbative instabilities as the only possible decays.

This is possible so long as we keep the temperature and the KK scale safely sub-Planckian.

This same limit will justify using the semiclassical and analogous ‘semicold’ approximations,

as well as allowing us to neglect the gravitational backreaction of the uncondensed radiation

while calculating our Euclidean instantons.

Because we have both a nonzero temperature and a Kaluza-Klein extra dimension, the Eu-

clidean instantons that mediate our decays will have two compact directions—they are vacuum

solutions to Einstein’s equations with asymptotic geometry R

3 ⇥S

1 ⇥S

1. One of the S

1s is the

extra dimension and has asymptotic circumference L; the other is the thermal circle and has

asymptotic circumference � ⌘ ~/T . Neither of the instantons we will consider are symmetric

with respect to swapping the S

1s, which means that each instanton describes two di↵erent de-

cays, depending on which of the compact Euclidean directions is taken to represent the thermal

circle. Even though there are four non-perturbative decay processes, we will find that there are

only two distinct instantons, and that each instanton does double work.

For example, the Euclidean black string wraps one of the S

1s but not the other. If we

take the S

1 it wraps to be the extra dimension, then the instanton describes the nucleation of a

black string; if we take the S

1 it wraps to be the thermal circle, then the instanton describes the

thermal nucleation of a bubble of nothing. The Euclidean black hole does a similar double duty,

describing both the nucleation of a five-dimensional black hole and the quantum nucleation of

a bubble of nothing.

Since relabeling the axes doesn’t change the Euclidean action, it doesn’t change the decay

rate. Thus the rate to nucleate a black hole when the temperature is T and the extra dimension

has size L is the same as the rate to nucleate a bubble of nothing when the temperature is ~L

�1

and the extra dimension has size ~T

�1. Since this relates large values of LT to small values of

LT , this is a high-temperature/low-temperature duality.

(A�cionados of complex structure moduli will know that the geometry of a T

2 is charac-

terized not only by the length of its sides but also by an angle that deforms the rectangle into

a parallelogram. Thermodynamically, this corresponds to turning on a Kaluza-Klein chemical

potential. In this paper we will set the chemical potential to zero, but I will return to this com-

plication in a forthcoming work [7], and we will see how the high-temperature/low-temperature

duality fits into a larger SL(2, Z) symmetry.)
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the rate to make this plucky string is given by its Boltzmann suppression exp[�F/T ]. This rate

is the same as that given by the instanton calculation since for solutions with a U(1) symmetry

round the thermal circle the Euclidean action is related to the free energy by

I

E

=
~F

T

= �m � S

~ . (17)

The equivalence holds only for U(1)-symmetric thermal circles. For decays that feature quantum

tunneling as well as thermal fluctuation (and therefore which break U(1) to Z2) the action is

not given by Eq. 17 and the free energy of the decay product does not calculate the decay rate.

For � < (1.7524 . . .)L, the Euclidean instanton has in addition a second negative mode.

This mode is continued to a mechanical Gregory-Laflamme instability of the black string. For

higher temperatures, therefore, the uniform black string is not a locally-optimal decay product.

2.2 Thermal bubbles of nothing

Upon analytic continuation z ! it, the Euclidean instanton of Eq. 10 becomes

ds
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2
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2
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The size of the extra dimension is smaller for small r, eventually pinching o↵ entirely at r = R;

for r < R there is no space and no time—there is literally nothing. Unlike the original bubble of

nothing discovered by Witten (the ‘quantum’ bubble of nothing in our vocabulary, see Eq. 32),

this ‘thermal’ bubble of nothing is static [33].
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Figure 12: The thermal bubble of nothing, given by a constant-z slice through the instanton of Fig. 9.

Since the w-direction is to be matched to the extra dimension and the z-direction is to be

matched to the thermal circle, the required periodicity is

w ! w + L (19)

z ! z + �. (20)

To avoid a conical singularity requires R = L/4⇡. The rate to nucleate a thermal bubble of
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in the z-direction is more than 1.7524 times the periodicity in the w-direction, there is another

negative mode associated with the Euclidean black string becoming nonuniform.

