String Universality & 3D Quantum Gravity

Alex Maloney, McGill University KITP, 10-6-15

Belin, Keller & A. M.

Belin, Keller & A. M. (to appear)

P. de Lange, A. M. & E. Verlinde (to appear)

A. M. & S. Ross (to appear)

S. Kachru, A. M. & G. Moore (might possibly appear someday, maybe)

The Goal:

Question: Which classical theories of gravity can be quantized?

Strategy: Every CFT_2 can be interpreted as theory of quantum gravity in AdS_3 .

The AdS/CFT dictionary:

AdS_3	CFT ₂
$rac{3\ell}{2G}\simrac{1}{\hbar}$	С
Εℓ	$\Delta = h + ar{h}$
Black Holes ($E \geq 8G^{-1}$)	$\Delta \gtrsim rac{c}{12}$
Perturbative States	$0 \leq \Delta \lesssim rac{c}{12}$

Bulk Approach:

We could try to quantize AdS₃ gravity+matter directly:

- ▶ Question: Does $Z_{T^2}(q,\bar{q}) = \operatorname{Tr}_{\mathcal{H}} q^{L_0} \bar{q}^{\bar{L}_0}$ for some nice \mathcal{H} ?
- ▶ Answer: Only for sporadic values of $c \sim \mathcal{O}(1)$.

In these cases $Z_{T^2}(q)$ matches known theories (minimal models, Monster CFT \P , ...).

Perhaps "pure gravity" exists only for discrete values of $c \sim \mathcal{O}(1)$.

New Result:

▶ To correctly reproduce $Z(\mathbb{RP}^2)$ and $Z(Klein\ Bottle)$ we must include non-smooth saddles in the GR path integral.

Lesson: Even in the simplest cases, new particle-like degrees of freedom must be included to reproduce CFT results.

CFT Approach

We want to understand semi-classical gravity, so consider a family of CFTs, labelled by N, with a $c \to \infty$ limit.

Let $\rho_N(\Delta)$ = number of states in theory N with energy Δ .

For $\Delta\gg c$ we have Cardy growth $ho_N(\Delta)\sim e^{\sqrt{c\Delta}}$.

Let's characterize the semi-classical theory by $\rho_N(\Delta)$ with $\Delta \ll c$:

$$\log
ho_N(\Delta) \sim \left\{ egin{array}{ll} (\Delta/\Delta_0)^{1/2} & \Longrightarrow & {
m general\ relativity} \ \ & (\Delta/\Delta_0)^{2/3} & \Longrightarrow & {
m QFT_3} \ \ & (\Delta/\Delta_0)^{(d-1)/d} & \Longrightarrow & {
m QFT_d\ on\ } {\it AdS_3} imes {\it M}_{d-3} \ \ & \Delta/\Delta_0 & \Longrightarrow & {
m String\ Theory} \ \end{array}
ight.$$

String Universality

Idea: We must impose constraints on the CFTs in order to have a well defined $c \to \infty$ limit. What are the implications for $\rho_N(\Delta)$?

A basic requirement is that the perturbative density of states

$$\rho_{\infty}(\Delta) = \lim_{N \to \infty} \rho_N(\Delta) < \infty$$

exists and is finite.

For a large (but simple) family of CFTs, this is enough to imply a Hagedorn density $\rho_{\infty}(\Delta) \sim e^{\Delta/\Delta_0}$.

Is this a general lesson? Maybe:

- ▶ Theories with a finite number of local degrees of freedom exist only for sporadic, $\mathcal{O}(1)$ values of the couplings.
- Every theory of quantum gravity with a semi-classical limit is a theory of extended objects.

Orbifolds

How can we construct generic large *c* CFTs?

Take a seed CFT \mathcal{C} with $c = c_o$ and

$$Z(q) = 1 + \rho(1)q + \rho(2)q^2 + \dots$$

The tensor product CFT $C^{\otimes N}$ with $c = c_o N$ has too many states:

$$Z_N = 1 + N\rho(1)q + \left(N\rho(2) + \frac{N(N-1)}{2}\rho(1)^2\right)q^2 + \dots$$

We must project onto the singlet sector of some $G_N \subseteq S_N$.

This is why holographic CFTs are gauge theories.

For CFT₂, this means we orbifold by some $G_N \subseteq S_N$.

▶ Landscape of CFTs labelled by permutation groups G_N .

Twisted Sector States

This introduces new states:

- lacktriangle We need G_N to be large to keep $ho_N^{singlet}(\Delta)$ finite as $N o\infty$.
- ▶ Larger $G_N \implies$ more twisted states.

