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What can  
we observe and 

what can  
we know 

in  
quantum gravity? 



What is 
Quantum Space Time?

How to do quantum field theory without space time?

How can we decode quantum space time: 

observables and their algebra

What are IR and what are UV observables?



Perturbative Quantum Field Theory

interaction

free theory

free theory
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time

space
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Hilbert space for
free

theory

no Hilbert
space for interacting

theory

Perturbative quantum 
gravity fails:

non-renormalizable.

And does not 
answer crucial 

questions  
(eg big bang).

observable of
(free) theory

excitations
far far apart



Quantum gravity

interaction
??time??

??space??

not observables
of the
theory
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Hilbert space
supporting

diffeomorphism
invariant 

excitations??

Space time points do not 
exist.

Need to be reconstructed 
(approximately).



Example: Gauge invariant observables 
and entanglement (between regions)

A B

Diffeomorphism invariant
characterization of 
space-time regions?

This problem already occurs for (Abelian) gauge theories: Entanglement entropy is ambiguous.
Suggestion: Entanglement definition should be based on splitting of observable algebras.

[Cassini et al]

[see also Giddings]
Problem is much more pronounced with diffeomorphism symmetry.

Question: Can we obtain “local” field observables from gauge invariant observable algebra?



Quantum gravity aim:

Construct (generalized) Hilbert space 
supporting diffeomorphism invariant excitations 

and operators to extract quantum geometry.

This Hilbert space carries a representation of 
the  diffeomorphism invariant algebra of 

observables.



Gauge invariant observables

covariant

Functionals of space time 
metric and other fields invariant 
under space time 
diffeomorphisms.

canonical

Dirac observables:
Functionals of phase space 
variables (weakly) commuting 
with spatial diffeomorphism and 
Hamiltonian constraints. 
Hence are ‘constants of 
motion’.

Can be matched 
to each other.

      (Despite claims to the contrary.)

[…, BD 05]

Need to include spatial 
derivatives of infinitely high 
order.
(Except Poincare charges. 
There are no further hidden symmetries.)

[C. Torre 90s: ]

direct access 
to commutation relations



Fake problems hiding interesting problems

Frozen time: no evolution! 

Clocks are part of the system, rest evolves 
in relation to them: 

 No perfect clocks?  
Interesting conclusions can be drawn 

from that!  

Do we need to add such (aether) clocks? 

Do not treat time 
(reparametrization) symmetry 

as gauge symmetry.

Quantum fluctuations with clock time 
going backwards? 

Do we need generalization of s.a. 
operators (to POVMs)? 

Additional uncertainty relation

Covariant observables/ symmetries 
different  

from canonical observables/
symmetries.

Observables can be matched to each  
other. 

Differences on a global level?

[Kuchar, Barbour, …,  Horava ]

[Fredenhagen et al ]

[Aharanov-Unruh,   G-M-H,   BD-T ]

[Jacobson, …, (Brown-) Kuchar, Giesel et al, Husain,… ]

[G-M-H, 
BD-T,

Bojowald et al: ]

[BD 05]

[Pons, Salisbury, ..]

Real problem: quantization requires control over 
global features in phase space and space time.



Relational / Complete observables

Relational observables (complete observables) with many constraints / field theories

[phase space formulation:  Rovelli 90,..,01]

Example:
Where is the particle at that moment in time when the clock     shows value        ?

Example:
What is the value of field   at point 
on the hypersurface where clocks             show values           .

Relational observables (complete observables)
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The  
gravitational  
measurement 

problem

observed
subsystem

clocks and 
rods

and conjugated momenta



HOW TO COMPUTE DIRAC OBSERVABLES [BD ’04+]

find gauge trafo to hypersurface T = τ , evaluate f on this hypersurface

f [τ ] ≃
∞
∑

r=0

1
r !

