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» Asymptotic short distance expansion:
Difference vanishes in the limit z; — xn forall i < N

v

Practical application e.g. in deep-inelastic scattering

v

Plays fundamental role in conformal field theory
(Conformal bootstrap, "Vertex operator algebras”, ...)

v

Plays fundamental role in QFTCST
(State-independent definition of QFT!)
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The model: Euclidean o*-theory

» Correlation functions are defined via the path integral

(Oar(1)... Oay(an)) = N / Dip exp[~5] O, (1) -+~ Oy ()

where the action is given by

m2
S(p) = /d4x<;(8ugo)2(:n) + 7902(,@) + gp(z)* — counterterms>

» Composite operator insertions O 4(z) = (0" ¢...0"p)(x)
(renormalized)

» OPE coefficients can be defined a la Zimmermann or a la Keller-Kopper

> We use a “renormalization group flow equation” approach
[Wilson, Polchinski, Kopper-Keller-Salmhofer]
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The OPE factorises

Theorem (Holland-SH)
At any arbitrary but fixed loop order:
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The OPE factorises

Theorem (Holland-SH)

At any arbitrary but fixed loop order:
CflAN (xl? e ?xN) = chlAM (1‘1, et ’xM)CgAM+1AN (:EM? et ’xN)
@

e | —2 |

holds on the domain i Te—am] < 1. (Sum over C' absolutely convergent !)
M<j<N
T3 T3
For N=3e="1""2 < A A
|xo—x3| 1 To T T2

fore <1 fore =~ 1
This shows associativity really holds!
> Vertex Algebras (Borcherds property) also in 4d.
> Cffl..,AN uniquely determined in terms of CEIAQ
> “Bootstrap construction” of OPE coefficients possible
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Bound on OPE remainder |
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Theorem (Holland-Kopper-SH)
At any perturbation order r and for any D € N, there exists a K > 0 such that

OPE-Remainder
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: g suw (L, ———
vD!l | min o |s — a2 dimlAid+1 ( sup(m, k)

m form >0 L
» M = mass or renormalization scale

w  form=0
» | P| = sup; |pi|: maximal momentum of spectators

> = inf(u,e), where e = mingcgy oy | D27 il
e: distance of (p1,...,py) to “exceptional” configurations
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Conclusions from bound on OPE remainder

D41
1 (KM max |xl—;rN\)
1<i<N

M"— |P| (D+2)(r+5)
“ der” < )
OPE remainder” < ol min_|a; — z; |0 GmlA sup (1, sup(m, n))
1<i<j<N :
I. Massive fields (m > 0): Bound is finite for arbitrary p1,...,pn
2. Massless fields: Bound is finite only for non-exceptional py, ..., p,

3. Bound vanishes as D — oo = OPE converges at any finite distances!

4. Convergence is slow if...
» |P|is large (“energy scale” of spectators)
» maximal distance of points x; from reference point x is large
> ratio of max. and min. distances is large, e.g. for N = 3

Axg Am
1 T2 1 T2

Slow convergence Fast convergence
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Consider now smeared spectator fields ¢(f;) = [ fi(x

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any D € N, there exists a K > 0 such that
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M: mass for m > 0 or renormalization scale p for massless fields
1f1ls = supyepa |(p* + M?)* f(p)| (Schwartz norm)

I. Bound is finite for any f; € S(R*) (Schwartz space)
OPE remainder is a tempered distribution

2. Let fi(p) = 0 for |p| > | P|: Bound vanishes as D — oo
= OPE converges at any finite distances!
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> Argue that the coefficients obtained this way are state independent



Motivation for a new construction method

Textbook method (roughly):
» Write down correlation function with operator insertions
> Perform short distance/large momentum expansion (in some clever way)

> Argue that the coefficients obtained this way are state independent

Not entirely satisfying:
» Relies on correlation functions = OPE not ’fundamental’
> State independence not obvious

» Hard to study general properties of OPE
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Recursion formula (for mass m > 0)

Theorem (Hollands-JH)

Coupling constant derivatives of OPE coefficients in go®*-theory can be expressed as

89 CEL.AAN(J:IM o ,ZEN) = _/d4y[C§4A1...AN(y’x17 ce . ,l'N)

—Z ZC4A U 2)Ch  Toay @l TN)

i=1 [C]<[A]

Z Cgl.”AN(xlw o c ,xN)Cf4c(y,$N) .

» Compute OPE coefficients to any perturbation order by iteration.
Initial data: Coefficients of free theory.

> State independence obvious.
No other objects enter the construction.

» The formula depends on the renormalisation conditions.
(Here BPHZ)
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Built-in renormalisation (Example: N = 2)

JET I WROE S DRI CR RTINS

[CI<[A4]
Z cg ©1A, y’l’2)CAlc T1,72) Z CAlAg $17932)Cf4c(ya332)

[C1<[A2] [C1<[B]

The integral is absolutely convergent due to the factorisation property.
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In Euclidean perturbation theory, we found that:

I. The OPE converges at finite distances.
2. The OPE factorises (associativity).

3. The OPE satisfies a recursion formula.

Possible Generalisations

» Gauge theories (in progress) » Minkowski space

» Curved manifolds > ..

Applications of the Recursion Formula

» Does the algorithm facilitate computations?

» Does the perturbation series for OPE coefficients converge?
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