2.1 4D black holes/5D black strings

Upon analytic continuation w ! it, the Euclidean instanton of Eq. 10 becomes
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The size of the extra dimension is the same everywhere. From the five-dimensional perspective

this is a black string uniformly wrapped around the extra dimension; from the four-dimensional

perspective this is a black hole.
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Since the z-direction is to be matched to the extra dimension and the w-direction (being

the continuation of the time direction) is to be matched to the thermal circle, the required

periodicity is

z ! z + L (13)

w ! w + �. (14)
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Since the z-direction is to be matched to the extra dimension and the w-direction (being

the continuation of the time direction) is to be matched to the thermal circle, the required
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black string

the rate to make this plucky string is given by its Boltzmann suppression exp[�F/T ]. This rate

is the same as that given by the instanton calculation since for solutions with a U(1) symmetry

round the thermal circle the Euclidean action is related to the free energy by

I

E

=
~F

T

= �m � S

~ . (17)

The equivalence holds only for U(1)-symmetric thermal circles. For decays that feature quantum

tunneling as well as thermal fluctuation (and therefore which break U(1) to Z2) the action is

not given by Eq. 17 and the free energy of the decay product does not calculate the decay rate.

For � < (1.7524 . . .)L, the Euclidean instanton has in addition a second negative mode.

This mode is continued to a mechanical Gregory-Laflamme instability of the black string. For

higher temperatures, therefore, the uniform black string is not a locally-optimal decay product.

2.2 Thermal bubbles of nothing

Upon analytic continuation z ! it, the Euclidean instanton of Eq. 10 becomes

ds

2 = (1 � R

r

)dw
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The size of the extra dimension is smaller for small r, eventually pinching o↵ entirely at r = R;

for r < R there is no space and no time—there is literally nothing. Unlike the original bubble of

nothing discovered by Witten (the ‘quantum’ bubble of nothing in our vocabulary, see Eq. 32),

this ‘thermal’ bubble of nothing is static [33].
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Since the w-direction is to be matched to the extra dimension and the z-direction is to be

matched to the thermal circle, the required periodicity is

w ! w + L (19)

z ! z + �. (20)

To avoid a conical singularity requires R = L/4⇡. The rate to nucleate a thermal bubble of
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The size of the extra dimension is the same everywhere. From the five-dimensional perspective

this is a black string uniformly wrapped around the extra dimension; from the four-dimensional

perspective this is a black hole.
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There is in addition a third solution to Einstein’s equations, a ‘lumpy’ black string [31]

that is nonuniform in the extra dimension. This intermediate solution has a mechanical

instability that flows in one direction towards the uniform black string and in the other

towards the black hole.

2̄. (3.39 . . .)L > � > (2.75 . . .)L: black string beats caged black hole.

For � = (2.75 . . .)L the black string has the same free energy as the black hole. (This

equality would have happened already at � = 2L if not for the black hole’s free-energy-

lowering gravitational attraction to its images.)

1̄. � > (3.39 . . .)L: black string only.

At the ‘merger point’ the black hole meets the lumpy black string and annihilates [32].

Below this temperature the would-be black hole is too large to be accommodated by the

extra dimension and the only solution is the uniform black string.

The phase diagram of quantum and thermal instantons resembles that of black holes and

black strings, only with high and low temperatures switched. We will now see that this is not

a coincidence.