Result:
$$\rho_{\infty}^{singlet}(\Delta) < \infty \implies \rho_{\infty}^{twisted}(\Delta) \gtrsim e^{2\pi\Delta}$$

Correlation Functions

The correlation functions will also factorize

$$\langle O_1 O_2 O_3 O_4 \rangle = \sum_{contractions} \langle O_i O_j \rangle \langle O_k O_l \rangle + \mathcal{O}(N^{-1/2})$$

provided $G_N \subseteq S_N$ acts "democratically" in the sense that all orbits of G_N become large:

|Orbit on
$$k - \text{tuples}| \sim \binom{N}{k}$$

as $N \to \infty$.

Correlation functions look like generalized free fields as $N \to \infty$.

Idea of Proof

A $g \in G_N$ has a cycle decomposition

$$g = (\mathbf{1})^{j_1} \dots (\mathbf{N})^{j_N}, \qquad \sum_{i=1}^N i \ j_i = N \ .$$

The untwisted partition function is determined by the statistics of cycle decompositions:

$$Z_{G_N}^u = \langle Z(\tau)^{j_1} \dots Z(N\tau)^{j_N} \rangle$$

where $\langle O \rangle = \frac{1}{|G_N|} \sum_{g \in G_N} O(g)$ is the average over G_N . Expanding to order q^i we find

$$\rho_{N}(i) = \rho(1)\langle j_{i}\rangle + \cdots < \infty \implies \langle j_{i}\rangle < \infty$$

So there are cycles of arbitrarily long length.

Hagedorn Density

The *i*-twisted sector looks like a CFT with $c_{eff} = ic_o$, so

$$ho^{i-twisted}(\Delta) \sim e^{2\pi\sqrt{rac{ic_o}{3}(\Delta-rac{ic_o}{12})}}$$

This is maximized when $\Delta = \frac{ic_o}{6}$.

The total density of states is found by summing over twist sectors:

$$ho_{\it N}(\Delta) \sim \left\{ egin{array}{ll} {
m exp} \left(2\pi \Delta
ight) & \Delta < rac{c}{12} \ \\ {
m exp} \left(2\pi \sqrt{rac{c}{3}} \Delta
ight) & \Delta > rac{c}{6} \end{array}
ight.$$

The transition between Hagedorn and Cardy regimes is the Hawking-Page phase transition:

- ► Canonical: at temperature $T = \frac{1}{2\pi}$.
- ▶ Microcanonical: in the "enigmatic" regime $\frac{c}{12} < \Delta < \frac{c}{6}$.

Example: S_N Orbifold

The grand canonical partition function

$$\mathcal{Z}(p,q) = \sum_{N} p^{N} Z_{N}(q) = \prod_{n \geq 1, m \geq -1} (1 - p^{n} q^{m})^{-\rho(nm)}$$

is invariant under $\tau \to -1/\tau$, where $q = e^{2\pi i \tau}$

$$\implies \rho_N(\Delta) \sim e^{\sqrt{c(\Delta-c)}}$$
 for c fixed and $\Delta-c$ large.

It is (almost) invariant under $\mu \to -1/\mu$, where $p=e^{2\pi i \mu}$

$$\implies \rho_N(\Delta) \sim e^{\sqrt{c(\Delta-c)}}$$
 for c large and $\Delta-c$ fixed.

Lesson: The second $(\mu \to -1/\mu)$ Cardy formula is the semi-classical Bekenstein-Hawking entropy, not the first.

Question: What is AdS/CFT in the grand canonical ensemble?

Future Directions

Question: What fraction of CFT₂'s are holographic?

Consider lattice theories (N free scalars on \mathbb{R}^N/Λ):

$$Z = q^{-N} \left(\prod_{n=1}^{\infty} \frac{1}{1 - q^n} \right)^N \Theta_{\Lambda}(q)$$

and their orbifolds by $G \subseteq Aut(\Lambda)$ (like the Monster CFT \P).

▶ To keep $\rho_{\infty}(\Delta)$ finite we need $|G| \to \infty$ as $N \to \infty$.

The number of lattices grows like $N^{N^2/4}$, but (Bannai)

$$Prob(Aut(\Lambda) \geq \mathbb{Z}_2) \sim N^{-N}$$

using a measure on the space of lattices where Λ is an orbifold point of measure $1/Aut(\Lambda)$.

Lesson: Holographic theories are rare.