∫

{· · · { f , C̃K1 (σ1)}, · · · }C̃Kr (σr )}

(τK1 − TK1)(σ1) · · · (τ
Kr − TKr )(σr )dσ1 . . . dσr
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Expression as a series (solves the theory):
[BD 04]

Can be used to 
o)  show that these observables are indeed (weakly) commuting with all constraints 
a) prove properties of these observables:   for example   space time commutators
b) develop approximation scheme around 
    b1) background                b2) symmetry reduced sectors, e.g. cosmology
                                                         …

weakly commuting constraints:

HOW TO COMPUTE DIRAC OBSERVABLES [BD ’04+]

find gauge trafo to hypersurface T = τ

INTRODUCE CONVENIENT GAUGE GENERATORS
weakly Abelian constraints:

C̃K (σ) =

∫

(A−1 j
K (σ, σ′)Cj (σ

′)dσ′ , AKj (σ, σ′) := {TK (σ),Cj(σ
′)}

⇒ {TK (σ), C̃(σ′)L} ≃ δKL δ(σ, σ′)

C1

C1

C2C2

T1

T2
C̃1

C̃1

C̃2 C̃2

T1

T2
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clock fieldsclock values

    !!!

Relational / Complete observables

[BD, Tambornini 06]

[BD, Tambornini 06] [BD, Tambornini 07]

Example:
What is the value of field   at point 
on the hypersurface where clocks             show values           .
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Complete observables, gauge fixings, 

deparametrization, …

Complete observable framework 
matches (including symplectic structure, time evolution) and generalizes

[BD 04]

• (gauge invariant extension of) (a family of) gauge fixings

• deparametrization / reduced phase space (which assumes perfect clocks)

• allows intrinsic, extrinsic, non-local, geodesic, GPS  clocks, use of cosmological time …

• gives clock time generating function: ‘physical Hamiltonian’ (requires choice of clock momenta)

• can also deal with partially gauge invariant / recurrent clocks

• allows reconstruction of full space time (also lapse and shift)

[Henneaux - Teitelboim book]

[Kuchar, …]

[Rovelli]

[Lewandowski et al]



Recover LQFT observables

Good clocks around a background? Here Minkowski space. 

• Expand constraints in metric perturbations.  Define everything up to Nth’s order in perturbations
• Find clocks conjugated to (linear part of) constraints: defines  ADM gauge  
• Leads to ‘maximally’  Cartesian coordinates (globally). 

[ADM ]
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non-local - but
to lowest order perfect clocks 

Advantage: clocks don't need energy / mass  to be good clocks. 

[BD, Tambornino 06]

Remark: 
can also treat standard cosmological gauges this way with the addition of homogeneous clocks.

Allows reconstruction of space time points: 
appear as labels of gauge invariant observables.  

[BD, Tambornino 07]

Don’s remarks
about harmonic gauge 



8 Poisson brackets: Space–time algebra of observables

Here we will consider the Poisson brackets between two second order complete observables [2]F[�(�1);T ](t1)

and [2]F[�(�2);T ](t2). Note that the Poisson bracket of two second order gauge invariants is an invariant
of first order, we therefore need to consider only zeroth and first order terms of the Poisson bracket. The
zeroth order will coincide with the result for the field commutator on a flat space–time, in particular
it will vanish if (t1,�1) and (t2,�2) are space–like related (with respect to the Minkowski metric). The
first order correction will be a function of the gravitational variables. Fluctuations in the gravitational
variables will be reflected in fluctuations of the light cones, i.e. the causal structure.

The zeroth order of the Poisson bracket can be found to be

{(1)↵t1
Ȟ0(�(�1)),

(1)↵t2
Ȟ0(�(�2))}

= ��

Z

⌃

�
S(t1,�1; 0,�

0)S0(t2,�2; 0,�
0)� S0(t1,�1; 0,�

0)S(t2,�2; 0,�
0)
�
d�0

= �� S(t1,�1; t2,�2) . (8.1)

For the first order of the Poisson bracket we have to consider the Poisson brackets between the first
order term in (7.11) and the two second order terms in (7.11). To begin with we will show that one of
the two contributions vanishes:

{(1)↵t1
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(2)F[(1)↵
t2
Ȟ0 (�(�2));T ]}+ {(2)F[(1)↵

t1
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(1)↵t2
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Z
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Ȟ0(�(�2)),
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= 0 (8.2)

where we used the Jacobi identity and the fact that the matter fields Poisson commute with the clock
variables in the second equation.