2 Black-string instanton

The Euclidean black-string instanton controls both the nucleation of black strings and the

thermal nucleation of bubbles of nothing3. It is a vacuum solution of Einstein’s equations that

asymptotes to S

1 ⇥ S

1 ⇥ R

3 given by

ds
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)dw

2 +
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To avoid a conical singularity at r = R, w must be periodic under w ! w + 4⇡R; z may have

any periodicity. The black-string instanton has a U(1) symmetry in the w-direction, a U(1)

symmetry in the z-direction, and a SO(3) spherical symmetry. In Appendix C, the Euclidean

action is shown to be

I

E

=
⇡R

2

G5

⇥ periodicity of z. (11)

The Euclidean black string always has at least one negative mode, associated with uniformly

changing its radius. It can also have another one. As we saw in Sec. 1.2, when the periodicity

3 This instanton actually mediates also a third transition, given by continuing not w or z but instead ✓. This
gives the quantum nucleation of a 2+1+2-dimensional bubble of nothing in which the two extra dimensions, w

and z, are compactified on a torus and the w-direction pinches o↵. Since this is not an instability of hot space
with a single KK direction, it is beyond the remit of this paper.
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cesses. This means that with suitable IR boundary conditions [5,6] we can kill the perturbative

instabilities entirely and isolate the non-perturbative instabilities as the only possible decays.

This is possible so long as we keep the temperature and the KK scale safely sub-Planckian.

This same limit will justify using the semiclassical and analogous ‘semicold’ approximations,

as well as allowing us to neglect the gravitational backreaction of the uncondensed radiation

while calculating our Euclidean instantons.

Because we have both a nonzero temperature and a Kaluza-Klein extra dimension, the Eu-

clidean instantons that mediate our decays will have two compact directions—they are vacuum

solutions to Einstein’s equations with asymptotic geometry R

3 ⇥S

1 ⇥S

1. One of the S

1s is the

extra dimension and has asymptotic circumference L; the other is the thermal circle and has

asymptotic circumference � ⌘ ~/T . Neither of the instantons we will consider are symmetric

with respect to swapping the S

1s, which means that each instanton describes two di↵erent de-

cays, depending on which of the compact Euclidean directions is taken to represent the thermal

circle. Even though there are four non-perturbative decay processes, we will find that there are

only two distinct instantons, and that each instanton does double work.

For example, the Euclidean black string wraps one of the S

1s but not the other. If we

take the S

1 it wraps to be the extra dimension, then the instanton describes the nucleation of a

black string; if we take the S

1 it wraps to be the thermal circle, then the instanton describes the

thermal nucleation of a bubble of nothing. The Euclidean black hole does a similar double duty,

describing both the nucleation of a five-dimensional black hole and the quantum nucleation of

a bubble of nothing.

Since relabeling the axes doesn’t change the Euclidean action, it doesn’t change the decay

rate. Thus the rate to nucleate a black hole when the temperature is T and the extra dimension

has size L is the same as the rate to nucleate a bubble of nothing when the temperature is ~L

�1

and the extra dimension has size ~T

�1. Since this relates large values of LT to small values of

LT , this is a high-temperature/low-temperature duality.

(A�cionados of complex structure moduli will know that the geometry of a T

2 is charac-

terized not only by the length of its sides but also by an angle that deforms the rectangle into

a parallelogram. Thermodynamically, this corresponds to turning on a Kaluza-Klein chemical

potential. In this paper we will set the chemical potential to zero, but I will return to this com-

plication in a forthcoming work [7], and we will see how the high-temperature/low-temperature

duality fits into a larger SL(2, Z) symmetry.)
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the rate to make this plucky string is given by its Boltzmann suppression exp[�F/T ]. This rate

is the same as that given by the instanton calculation since for solutions with a U(1) symmetry

round the thermal circle the Euclidean action is related to the free energy by
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~ . (17)

The equivalence holds only for U(1)-symmetric thermal circles. For decays that feature quantum

tunneling as well as thermal fluctuation (and therefore which break U(1) to Z2) the action is

not given by Eq. 17 and the free energy of the decay product does not calculate the decay rate.

For � < (1.7524 . . .)L, the Euclidean instanton has in addition a second negative mode.

This mode is continued to a mechanical Gregory-Laflamme instability of the black string. For

higher temperatures, therefore, the uniform black string is not a locally-optimal decay product.

