Operator Product Expansion

S. Hollands
\section*{UNIVERSITÅT LEIPZIG}

based on joint work with J. Holland and Ch. Kopper

Santa Barbara
7 May, 2015

European Research Council

Established by the European Commission

Introduction

Operator Product Expansion [Wilson '69]

Products of composite fields can be expanded as

$$
\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right) \underbrace{\ldots}_{\text {Spectators }}\rangle \sim \sum_{B} \underbrace{\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)}_{\text {OPE coefficients }}\left\langle\mathcal{O}_{B}\left(x_{N}\right) \ldots\right\rangle
$$

Introduction

Operator Product Expansion [Wilson '69]

Products of composite fields can be expanded as

$$
\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right) \underbrace{\ldots}_{\text {Spectators }}\rangle \sim \sum_{B} \underbrace{\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)}_{\text {OPE coefficients }}\left\langle\mathcal{O}_{B}\left(x_{N}\right) \ldots\right\rangle
$$

- Asymptotic short distance expansion:

Difference vanishes in the limit $x_{i} \rightarrow x_{N}$ for all $i \leq N$

Introduction

Operator Product Expansion [Wilson '69]

Products of composite fields can be expanded as

$$
\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right) \underbrace{\ldots}_{\text {Spectators }}\rangle \sim \sum_{B} \underbrace{\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)}_{\text {OPE coefficients }}\left\langle\mathcal{O}_{B}\left(x_{N}\right) \ldots\right\rangle
$$

- Asymptotic short distance expansion:

Difference vanishes in the limit $x_{i} \rightarrow x_{N}$ for all $i \leq N$

- Practical application e.g. in deep-inelastic scattering
- Plays fundamental role in conformal field theory
(Conformal bootstrap, "Vertex operator algebras", ...)
- Plays fundamental role in QFTCST (State-independent definition of QFT!)

Topics of today's talk:

I. In what sense does the OPE converge? N-point functions $\leftrightarrow 1$-point functions \& OPE coefficients
2. What are algebraic relations between OPE coefficients? Vertex algebras in d-dims.
3. A novel recursion scheme for OPE coefficients New self-consistent construction method

Topics of today's talk:

I. In what sense does the OPE converge? N-point functions $\leftrightarrow 1$-point functions \& OPE coefficients
2. What are algebraic relations between OPE coefficients? Vertex algebras in d-dims.
3. A novel recursion scheme for OPE coefficients New self-consistent construction method

Model: Perturbative, Euclidean φ_{4}^{4}-theory

The model: Euclidean φ^{4}-theory

- Correlation functions are defined via the path integral

$$
\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \ldots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle:=\mathcal{N} \int \mathcal{D} \varphi \exp [-S] \mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)
$$

where the action is given by

$$
S(\varphi):=\int \mathrm{d}^{4} x\left(\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}(x)+\frac{m^{2}}{2} \varphi^{2}(x)+g \varphi(x)^{4}-\text { counterterms }\right)
$$

The model: Euclidean φ^{4}-theory

- Correlation functions are defined via the path integral

$$
\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \ldots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle:=\mathcal{N} \int \mathcal{D} \varphi \exp [-S] \mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)
$$

where the action is given by

$$
S(\varphi):=\int \mathrm{d}^{4} x\left(\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}(x)+\frac{m^{2}}{2} \varphi^{2}(x)+g \varphi(x)^{4}-\text { counterterms }\right)
$$

- Composite operator insertions $\mathcal{O}_{A}(x)=\left(\partial^{v_{1}} \varphi \ldots \partial^{v_{n}} \varphi\right)(x)$ (renormalized)

The model: Euclidean φ^{4}-theory

- Correlation functions are defined via the path integral

$$
\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \ldots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle:=\mathcal{N} \int \mathcal{D} \varphi \exp [-S] \mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)
$$

where the action is given by

$$
S(\varphi):=\int \mathrm{d}^{4} x\left(\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}(x)+\frac{m^{2}}{2} \varphi^{2}(x)+g \varphi(x)^{4}-\text { counterterms }\right)
$$