The other contribution is
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(2)Ȟ0(
STT eab(�0)) @�0

a @�0

b ↵t0
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Comparing this result with the definition of the propagator function Sgr in (7.8) we see that for t2 = 0
we can write

{[2]F[�(�1);T ](t1) ,
[2]F[�(�2);T ](t1)} = ��Sgr(t1,�1; 0,�2) +O(2) (8.4)

where O(2) refers to terms of second order. This result is similar to the Poisson bracket for a scalar
field on flat space; the flat propagator function is replaced by the “e↵ective” propagator function Sgr,
which to the lowest non–trivial order takes into account the e↵ects of the graviton background. Hence
we can say that to this order the observables have the causality properties of field observables on such
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Couple (free) scalar field. Consider (Poisson bracket) commutator:

gravitationally dressed scalar field propagator/ Greens function:

introducing new propagator functions for the scalar field that depend on the gravitational variables
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such that
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Finally we have to compute the second order complete observable associated to the first and second order
propagated field. Note however that the second order (7.7) is already invariant under the constraints
modulo terms of second order, since it is a sum of products of two phase space functions which are
invariant to first order. Hence we only need to compute the second order term corresponding to the first
order propagated field (7.6). According to (6.5) we have

(2)F[(1)↵t
Ȟ0 (�(�));T ] = �

Z
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The last term in (6.5) vanishes in this case, because in (1)↵t
Ȟ0(�(�)) there only appear matter fields and

no gravitational fields.
Now the second order complete observable is given by
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Ȟ0(�(�)) +
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where the explicit expressions for the quantities on the right hand side can be found in equations
(7.6,7.7,7.10). The first term in (7.11) coincides with the expression for a scalar field at time t on a
flat space–time. The other terms contain corrections due to the coupling to gravity: The second term
(2)↵t

Ȟ0(�(�)) is due to the fact, that the scalar field propagates on a space time with (non–interacting)
gravitons, the last term ensures gauge invariance to second order.

To facilitate the interpretation of the result (7.11) note that the first two terms arise also if we evolve
the scalar field � with the time–dependent Hamiltonian

H(t) =
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⌃
d�

1

2�
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where the time dependence of STT eab(t) is given by
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(2)Ȟ0(
STT eab(�))

=

Z

⌃

⇣
G0ab

cd(t,�; 0,�
0)STT acd(�0) +G00ab

cd(t,�; 0,�
0)STT ecd(�0)

⌘
d�0 . (7.13)

Here, if one evolves � with the Hamiltonian (7.12) one does not treat the gravitational variables as
dynamical anymore, i.e. the Poisson brackets between the gravitational variables are set to zero. Indeed
(7.12) can be interpreted as the first order (in the graviton field) approximation of the Hamiltonian for
a scalar field propagating on a graviton background. The first two terms in (7.11) are also the zeroth
and first order approximation to the propagation of the scalar field with the time dependent Hamiltonian
(7.12). Hence we captured in (7.11) the lowest order e↵ect of a scalar field evolving on a graviton
background. (The last term in (7.11) vanishes on the hypersurface, where all gravitational modes except
for the STT–modes vanish.) Therefore the new propagator functions defined in (7.8) are the zeroth
and first order approximation to the propagator functions for a scalar field propagating on a graviton
background. The higher order terms which arise if one evolves the scalar field with the Hamiltonian
(7.12) can be found as a subset of the higher order terms in the perturbative expansion of the complete
observable associated to the scalar field.
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space time integral over term linear in graviton field 

introducing new propagator functions for the scalar field that depend on the gravitational variables
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gravitons, the last term ensures gauge invariance to second order.