2.2 Thermal bubbles of nothing

Upon analytic continuation z ! it, the Euclidean instanton of Eq. 10 becomes
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The size of the extra dimension is smaller for small r, eventually pinching o↵ entirely at r = R;

for r < R there is no space and no time—there is literally nothing. Unlike the original bubble of

nothing discovered by Witten (the ‘quantum’ bubble of nothing in our vocabulary, see Eq. 32),

this ‘thermal’ bubble of nothing is static [33].
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Since the w-direction is to be matched to the extra dimension and the z-direction is to be
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To avoid a conical singularity requires R = L/4⇡. The rate to nucleate a thermal bubble of
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in the z-direction is more than 1.7524 times the periodicity in the w-direction, there is another

negative mode associated with the Euclidean black string becoming nonuniform.

2.1 4D black holes/5D black strings

Upon analytic continuation w ! it, the Euclidean instanton of Eq. 10 becomes
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The size of the extra dimension is the same everywhere. From the five-dimensional perspective

this is a black string uniformly wrapped around the extra dimension; from the four-dimensional

perspective this is a black hole.
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negative mode associated with the Euclidean black string becoming nonuniform.

2.1 4D black holes/5D black strings

Upon analytic continuation w ! it, the Euclidean instanton of Eq. 10 becomes

ds
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)dt

2 +
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2 + cos2
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The size of the extra dimension is the same everywhere. From the five-dimensional perspective

this is a black string uniformly wrapped around the extra dimension; from the four-dimensional

perspective this is a black hole.
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Figure 10: The black string is given by a constant-w slice through the instanton of Fig. 9.

Since the z-direction is to be matched to the extra dimension and the w-direction (being

the continuation of the time direction) is to be matched to the thermal circle, the required

periodicity is

z ! z + L (13)

w ! w + �. (14)
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black string

the rate to make this plucky string is given by its Boltzmann suppression exp[�F/T ]. This rate

is the same as that given by the instanton calculation since for solutions with a U(1) symmetry

round the thermal circle the Euclidean action is related to the free energy by

I

E

=
~F

T

= �m � S

~ . (17)

The equivalence holds only for U(1)-symmetric thermal circles. For decays that feature quantum

tunneling as well as thermal fluctuation (and therefore which break U(1) to Z2) the action is

not given by Eq. 17 and the free energy of the decay product does not calculate the decay rate.

For � < (1.7524 . . .)L, the Euclidean instanton has in addition a second negative mode.

This mode is continued to a mechanical Gregory-Laflamme instability of the black string. For

higher temperatures, therefore, the uniform black string is not a locally-optimal decay product.

2.2 Thermal bubbles of nothing

Upon analytic continuation z ! it, the Euclidean instanton of Eq. 10 becomes

ds

2 = (1 � R

r

)dw

2 +
dr

2

1 � R

r

+ r

2
�
d✓

2 + cos2
✓d�

2
�

� dt

2
. (18)

The size of the extra dimension is smaller for small r, eventually pinching o↵ entirely at r = R;

for r < R there is no space and no time—there is literally nothing. Unlike the original bubble of

nothing discovered by Witten (the ‘quantum’ bubble of nothing in our vocabulary, see Eq. 32),

this ‘thermal’ bubble of nothing is static [33].
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Figure 12: The thermal bubble of nothing, given by a constant-z slice through the instanton of Fig. 9.

Since the w-direction is to be matched to the extra dimension and the z-direction is to be

matched to the thermal circle, the required periodicity is

w ! w + L (19)

z ! z + �. (20)

To avoid a conical singularity requires R = L/4⇡. The rate to nucleate a thermal bubble of
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icity of the z-direction, we will use the numerical results of Headrick, Kitchen & Wiseman [8].

Euclidean black holes of size much larger than the periodicity of the z-direction do not exist.

As we saw in Sec. 1.2, when the periodicity of the w-direction is more than 3.39 times the peri-

odicity of the z-direction, the would-be Euclidean black hole is too large to be accommodated.

Whenever it does exist, the Euclidean black hole has exactly one negative mode.