- Composite operator insertions $\mathcal{O}_{A}(x)=\left(\partial^{v_{1}} \varphi \ldots \partial^{v_{n}} \varphi\right)(x)$ (renormalized)
- OPE coefficients can be defined a la Zimmermann or a la Keller-Kopper

The model: Euclidean φ^{4}-theory

- Correlation functions are defined via the path integral

$$
\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \ldots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle:=\mathcal{N} \int \mathcal{D} \varphi \exp [-S] \mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)
$$

where the action is given by

$$
S(\varphi):=\int \mathrm{d}^{4} x\left(\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}(x)+\frac{m^{2}}{2} \varphi^{2}(x)+g \varphi(x)^{4}-\text { counterterms }\right)
$$

- Composite operator insertions $\mathcal{O}_{A}(x)=\left(\partial^{v_{1}} \varphi \ldots \partial^{v_{n}} \varphi\right)(x)$ (renormalized)
- OPE coefficients can be defined a la Zimmermann or a la Keller-Kopper
- We use a "renormalization group flow equation" approach [Wilson, Polchinski, Kopper-Keller-Salmhofer]

Outline

I OPE factorisation

2 OPE convergence

3 Recursive construction of OPE

Outline

I OPE factorisation

2 OPE convergence

3 Recursive construction of OPE

The OPE factorises

Theorem (Holland-SH)

At any arbitrary but fixed loop order:
$\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)=\sum_{C} \mathcal{C}_{A_{1} \ldots A_{M}}^{C}\left(x_{1}, \ldots, x_{M}\right) \mathcal{C}_{C A_{M+1} \ldots A_{N}}^{B}\left(x_{M}, \ldots, x_{N}\right)$
holds on the domain $\frac{\max _{1 \leq i \leq M}\left|x_{i}-x_{M}\right|}{\min _{M<j \leq N}\left|x_{j}-x_{M}\right|}<1$. (Sum over C absolutely convergent !)

The OPE factorises

Theorem (Holland-SH)

At any arbitrary but fixed loop order:

$$
\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)=\sum_{C} \mathcal{C}_{A_{1} \ldots A_{M}}^{C}\left(x_{1}, \ldots, x_{M}\right) \mathcal{C}_{C A_{M+1} \ldots A_{N}}^{B}\left(x_{M}, \ldots, x_{N}\right)
$$

holds on the domain $\frac{\max _{1 \leq i \leq M}\left|x_{i}-x_{M}\right|}{\min _{M<j \leq N}\left|x_{j}-x_{M}\right|}<1$. (Sum over C absolutely convergent !)

For $N=3: \varepsilon=\frac{\left|x_{1}-x_{2}\right|}{\left|x_{2}-x_{3}\right|}<1$

$$
\text { for } \varepsilon \approx 1
$$

The OPE factorises

Theorem (Holland-SH)

At any arbitrary but fixed loop order:
$\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)=\sum_{C} \mathcal{C}_{A_{1} \ldots A_{M}}^{C}\left(x_{1}, \ldots, x_{M}\right) \mathcal{C}_{C A_{M+1} \ldots A_{N}}^{B}\left(x_{M}, \ldots, x_{N}\right)$
holds on the domain $\frac{\max _{1 \leq i \leq M}\left|x_{i}-x_{M}\right|}{\min _{M<j \leq N}\left|x_{j}-x_{M}\right|}<1$. (Sum over C absolutely convergent !)

For $N=3: \varepsilon=\frac{\left|x_{1}-x_{2}\right|}{\left|x_{2}-x_{3}\right|}<1$

$$
\text { for } \varepsilon \approx 1
$$

This shows associativity really holds!