To facilitate the interpretation of the result (7.11) note that the first two terms arise also if we evolve
the scalar field � with the time–dependent Hamiltonian

H(t) =

Z

⌃
d�

1

2�
(⇡2(�) + (�ab + 2 STT eab(t))@a�@b�(�) +m2�2(�)) (7.12)

where the time dependence of STT eab(t) is given by
STT eab(t,�) = ↵t

(2)Ȟ0(
STT eab(�))

=

Z

⌃

⇣
G0ab

cd(t,�; 0,�
0)STT acd(�0) +G00ab

cd(t,�; 0,�
0)STT ecd(�0)

⌘
d�0 . (7.13)

Here, if one evolves � with the Hamiltonian (7.12) one does not treat the gravitational variables as
dynamical anymore, i.e. the Poisson brackets between the gravitational variables are set to zero. Indeed
(7.12) can be interpreted as the first order (in the graviton field) approximation of the Hamiltonian for
a scalar field propagating on a graviton background. The first two terms in (7.11) are also the zeroth
and first order approximation to the propagation of the scalar field with the time dependent Hamiltonian
(7.12). Hence we captured in (7.11) the lowest order e↵ect of a scalar field evolving on a graviton
background. (The last term in (7.11) vanishes on the hypersurface, where all gravitational modes except
for the STT–modes vanish.) Therefore the new propagator functions defined in (7.8) are the zeroth
and first order approximation to the propagator functions for a scalar field propagating on a graviton
background. The higher order terms which arise if one evolves the scalar field with the Hamiltonian
(7.12) can be found as a subset of the higher order terms in the perturbative expansion of the complete
observable associated to the scalar field.

16

1) Recover standard (LQFT) commutators to lowest order.

2) Gravitational dressing 
    (describing light cone fluctuations away from background)
    to higher order.

Space time algebra of observables

(can be explicitly written down in terms of 
propagators of scalar and graviton field)

[BD, Tambornino 06]



Use four scalar fields as clocks.  ‘Observe’ a fifths scalar field. 

Space time algebra of observablesCAUSALITY PROPERTIES

φ[τ ′]

φ[τ ]

Σ′

assume clocks behave reasonable well
consider phase space points where τ , τ ′ are
spacelike related
evaluate observables on Σ′

⇒ {φ[τ ], φ[τ ′]} = 0 on such phase space points

Spacelike related scalar observables commute.
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Poisson commute if spatially separated
with respect to space time metric

encoded by phase space point. 



Space time algebra of observables
Use four scalar fields as clocks.  ‘Observe’ a fifths scalar field. 

1/2 1 3/2 0

SU(2)k

j = 0, 1
2 , . . . , k

2

k = 4, j = 0, 1, 2

L2(G) = ⊕ρVρ ⊗ Vρ∗

⊕µρρ′ Vρ ⊗ Vρ′

ρe, ρ′e, µρ,ρ′
ρ1 ρ2 ρ3 ρ4 ρ′1 ρ′2 ρ′3 ρ′4

ρinter ρ′inter

ρ′inter = ρ∗inter

ρ′inter ̸= ρ∗inter

ρ ̸= ρ′

ρinter, ρ′inter

ρ, ρ′ independent

Z ∼ δ(curv) ∼
∑

j

exp(i jcurv) (0.165)

A → Â , {A,B} → i[Â, B̂]

{φ(Ψ),φ(Ψ + ϵ)} = G(Ψ,Ψ + ϵ)
(
1 + Energy(φ)

Energy(Ψ)

)
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Propagator/ Green’s function on fixed background

j

hj1curve1h
j2
curve2h

j3
curve3 |0i (0.195)

exp(↵3iEsurf3) exp(↵2iEsurf2) exp(↵1iEsurf1) |0i (0.196)

j1 j2 j3
Volnode
↵1 ↵2 ↵3

 vac({hcurve}) = 1

 vac({hloops}) =
Q

loops �(hloops)

h out|P| ini =  out(@outconf 1) exp(
i

~S(conf 1)) in(@inconf 1) +

 out(@outconf 2) exp(
i

~S(conf 2)) in(@inconf 2) + . . . (0.197)

 in  out

 = P 
P
HFock

gµ⌫(t, x),�(t, x)
? H ?