3.1 5D black holes

The 5D black hole is given by continuing the black-hole instanton w ! it.
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Figure 15: The five-dimensional caged black hole, given by a constant-w slice through the instanton of Fig. 14.

3.1.1 Ignoring periodicity (L = 1)

Upon analytic continuation w ! it, the Euclidean instanton of Eq. 22 becomes

ds
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This is the 4 + 1-dimensional Schwarzschild solution. Since the w-direction is to be matched to

the thermal circle, the required periodicity is

w ! w + �. (27)

To avoid a conical singularity requires R = �/2⇡. In uncompactified 5D Minkowski, the rate

to nucleate a black hole is

� ⇠ exp
h
�I

E

~

i
= exp

h
� 1

32⇡

�

3

G5~

i
. (28)

3.1.2 Including periodicity (L < 1)

Upon analytic continuation w ! it, the Euclidean instanton of Eqs. 24 & 25 becomes a ‘caged’

black hole, localized in the extra dimension. The required periodicity is

z ! z + L (29)

w ! w + �. (30)
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Since the instanton has a U(1) symmetry around the thermal circle—which is to say since

no quantum tunneling is required, only thermal fluctuation—the Euclidean action can be de-

termined directly from the free energy of the decay product. We already calculated the free

energy of a caged black hole in Eq. 9, so using I

E

= �F the nucleation rate is

� ⇠ exp
h
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i
= exp


� �

3
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✓
1 � �
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16L2
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�

4

128L4
+ . . .

◆�
. (31)

The leading-order correction makes decay faster—the gravitational attraction between the hole

and its images makes it easier to nucleate a five-dimensional black hole.

Just as was true for the black string, the exponentially most likely way to make a caged

black hole that lives forever is to make one just over the threshold for survival. The black

hole is born in unstable thermal equilibrium with the heat bath, so the negative mode of the

Euclidean instanton has been continued to a thermodynamic instability.

3.2 Quantum bubbles of nothing

The quantum bubble of nothing is given by continuing the black-hole instanton z ! it.
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Figure 16: A snapshot of the (thermally-assisted) quantum bubble of nothing at nucleation, given by a constant-
z slice through the instanton of Fig. 14. At the moment of nucleation the bubble is at rest; it then expands,
accelerating outwards and annihilating spacetime.

3.2.1 Ignoring thermal assist (� = 1)

Upon analytic continuation z ! it (which in these coordinates means ✓ ! it), the Euclidean

instanton of Eq. 22 becomes

ds

2 = (1 � R

2
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2
)dw

2 +
dr

2

1 � R

2

r

2

+ r

2
�
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2 + cosh2
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. (32)

This is the ‘quantum’ bubble of nothing. The size of the extra dimension shrinks for small r,

eventually pinching o↵ entirely at r = R; for r < R there is no space and no time—there is

literally nothing. Unlike the three other Lorentzian spacetimes considered so far, this spacetime

is not static. Instead the bubble expands, a wall of annihilation that leaves nothing in its wake.
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2 directions have been suppressed.

in the z-direction is more than 1.7524 times the periodicity in the w-direction, there is another

negative mode associated with the Euclidean black string becoming nonuniform.

2.1 4D black holes/5D black strings
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The size of the extra dimension is the same everywhere. From the five-dimensional perspective

this is a black string uniformly wrapped around the extra dimension; from the four-dimensional

perspective this is a black hole.
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Since the z-direction is to be matched to the extra dimension and the w-direction (being

the continuation of the time direction) is to be matched to the thermal circle, the required

periodicity is

z ! z + L (13)

w ! w + �. (14)
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black hole

the rate to make this plucky string is given by its Boltzmann suppression exp[�F/T ]. This rate

is the same as that given by the instanton calculation since for solutions with a U(1) symmetry

round the thermal circle the Euclidean action is related to the free energy by
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The equivalence holds only for U(1)-symmetric thermal circles. For decays that feature quantum

tunneling as well as thermal fluctuation (and therefore which break U(1) to Z2) the action is

not given by Eq. 17 and the free energy of the decay product does not calculate the decay rate.