- Vertex Algebras (Borcherds property) also in $4 d$.
- $\mathcal{C}_{A_{1} \ldots A_{N}}^{B}$ uniquely determined in terms of $\mathcal{C}_{A_{1} A_{2}}^{B}$
- "Bootstrap construction" of OPE coefficients possible

Outline

Π OPE factorisation

2 OPE convergence

3 Recursive construction of OPE

Bound on OPE remainder I

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$,

OPE-Remainder
$\overparen{\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \underbrace{\left.\hat{\varphi}\left(p_{1}\right) \cdots, \hat{\varphi}\left(p_{n}\right)\right\rangle}_{\text {Spectator fields }}\rangle}$

Bound on OPE remainder I

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that
OPE-Remainder

$$
\begin{gathered}
|\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \underbrace{\hat{\varphi}\left(p_{1}\right) \cdots \hat{\varphi}\left(p_{n}\right)}_{\text {Spectator fields }}\rangle| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right| \sum_{i} \operatorname{dim}\left[A_{i}\right]+1} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}
\end{gathered}
$$

- $M=\left\{\begin{array}{ll}m & \text { for } m>0 \\ \mu & \text { for } m=0\end{array} \quad\right.$ mass or renormalization scale

Bound on OPE remainder I

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that
OPE-Remainder

$$
\begin{gathered}
|\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \underbrace{\hat{\varphi}\left(p_{1}\right) \cdots \hat{\varphi}\left(p_{n}\right)}_{\text {spectator fields }}\rangle| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}
\end{gathered}
$$

- $M=\left\{\begin{array}{ll}m & \text { for } m>0 \\ \mu & \text { for } m=0\end{array} \quad\right.$ mass or renormalization scale
- $|P|=\sup _{i}\left|p_{i}\right|:$ maximal momentum of spectators

Bound on OPE remainder I

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that
OPE-Remainder

$$
|\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \underbrace{\hat{\varphi}\left(p_{1}\right) \cdots \hat{\varphi}\left(p_{n}\right)}_{\text {Spectator fields }}\rangle|
$$

$$
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}
$$

- $M= \begin{cases}m & \text { for } m>0 \\ \mu & \text { for } m=0\end{cases}$
- $|P|=\sup _{i}\left|p_{i}\right|$: maximal momentum of spectators
- $\kappa:=\inf (\mu, \varepsilon)$, where $\varepsilon=\min _{I \subset\{1, \ldots, n\}}\left|\sum_{I} p_{i}\right|$ ε : distance of $\left(p_{1}, \ldots, p_{n}\right)$ to "exceptional" configurations

Conclusions from bound on OPE remainder

$$
\text { "OPE remainder" } \leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|_{i} \operatorname{dim}\left[A_{i}\right]+1} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}
$$

Conclusions from bound on OPE remainder

$$
\text { "OPE remainder" } \leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|_{i} \operatorname{dim}\left[A_{i}\right]+1} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}
$$

I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}

Conclusions from bound on OPE remainder

$$
" O P E \text { remainder" } \leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}
$$

I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n}

Conclusions from bound on OPE remainder

$" O P E$ remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$
I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n}
3. Bound vanishes as $D \rightarrow \infty$

Conclusions from bound on OPE remainder

$" O P E$ remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$
I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n}
3. Bound vanishes as $D \rightarrow \infty \Rightarrow$ OPE converges at any finite distances!

Conclusions from bound on OPE remainder

"OPE remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$
I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n}
3. Bound vanishes as $D \rightarrow \infty \Rightarrow$ OPE converges at any finite distances!
4. Convergence is slow if...

- $|P|$ is large ("energy scale" of spectators)

Conclusions from bound on OPE remainder

$" O P E$ remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$
I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n}
3. Bound vanishes as $D \rightarrow \infty \Rightarrow$ OPE converges at any finite distances!
4. Convergence is slow if...

- $|P|$ is large ("energy scale" of spectators)
- maximal distance of points x_{i} from reference point x_{N} is large

Conclusions from bound on OPE remainder

"OPE remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$
I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n}
3. Bound vanishes as $D \rightarrow \infty \Rightarrow$ OPE converges at any finite distances!
4. Convergence is slow if...