P � P = P (0.198)

Avac( out) = h out|P|;i (0.199)

Alow com
vac ( low com) (0.200)

Ahigh com
vac ( high com) (0.201)

Amed com
vac ( med com) (0.202)

TI(�) = �
�1(linear comb. of L and T modes of qab and ⇡

ab) (0.203)

{ (�), C(�0)} ⇠ ⇧(�)�(�,�0) (0.204)
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For standard model matter.
Quality of clocks depends

on clock momenta.

[Giddings, Hartle, Marolf 05: two point function in covariant quantization]                                  
• bound on space time resolution:  (super) holographic bound on number of degrees of freedom

[BD, Tambornino 06]

[Aharanov-Unruh: just the free particle]                                  
• additionally uncertainty relation for time of arrival operator (time can go backwards)

Defining the Hamiltonian via a Legendre transformation we find

H := ptt
′ + pqq

′ − Lt′ = t′(pt + h(p, q)) , (6.5) {pp6}

hence the Hamiltonian is given as a multiple of the constraint and we have a totally constrained
system.

Only for phase space points on the constraint hypersurface one can relate the momenta to
the velocities (t′, q′). However this relation is not one–to–one, since if one rescales all velocities
by an arbitrary non–vanishing factor, they will correspond to the same momenta as before the
rescaling. This shows that in the Hamiltonian (6.5) we can replace the time evolution t′ (which
changes under rescaling) with an arbitrary non–vanishing factor N .

This Hamiltonian (constraint) generates gauge transformations via

δNf = {f,H} = N{f,C} + {f,N}C ≃ N{f,C} (6.6) {pp7}

which coincide with time evolution. The free choice of the lapse function N reflects the
reparametrization symmetry. Trivially, the flow generated by one constraint leaves this con-
straint invariant, i.e. δNC = 0.

However, one must not forget that the extended phase space includes the physical time t and
its conjugated momentum pt. For instance, phase space points on the constraint hypersurface,
which coincide in (q, pq) – and therefore pt, might still differ in their t–coordinate. In general
these points will represent different physical states and this can be used to regain a notion of
evolution, as will be shown later.

Moreover we arrived now at the same number of physical degrees of freedom as for the un-
parametrized phase space, which has dimension 2. The extended phase space has two dimensions
more, since it also includes the time t and the conjugated momentum pt. One degree of freedom
is lost by implementing the constraint C = 0, another by identifying the one–dimensional gauge
orbits to physical equivalent states.

The two–dimensional physical phase space is described by (two independent) Dirac or gauge
invariant variables. A Dirac observable F has to commute with the constraints

{F,C} ≃ 0 (6.7) {pp8}

at least on the constraint hypersurface. As we will see, Dirac observables are especially important
for the quantization of constrained systems. The intuitive reason for this is that Dirac observables
do not carry any gauge information, hence do not include fluctuations in the unphysical gauge
direction.

To find these Dirac observables we can proceed as described in section 4.1 and given a function
f construct a family of observables Ff (τ): We choose a gauge fixing, in this case t = τ for some
fixed parameter τ and consider the ‘gauge invariant extension of the gauge fixed function f ’.
That is the value of the physical observable Ff (τ) on a gauge orbit is given by the value of f
on that point p of the gauge orbit on which t(p) = τ holds. For instance for the free particle,
V = 0 we find for f = q and f = p respectively

Fq(τ) = q +
pq

m
(τ − t) , Fpq(τ) = pq . (6.8) {pp9}

The interpretation of these observables Ff (τ) is to give the value of f at the instant of time
where t shows the value τ . Fq(τ) and Fpq(τ) give a complete set of Dirac observables for any

fixed value of τ . (For instance Ft(τ) = τ is just a constant on phase space and Fpt ≃ −h = − p2
q

2m
is a function of Fpq(τ).)
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1/2 1 3/2 0