For � < (1.7524 . . .)L, the Euclidean instanton has in addition a second negative mode.

This mode is continued to a mechanical Gregory-Laflamme instability of the black string. For

higher temperatures, therefore, the uniform black string is not a locally-optimal decay product.

2.2 Thermal bubbles of nothing

Upon analytic continuation z ! it, the Euclidean instanton of Eq. 10 becomes
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The size of the extra dimension is smaller for small r, eventually pinching o↵ entirely at r = R;

for r < R there is no space and no time—there is literally nothing. Unlike the original bubble of

nothing discovered by Witten (the ‘quantum’ bubble of nothing in our vocabulary, see Eq. 32),

this ‘thermal’ bubble of nothing is static [33].
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Figure 12: The thermal bubble of nothing, given by a constant-z slice through the instanton of Fig. 9.

Since the w-direction is to be matched to the extra dimension and the z-direction is to be

matched to the thermal circle, the required periodicity is

w ! w + L (19)

z ! z + �. (20)

To avoid a conical singularity requires R = L/4⇡. The rate to nucleate a thermal bubble of
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The � $ L duality is visible in the rate for our four decays, which we will see are given by
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Figure 2: The four non-perturbative decays of hot KK space; the temperature is ~/�, the extra dimension has
circumference L, and G5 ⌘ `

3
5/~ = LG4 ⌘ L`

2
4/~. Expressed in 4D coordinates the rate to nucleate a 4D black

hole is independent of L. There is a � $ L duality that permutes the decays.

The rate to nucleate a 4D black hole agrees with that in [2]; the rate to nucleate a quantum

bubble of nothing corrects by a factor of 2 the exponent of [3].

The exponents for the black-string-instanton decays given in this chart are exact. But the

exponent for the quantum bubble of nothing is only exact when T = 0: for T > 0 decay is

faster because of a thermal assist (from fluctuating part way up the barrier). Similarly, the

exponent for the 5D black hole is only exact when L = 1: for L < 1 decay is faster because

of the nucleated black hole’s gravitational attraction to its images. Though the interpretations

di↵er, the duality guarantees the speed-up is the same. To calculate the exact speed-up involves

a complicated numerical solution of coupled PDEs, mercifully this is a heroic calculation that

has already been done in a di↵erent context by someone else [8,9] and whose results I will first

steal and then double analytically continue. The final results are plotted in Fig. 18.

The duality maps thermodynamic instabilities to mechanical instabilities. For example,

both the black hole and the bubble of nothing need to be large to persist. The reasons for

this are on the face of it quite di↵erent. The black hole must be large in order to be cool—a

black hole that is too small will have a Hawking temperature greater than that of the ambient

gas and will evaporate down and be reclaimed by the heat bath. The bubble of nothing must

be large for the same reason that all Coleman-De Luccia bubbles (of which the bubble of

nothing is one limit [10, 11]) must be large—so that the surface tension trying to contract the

bubble loses to the pressure di↵erential trying to expand it. These two seemingly quite di↵erent

conditions—one mechanical, the other quantum mechanical—are dual to one another.

Similarly, the temperature below which thermally fluctuating all the way top stops being

a locally optimal way to make a bubble of nothing (what in de Sitter space is known as the
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hole is independent of L. There is a � $ L duality that permutes the decays.

The rate to nucleate a 4D black hole agrees with that in [2]; the rate to nucleate a quantum

bubble of nothing corrects by a factor of 2 the exponent of [3].

The exponents for the black-string-instanton decays given in this chart are exact. But the

exponent for the quantum bubble of nothing is only exact when T = 0: for T > 0 decay is

faster because of a thermal assist (from fluctuating part way up the barrier). Similarly, the

exponent for the 5D black hole is only exact when L = 1: for L < 1 decay is faster because

of the nucleated black hole’s gravitational attraction to its images. Though the interpretations

di↵er, the duality guarantees the speed-up is the same. To calculate the exact speed-up involves

a complicated numerical solution of coupled PDEs, mercifully this is a heroic calculation that

has already been done in a di↵erent context by someone else [8,9] and whose results I will first

steal and then double analytically continue. The final results are plotted in Fig. 18.