- $|P|$ is large ("energy scale" of spectators)
- maximal distance of points x_{i} from reference point x_{N} is large
- ratio of max. and min. distances is large, e.g. for $N=3$

Slow convergence

Fast convergence

Bound on OPE remainder II

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$,
$\left|\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle\right|$

Bound on OPE remainder II

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

$$
\begin{gathered}
\left|\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle\right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \sum_{s_{1}+\ldots+s_{N}=0}^{(D+2)(r+5)} \prod_{i=1}^{n} \frac{\left\|\hat{f}_{i}\right\|_{\frac{s_{i}}{2}}}{M^{s_{i}}}
\end{gathered}
$$

M : mass for $m>0$ or renormalization scale μ for massless fields $\|\hat{f}\|_{s}:=\sup _{p \in \mathbb{R}^{4}}\left|\left(p^{2}+M^{2}\right)^{s} \hat{f}(p)\right|$ (Schwartz norm)

Bound on OPE remainder II

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

$$
\begin{aligned}
\left|\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle\right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \sum_{s_{1}+\ldots+s_{N}=0}^{(D+2)(r+5)} \prod_{i=1}^{n} \frac{\left\|\hat{f}_{i}\right\|_{\frac{s_{i}}{2}}}{M^{s_{i}}}
\end{aligned}
$$

M : mass for $m>0$ or renormalization scale μ for massless fields $\|\hat{f}\|_{s}:=\sup _{p \in \mathbb{R}^{4}}\left|\left(p^{2}+M^{2}\right)^{s} \hat{f}(p)\right|$ (Schwartz norm)
I. Bound is finite for any $f_{i} \in \mathcal{S}\left(\mathbb{R}^{4}\right)$ (Schwartz space) OPE remainder is a tempered distribution

Bound on OPE remainder II

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

$$
\begin{aligned}
\left|\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle\right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \sum_{s_{1}+\ldots+s_{N}=0}^{(D+2)(r+5)} \prod_{i=1}^{n} \frac{\left\|\hat{f}_{i}\right\|_{\frac{s_{i}}{2}}}{M^{s_{i}}}
\end{aligned}
$$

M : mass for $m>0$ or renormalization scale μ for massless fields $\|\hat{f}\|_{s}:=\sup _{p \in \mathbb{R}^{4}}\left|\left(p^{2}+M^{2}\right)^{s} \hat{f}(p)\right|$ (Schwartz norm)
I. Bound is finite for any $f_{i} \in \mathcal{S}\left(\mathbb{R}^{4}\right)$ (Schwartz space) OPE remainder is a tempered distribution
2. Let $\hat{f}_{i}(p)=0$ for $|p|>|P|$:

Bound on OPE remainder II

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

$$
\begin{gathered}
\left|\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle\right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \sup \left(1, \frac{|P|}{M}\right)^{(D+2)(r+5)}
\end{gathered}
$$

M : mass for $m>0$ or renormalization scale μ for massless fields $\|\hat{f}\|_{s}:=\sup _{p \in \mathbb{R}^{4}}\left|\left(p^{2}+M^{2}\right)^{s} \hat{f}(p)\right|$ (Schwartz norm)
I. Bound is finite for any $f_{i} \in \mathcal{S}\left(\mathbb{R}^{4}\right)$ (Schwartz space) OPE remainder is a tempered distribution
2. Let $\hat{f}_{i}(p)=0$ for $|p|>|P|$:

Bound on OPE remainder II

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

$$
\begin{gathered}
\left|\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle\right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \sup \left(1, \frac{|P|}{M}\right)^{(D+2)(r+5)}
\end{gathered}
$$

M : mass for $m>0$ or renormalization scale μ for massless fields $\|\hat{f}\|_{s}:=\sup _{p \in \mathbb{R}^{4}}\left|\left(p^{2}+M^{2}\right)^{s} \hat{f}(p)\right|($ Schwartz norm)
I. Bound is finite for any $f_{i} \in \mathcal{S}\left(\mathbb{R}^{4}\right)$ (Schwartz space) OPE remainder is a tempered distribution
2. Let $\hat{f}_{i}(p)=0$ for $|p|>|P|$: Bound vanishes as $D \rightarrow \infty$
\Rightarrow OPE converges at any finite distances!