SU(2)k

j = 0, 1
2 , . . . , k

2

k = 4, j = 0, 1, 2

L2(G) = ⊕ρVρ ⊗ Vρ∗

⊕µρρ′ Vρ ⊗ Vρ′

ρe, ρ′e, µρ,ρ′
ρ1 ρ2 ρ3 ρ4 ρ′1 ρ′2 ρ′3 ρ′4

ρinter ρ′inter

ρ′inter = ρ∗inter

ρ′inter ̸= ρ∗inter

ρ ̸= ρ′

ρinter, ρ′inter

ρ, ρ′ independent

Z ∼ δ(curv) ∼
∑

j

exp(i jcurv) (0.165)

Fq(ρ) = t + m
pq

(ρ− q)

A → Â , {A,B} → i[Â, B̂]

{φ(Ψ),φ(Ψ + ϵ)} = G(Ψ,Ψ + ϵ)
(
1 + Energy(φ)

Energy(Ψ)

)

C = pt +
p2

q

2m
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Very much related: 

Do not recover standard LQFT result.  



Linear vs quadratic clock momenta in 
the constraints 

 … makes a huge difference.

Exercise: quantize (free) particle using ‘position’ as a clock.

[Jacobson aether, …., Rovelli-Brown-Kuchar dust, Thiemann et al, Husain,… ]

Emil
Ada

Specially design matter so that we have better / perfect clocks?

(Huge) Difference in epistemology  (then ontology) of quantum gravity..

Ger
trude

[Bondi:  Can we accelerate clocks without bound?
Louko et al 1503 (due to Unruh effect): ideal clocks are fiction]

But:

a star, a galaxy, …



What clocks to use? 

• recover QFT on fixed background, cosmological perturbations:  non-local, gravitational clocks 

• keep causality: scalar field clocks:  but  have to fill space time with scalar field (gradients)
                                                   How about vacuum? Does Minkowski (qft vacuum) ‘exist’?

• add specially designed matter:        Changes General Relativity.

• GPS clocks            or                  using geodesics    (for spatial diffeo-constraints)

 

[Rovelli] [Lewandowski et al 1503:
claim:  observables commute on fixed spatial hypersurface.
In this case they should commute for space like separation.]

What can we / do we actually measure? 

L. Hardy: Be-ables 



Unitary time evolution?

• naive time evolution: frozen on physical states

• use clocks to reconstruct (relational) time evolution: 
                       Is it unitary?  …   Achievable (can be demanded) with perfect clocks.

• change clocks if necessary: fashionables
• discuss dissipation effects due to non-perfect clocks

[Bojowald-Hoehn-Tsobojan 10]





Quantum Gravity Foundations:

From UV to IR.

What is UV and IR in quantum gravity?  

Should it be from IR to UV?   



Renormalization in a background 
independent framework 

and observables

[BD 12,  BD, Steinhaus13, BD14]



What do we observe at ‘different scales’?

• use: generalized boundary formalism          :     In QG boundary can have any shape!
• dynamics are encoded in amplitude associated to boundary     

[Oeckl]

[Carlo’s talk]

Boundary Hilbert space
supporting
higher complexity
wave functions 
           ‘(IR x) UV’

Boundary Hilbert space
supporting only
lower complexity
wave functions 
            ‘IR’

Renormalization ala  Wilson:
Choose a way 
to  coarse grain variables.

Tensor-Network / MERA (Entanglement) renormalization:   We are not free to choose how to coarse grain.
                                                                                      (for the most effective description)

[…Cirac et al, Vidal, Levin-Nave,…]

Microscopic details. Macroscopic order parameters.



Construct an embedding 
of Hilbert spaces such that:

For the low energy wave 
functions
‘UV’   (: less relevant) 
degrees of freedom decouple 
from 
‘IR’ degrees of freedom. 

defines (dynamically preferred)
 coarse graining of observables
(including field redefinitions)

What do we observe at ‘different scales’?

(Algorithm-designing) problem:
Recursive definition.

‘IR’ and ‘UV’ degrees of freedom should depend on dynamics of the system. 



MERA       does not need to be AdS! 

MERA: special and clever way (in order to cover local field theories) of constructing the embedding maps. 