The duality maps thermodynamic instabilities to mechanical instabilities. For example,

both the black hole and the bubble of nothing need to be large to persist. The reasons for

this are on the face of it quite di↵erent. The black hole must be large in order to be cool—a

black hole that is too small will have a Hawking temperature greater than that of the ambient

gas and will evaporate down and be reclaimed by the heat bath. The bubble of nothing must

be large for the same reason that all Coleman-De Luccia bubbles (of which the bubble of

nothing is one limit [10, 11]) must be large—so that the surface tension trying to contract the
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We have seen that there is a duality that relates the nucleation of bubbles of nothing to

the nucleation of black holes and black strings. The duality acts only on Euclidean quantities,

like the Euclidean action or the number of negative modes, and does not apply to Lorentzian

quantities, like mass or entropy. The duality acts with the following dictionary:

Bubbles of Nothing Black Holes and Black Strings

� & L L & �

thermal BoN black string

quantum BoN black hole

thermally-assisted quantum BoN ‘caged’ black hole

most-improbable BoN nonuniform black string

mechanical instability thermodynamic instability

of thermal BoN of black string in heat bath

thermal ‘assist’ of quantum BoN attraction between image black holes

quantum BoN disappears black hole ceases to exist

at Tquant at Merger Point

L = (3.39 . . .)� � = (3.39 . . .)L

exchange of dominance between exchange of dominance between

thermal and quantum BoN black string and black hole

L = (2.75 . . .)� � = (2.75 . . .)L

thermal BoN no longer locally Gregory-Laflamme instability

optimal path across barrier of black string

L = (1.7524 . . .)� � = (1.7524 . . .)L
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nothing is given by the instanton’s Euclidean action

� ⇠ exp
h
�I
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i
= exp

h
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16⇡
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i
= exp
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16⇡
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i
. (21)

The barrier to nucleation is provided by the fact that small bubbles of nothing automatically

seal up. Consider the minimum free energy for a spacetime that pinches o↵ at a given area-

radius R. This function goes from zero at R = 0 to minus infinity as R ! 1 [34], but to get

from one to the other—to go from no bubble to a huge bubble—involves traversing a barrier,

and the thermal bubble of nothing sits at the top of this barrier.

The top of the barrier is a precarious place to be. If the radius shrinks slightly the bubble

of nothing collapses under its own surface tension4, if the radius grows slightly the bubble wall

accelerates outwards and grows forever. The negative mode of the Euclidean instanton has

been continued to a mechanical instability of the nucleated bubble.

Since no tunneling is required to make a thermal bubble of nothing, only thermal fluctuation,

the decay rate is given by the Boltzmann suppression of the decay product, exp[�F/T ]. Said

another way, since there is a U(1) symmetry round the thermal circle, I

E

= �F .

For L < (1.7524 . . .)�, the Euclidean instanton has a second negative mode. This mode

indicates that pure thermal tunneling is no longer even locally the fastest path across the

barrier (indicates that T < Ttherm, in the language of Sec. 1.1).

2.3 Black string vs. thermal bubble of nothing

Figure 13 compares the two rates. At high temperature (TL > ~) it is faster to nucleate a

black string; at low temperature (TL < ~) it is faster to thermally nucleate a bubble of nothing.

There is a � $ L duality that permutes the decays.

The properties of the nucleated objects are (see Appendices C & D)

black string thermal BoN

ADM mass 1
8⇡

�L

G5

1
16⇡

L

2

G5

entropy 1
16⇡

�

2
L

~ G5
0

action 1
16⇡

�

2
L

G5

1
16⇡

�L

2

G5

4The collapse will presumably give rise to a black string, but since the mass of the static bubble of nothing is
so small, the black string will itself have a Gregory-Laflamme instability and soon become nonuniform [26,35].
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