Outline

I OPE factorisation

2 OPE convergence

3 Recursive construction of OPE

Motivation for a new construction method

Textbook method (roughly):

- Write down correlation function with operator insertions
- Perform short distance/large momentum expansion (in some clever way)
- Argue that the coefficients obtained this way are state independent

Motivation for a new construction method

Textbook method (roughly):

- Write down correlation function with operator insertions
- Perform short distance/large momentum expansion (in some clever way)
- Argue that the coefficients obtained this way are state independent

Not entirely satisfying:

- Relies on correlation functions \Rightarrow OPE not 'fundamental'
- State independence not obvious
- Hard to study general properties of OPE

Recursion formula (for mass $m>0$)

Theorem (Hollands-JH)

Coupling constant derivatives of OPE coefficients in $g \varphi^{4}$-theory can be expressed as

$$
\begin{aligned}
\partial_{g} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)=- & \int \mathrm{d}^{4} y\left[\mathcal{C}_{\varphi^{4} A_{1} \ldots A_{N}}^{B}\left(y, x_{1}, \ldots, x_{N}\right)\right. \\
& -\sum_{i=1}^{N} \sum_{[C] \leq\left[A_{i}\right]} \mathcal{C}_{\varphi^{4} A_{i}}^{C}\left(y, x_{i}\right) \mathcal{C}_{A_{1} \ldots \widehat{A}_{i} C \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \\
& \left.-\sum_{[C]<[B]} \mathcal{C}_{A_{1} \ldots A_{N}}^{C}\left(x_{1}, \ldots, x_{N}\right) \mathcal{C}_{\varphi^{4} C}^{B}\left(y, x_{N}\right)\right]
\end{aligned}
$$

Recursion formula (for mass $m>0$)

Theorem (Hollands-JH)

Coupling constant derivatives of OPE coefficients in $g \varphi^{4}$-theory can be expressed as

$$
\begin{aligned}
\partial_{g} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)=- & \int \mathrm{d}^{4} y\left[\mathcal{C}_{\varphi^{4} A_{1} \ldots A_{N}}^{B}\left(y, x_{1}, \ldots, x_{N}\right)\right. \\
& -\sum_{i=1}^{N} \sum_{[C] \leq\left[A_{i}\right]} \mathcal{C}_{\varphi^{4} A_{i}}^{C}\left(y, x_{i}\right) \mathcal{C}_{A_{1} \ldots \widehat{A_{i}} C \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \\
& \left.-\sum_{[C]<[B]} \mathcal{C}_{A_{1} \ldots A_{N}}^{C}\left(x_{1}, \ldots, x_{N}\right) \mathcal{C}_{\varphi^{4} C}^{B}\left(y, x_{N}\right)\right]
\end{aligned}
$$

- Compute OPE coefficients to any perturbation order by iteration. Initial data: Coefficients of free theory.

Recursion formula (for mass $m>0$)

Theorem (Hollands-JH)

OPE coefficients at perturbation order $(r+1)$ can be expressed as

$$
\begin{aligned}
\left(\mathcal{C}_{r+1}\right)_{A_{1} \ldots A_{N}}^{B} & \left(x_{1}, \ldots, x_{N}\right)=-\int \mathrm{d}^{4} y\left[\left(\mathcal{C}_{r}\right)_{\varphi^{4} A_{1} \ldots A_{N}}^{B}\left(y, x_{1}, \ldots, x_{N}\right)\right. \\
& -\sum_{s=0}^{r} \sum_{i=1}^{N} \sum_{[C] \leq\left[A_{i}\right]}\left(\mathcal{C}_{s}\right)_{\varphi^{4} A_{i}}^{C}\left(y, x_{i}\right)\left(\mathcal{C}_{r-s}\right)_{A_{1} \ldots \widehat{A_{i}} C \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \\
& \left.-\sum_{s=0}^{r} \sum_{[C]<[B]}\left(\mathcal{C}_{s}\right)_{A_{1} \ldots A_{N}}^{C}\left(x_{1}, \ldots, x_{N}\right)\left(\mathcal{C}_{r-s}\right)_{\varphi^{4} C}^{B}\left(y, x_{N}\right)\right]
\end{aligned}
$$

- Compute OPE coefficients to any perturbation order by iteration. Initial data: Coefficients of free theory.