[Vidal]
[Swingle: MERA and AdS/CFT]

MERA & Holography:
• Multi-scale Entanglement Renormalization Ansatz: approximate
and efficient approach to build ground-state wavefunction of
critical lattice models                                                       (Vidal; . . . )

• close connection between MERA and AdS/CFT               (Swingle)

disentanglers:
remove short-range

entanglement

isometries:
decimate lattice

[picture stolen from Rob Myers]

embedding of 
Hilbert spaces 

could describe a large class of boundary wave fcts



How to express the continuum dynamics

* Corresponds to a complete renormalization trajectory,  

        with scale given by complexity parameter.

Amplitudes can be computed iteratively in an approximation (TNW) scheme. 

Least effort necessary for low complexity  = homogeneous ‘cosmology’ configurations. 

[BD NJP 12, 

    BD 14]

embedding of
boundary 
Hilbert spaces

Boundary Hilbert space
with high complexity
wave functions

embedding of
boundary 
Hilbert spaces
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 = P 
P
HFock
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? H ?
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Avac( out) = h out|P|;i (0.199)

Alow com
vac ( low com) (0.200)

32

j

hj1curve1h
j2
curve2h

j3
curve3 |0i (0.195)

exp(↵3iEsurf3) exp(↵2iEsurf2) exp(↵1iEsurf1) |0i (0.196)

j1 j2 j3
Volnode
↵1 ↵2 ↵3

 ({hcurve}) = 1

 ({hloops}) =
Q

loops �(hloops)

h out|P| ini =  out(@outconf 1) exp(
i

~S(conf 1)) in(@inconf 1) +

 out(@outconf 2) exp(
i

~S(conf 2)) in(@inconf 2) + . . . (0.197)

 in  out

 = P 
P
HFock

gµ⌫(t, x),�(t, x)
? H ?

P � P = P (0.198)

Avac( out) = h out|P|;i (0.199)

Alow com
vac ( low com) (0.200)

Ahigh com
vac ( high com) (0.201)

Amed com
vac ( med com) (0.202)

32

j

hj1curve1h
j2
curve2h

j3
curve3 |0i (0.195)

exp(↵3iEsurf3) exp(↵2iEsurf2) exp(↵1iEsurf1) |0i (0.196)

j1 j2 j3
Volnode
↵1 ↵2 ↵3

 ({hcurve}) = 1

 ({hloops}) =
Q

loops �(hloops)

h out|P| ini =  out(@outconf 1) exp(
i

~S(conf 1)) in(@inconf 1) +

 out(@outconf 2) exp(
i

~S(conf 2)) in(@inconf 2) + . . . (0.197)

 in  out

 = P 
P
HFock

gµ⌫(t, x),�(t, x)
? H ?

P � P = P (0.198)

Avac( out) = h out|P|;i (0.199)

Alow com
vac ( low com) (0.200)

Ahigh com
vac ( high com) (0.201)

Amed com
vac ( med com) (0.202)

32

restricts  to 

A (complete) family of  consistent amplitudes defines a complete theory*  of  quantum gravity.

…

…

[BD NJP 12, 

BD, Steinhaus 13]

Boundary Hilbert space
with low complexity
wave functions

initial discrete 
theory gives
approximation 
to



More remarks: 

• includes definition of (quantum gravity ) vacuum, related to no-boundary / Hartle-Hawking

•  actual renormalization flow of coupling constants can be / needs to be extracted

• space time geometry only as emergent (low complexity) variables?

[BD 14]

[Wen: Tensor-Networks allows transmutation between all kinds of fields, 

  spin foams / lqg  [BD, Ryan 08, Freidel-Speziale 09…]:      generalized geometric configurations in  ‘UV’]

How to design a theory so that space time geometry 

emerges as lower complexity descriptions? 

What do we observe at ‘different scales’?



Whether you can observe a 
thing or not depends on the 
theory which you use. It is the 
theory which decides what 
can be observed.

[Einstein 1926]

Happy 100th Birthday to GENERAL RELATIVITY!