Recursion formula (for mass $m>0$)

Theorem (Hollands-JH)

Coupling constant derivatives of OPE coefficients in $g \varphi^{4}$-theory can be expressed as

$$
\begin{aligned}
\partial_{g} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)=- & \int \mathrm{d}^{4} y\left[\mathcal{C}_{\varphi^{4} A_{1} \ldots A_{N}}^{B}\left(y, x_{1}, \ldots, x_{N}\right)\right. \\
& -\sum_{i=1}^{N} \sum_{[C] \leq\left[A_{i}\right]} \mathcal{C}_{\varphi^{4} A_{i}}^{C}\left(y, x_{i}\right) \mathcal{C}_{A_{1} \ldots \widehat{A_{i}} C_{\ldots}}^{B}\left(x_{1}, \ldots, x_{N}\right) \\
& \left.-\sum_{[C]<[B]} \mathcal{C}_{A_{1} \ldots A_{N}}^{C}\left(x_{1}, \ldots, x_{N}\right) \mathcal{C}_{\varphi^{4} C}^{B}\left(y, x_{N}\right)\right]
\end{aligned}
$$

- Compute OPE coefficients to any perturbation order by iteration. Initial data: Coefficients of free theory.
- State independence obvious.

No other objects enter the construction.

- The formula depends on the renormalisation conditions.
(Here BPHZ)

Built-in renormalisation (Example: $N=2$)

$$
\begin{aligned}
& \int \mathrm{d}^{4} y\left[C_{\psi^{4} A_{1}}^{B} A_{2}\left(y, x_{1}, x_{2}\right)-\sum_{[C] \leq\left[A_{1}\right]} C_{\varphi^{4} A_{1}}^{C}\left(y, x_{1}\right) \mathcal{C}_{A_{2}}^{B}\left(x_{1}, x_{2}\right)\right. \\
& \left.-\sum_{[C] \leq\left[A_{2}\right]} C_{\varphi^{4} A_{2}}^{C}\left(y, x_{2}\right) \mathcal{C}_{A_{1} C}^{B}\left(x_{1}, x_{2}\right)-\sum_{[C] \mid[B]} \mathcal{C}_{1}^{C} A_{1}\left(x_{1}, x_{2}\right) C_{\varphi^{s} C}^{B}\left(y, x_{2}\right)\right]
\end{aligned}
$$

Built-in renormalisation (Example: $N=2$)

$$
\begin{aligned}
& \int \mathrm{d}^{4} y\left[\mathcal{C}_{\varphi^{4} A_{1} A_{2}}^{B}\left(y, x_{1}, x_{2}\right)-\sum_{[C] \leq\left[A_{1}\right]} \mathcal{C}_{\varphi^{4} A_{1}}^{C}\left(y, x_{1}\right) \mathcal{C}_{C A_{2}}^{B}\left(x_{1}, x_{2}\right)\right. \\
& \left.-\sum_{[C] \leq\left[A_{2}\right]} \mathcal{C}_{\varphi^{4} A_{2}}^{C}\left(y, x_{2}\right) \mathcal{C}_{A_{1} C}^{B}\left(x_{1}, x_{2}\right)-\sum_{[C]<[B]} \mathcal{C}_{A_{1} A_{2}}^{C}\left(x_{1}, x_{2}\right) \mathcal{C}_{\varphi^{4} C}^{B}\left(y, x_{2}\right)\right]
\end{aligned}
$$

UV-region I $\left(y \approx x_{1}\right): \mathcal{C}_{\varphi^{4} A_{1} A_{2}}^{B}$ factorises

Built-in renormalisation (Example: $N=2$)

$$
\begin{aligned}
& \int \mathrm{d}^{4} y\left[\sum_{[C]=0}^{\infty} C_{\varphi^{4} A_{1}}^{C}\left(y, x_{1}\right) C_{C A_{2}}^{B}\left(x_{1}, x_{2}\right)-\sum_{[C] \leq\left[A_{1}\right]} C_{母^{4} A_{1}}^{C}\left(y, x_{1}\right) C_{C A_{2}}^{B}\left(x_{1}, x_{2}\right)\right. \\
& -\sum_{\left.|C| \leq \mid A_{2}\right]} \mathcal{C}_{4^{4} A_{2}}^{C}\left(y, x_{2}\right) \mathcal{C}_{A_{1} C}^{B}\left(x_{1}, x_{2}\right)-\sum_{|C|<|B|} \mathcal{C}_{A}^{C}{ }_{1}\left(A_{2}\left(x_{1}, x_{2}\right) \mathcal{C}_{\varphi^{*} C}^{B}\left(y, x_{2}\right)\right]
\end{aligned}
$$

UV-region I $\left(y \approx x_{1}\right): \mathcal{C}_{\varphi^{4} A_{1} A_{2}}^{B}$ factorises

Built-in renormalisation (Example: $N=2$)

$$
\begin{aligned}
& \int \mathrm{d}^{4} y\left[\sum_{[C]>\left[A_{2}\right]} \mathcal{C}_{\varphi^{4} A_{2}}^{C}\left(y, x_{2}\right) \mathcal{C}_{A_{1} C}^{B}\left(x_{1}, x_{2}\right)\right. \\
& \left.-\sum_{[C] \leq\left[A_{2}\right]} \mathcal{C}_{\varphi^{4} A_{2}}^{C}\left(y, x_{2}\right) \mathcal{C}_{A_{1} C}^{B}\left(x_{1}, x_{2}\right)-\sum_{[C]<[B]} \mathcal{C}_{A_{1} A_{2}}^{C}\left(x_{1}, x_{2}\right) \mathcal{C}_{\varphi^{4} C}^{B}\left(y, x_{2}\right)\right]
\end{aligned}
$$

UV-region I $\left(y \approx x_{1}\right): \mathcal{C}_{\varphi^{4} A_{1} A_{2}}^{B}$ factorises \Rightarrow divergences cancel

Built-in renormalisation (Example: $N=2$)

$$
\begin{aligned}
& \int \mathrm{d}^{4} y\left[\mathcal{C}_{\varphi^{4} A_{1} A_{2}}^{B}\left(y, x_{1}, x_{2}\right)-\sum_{[C] \leq\left[A_{2}\right]} \mathcal{C}_{\varphi^{4} A_{2}}^{C}\left(y, x_{2}\right) \mathcal{C}_{A_{1} C}^{B}\left(x_{1}, x_{2}\right)\right. \\
& \left.-\sum_{[C] \leq\left[A_{1}\right]} \mathcal{C}_{\varphi^{4} A_{1}}^{C}\left(y, x_{1}\right) \mathcal{C}_{C A_{2}}^{B}\left(x_{1}, x_{2}\right)-\sum_{[C]<[B]} \mathcal{C}_{A_{1} A_{2}}^{C}\left(x_{1}, x_{2}\right) \mathcal{C}_{\varphi^{4} C}^{B}\left(y, x_{2}\right)\right]
\end{aligned}
$$

UV-region II $\left(y \approx x_{2}\right): \mathcal{C}_{\varphi^{4} A_{1} A_{2}}^{B}$ factorises

Built-in renormalisation (Example: $N=2$)

$$
\begin{aligned}
& \int \mathrm{d}^{4} y\left[\sum_{[C]>\left[A_{1}\right]} \mathcal{C}_{\varphi^{4} A_{1}}^{C}\left(y, x_{1}\right) \mathcal{C}_{C A_{2}}^{B}\left(x_{1}, x_{2}\right)\right. \\
& \left.-\sum_{[C] \leq\left[A_{1}\right]} \mathcal{C}_{\varphi^{4} A_{1}}^{C}\left(y, x_{1}\right) \mathcal{C}_{C A_{2}}^{B}\left(x_{1}, x_{2}\right)-\sum_{[C]<[B]} \mathcal{C}_{A_{1} A_{2}}^{C}\left(x_{1}, x_{2}\right) \mathcal{C}_{\varphi^{4} C}^{B}\left(y, x_{2}\right)\right]
\end{aligned}
$$

UV-region II $\left(y \approx x_{2}\right): \mathcal{C}_{\varphi^{4} A_{1} A_{2}}^{B}$ factorises \Rightarrow divergences cancel

Built-in renormalisation (Example: $N=2$)

$$
\begin{aligned}
& \int \mathrm{d}^{4} y\left[\sum_{[C] \geq[B]} \mathcal{C}_{A_{1} A_{2}}^{C}\left(x_{1}, x_{2}\right) \mathcal{C}_{\varphi^{4} C}^{B}\left(y, x_{2}\right)\right. \\
& \left.-\sum_{[C] \leq\left[A_{1}\right]} \mathcal{C}_{\varphi^{4} A_{1}}^{C}\left(y, x_{1}\right) \mathcal{C}_{C A_{2}}^{B}\left(x_{1}, x_{2}\right)-\sum_{[C] \leq\left[A_{2}\right]} \mathcal{C}_{\varphi^{4} A_{2}}^{C}\left(y, x_{2}\right) \mathcal{C}_{A_{1} C}^{B}\left(x_{1}, x_{2}\right)\right]
\end{aligned}
$$

IR-region $\left(\left|y-x_{2}\right| \gg\left|x_{1}-x_{2}\right|\right): \mathcal{C}_{\varphi^{4} A_{1} A_{2}}^{B}$ factorises

Built-in renormalisation (Example: $N=2$)

$$
\begin{aligned}
& \int \mathrm{d}^{4} y\left[\sum_{[C] \geq[B]} \mathcal{C}_{A_{1} A_{2}}^{C}\left(x_{1}, x_{2}\right) \mathcal{C}_{\varphi^{4} C}^{B}\left(y, x_{2}\right)\right. \\
& \left.-\sum_{[C] \leq\left[A_{1}\right]} \mathcal{C}_{\varphi^{4} A_{1}}^{C}\left(y, x_{1}\right) \mathcal{C}_{C A_{2}}^{B}\left(x_{1}, x_{2}\right)-\sum_{[C] \leq\left[A_{2}\right]} \mathcal{C}_{\varphi^{4} A_{2}}^{C}\left(y, x_{2}\right) \mathcal{C}_{A_{1} C}^{B}\left(x_{1}, x_{2}\right)\right]
\end{aligned}
$$

IR-region $\left(\left|y-x_{2}\right| \gg\left|x_{1}-x_{2}\right|\right): \mathcal{C}_{\varphi^{4} A_{1} A_{2}}^{B}$ factorises \Rightarrow divergences cancel

Built-in renormalisation (Example: $N=2$)

$$
\begin{aligned}
& \int \mathrm{d}^{4} y\left[\mathcal{C}_{\varphi^{4} A_{1} A_{2}}^{B}\left(y, x_{1}, x_{2}\right)-\sum_{[C] \leq\left[A_{1}\right]} \mathcal{C}_{\varphi^{4} A_{1}}^{C}\left(y, x_{1}\right) \mathcal{C}_{C A_{2}}^{B}\left(x_{1}, x_{2}\right)\right. \\
& \left.-\sum_{[C] \leq\left[A_{2}\right]} \mathcal{C}_{\varphi^{4} A_{2}}^{C}\left(y, x_{2}\right) \mathcal{C}_{A_{1} C}^{B}\left(x_{1}, x_{2}\right)-\sum_{[C]<[B]} \mathcal{C}_{A_{1} A_{2}}^{C}\left(x_{1}, x_{2}\right) \mathcal{C}_{\varphi^{4} C}^{B}\left(y, x_{2}\right)\right]
\end{aligned}
$$

The integral is absolutely convergent due to the factorisation property.

Conclusions \& Outlook

In Euclidean perturbation theory, we found that:
I. The OPE converges at finite distances.
2. The OPE factorises (associativity).
3. The OPE satisfies a recursion formula.

Conclusions \& Outlook

In Euclidean perturbation theory, we found that:
I. The OPE converges at finite distances.
2. The OPE factorises (associativity).
3. The OPE satisfies a recursion formula.

Possible Generalisations

- Gauge theories (in progress)
- Curved manifolds
- Minkowski space
- ...

Applications of the Recursion Formula

- Does the algorithm facilitate computations?
- Does the perturbation series for OPE coefficients converge?

