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The Goal:

Question: Which classical theories of gravity can be quantized?

Strategy: Every CFT2 can be interpreted as theory of quantum
gravity in AdS3.

The AdS/CFT dictionary:

AdS3 CFT2

3`
2G ∼

1
~ c

E ` ∆ = h + h̄

Black Holes (E ≥ 8G−1) ∆ & c
12

Perturbative States 0 ≤ ∆ . c
12



Bulk Approach:
We could try to quantize AdS3 gravity+matter directly:

I Question: Does ZT 2(q, q̄) = TrHq
L0 q̄L̄0 for some nice H?

I Answer: Only for sporadic values of c ∼ O(1) .

In these cases ZT 2(q) matches known theories (minimal models,

Monster CFT , . . . ).

Perhaps “pure gravity” exists only for discrete values of c ∼ O(1).

New Result:

I To correctly reproduce Z (RP2) and Z (Klein Bottle) we must
include non-smooth saddles in the GR path integral.

Lesson: Even in the simplest cases, new particle-like degrees of
freedom must be included to reproduce CFT results.

A. M. & S. Ross (to appear)



CFT Approach

We want to understand semi-classical gravity, so consider a family
of CFTs, labelled by N, with a c →∞ limit.

Let ρN(∆) = number of states in theory N with energy ∆.

For ∆� c we have Cardy growth ρN(∆) ∼ e
√

c∆.

Let’s characterize the semi-classical theory by ρN(∆) with ∆� c :

log ρN(∆) ∼



(∆/∆0)1/2 =⇒ general relativity

(∆/∆0)2/3 =⇒ QFT3

(∆/∆0)(d−1)/d =⇒ QFTd on AdS3 ×Md−3

∆/∆0 =⇒ String Theory



String Universality

Idea: We must impose constraints on the CFTs in order to have a
well defined c →∞ limit. What are the implications for ρN(∆)?

A basic requirement is that the perturbative density of states

ρ∞(∆) = lim
N→∞

ρN(∆) <∞

exists and is finite.

For a large (but simple) family of CFTs, this is enough to imply a
Hagedorn density ρ∞(∆) ∼ e∆/∆0 .

Is this a general lesson? Maybe:

I Theories with a finite number of local degrees of freedom exist
only for sporadic, O(1) values of the couplings.

I Every theory of quantum gravity with a semi-classical limit is
a theory of extended objects.



Orbifolds

How can we construct generic large c CFTs?

Take a seed CFT C with c = co and

Z (q) = 1 + ρ(1)q + ρ(2)q2 + . . .

The tensor product CFT C⊗N with c = coN has too many states:

ZN = 1 + Nρ(1)q +

(
Nρ(2) +

N(N − 1)

2
ρ(1)2

)
q2 + . . .

We must project onto the singlet sector of some GN ⊆ SN .

I This is why holographic CFTs are gauge theories.

For CFT2, this means we orbifold by some GN ⊆ SN .

I Landscape of CFTs labelled by permutation groups GN .



Twisted Sector States

This introduces new states:

I We need GN to be large to keep ρsinglet
N (∆) finite as N →∞ .

I Larger GN =⇒ more twisted states.

Result: ρsinglet
∞ (∆) <∞ =⇒ ρtwisted

∞ (∆) & e2π∆



Correlation Functions

The correlation functions will also factorize

〈O1O2O3O4〉 =
∑

contractions

〈OiOj〉〈OkOl〉+O(N−1/2)

provided GN ⊆ SN acts “democratically” in the sense that all
orbits of GN become large:

∣∣Orbit on k− tuples
∣∣ ∼ (N

k

)
as N →∞.

Correlation functions look like generalized free fields as N →∞.

A. Belin, C. Keller & A. M. (to appear)



Idea of Proof

A g ∈ GN has a cycle decomposition

g = (1)j1 . . . (N)jN ,

N∑
i=1

i ji = N .

The untwisted partition function is determined by the statistics of
cycle decompositions:

Zu
GN

= 〈Z (τ)j1 . . .Z (Nτ)jN 〉

where 〈O〉 = 1
|GN |

∑
g∈GN

O(g) is the average over GN . Expanding

to order qi we find

ρN(i) = ρ(1)〈ji 〉+ · · · <∞ =⇒ 〈ji 〉 <∞

So there are cycles of arbitrarily long length.



Hagedorn Density

The i-twisted sector looks like a CFT with ceff = ico , so

ρi−twisted (∆) ∼ e
2π

√
ico
3

(∆− ico
12

)

This is maximized when ∆ = ico
6 .

The total density of states is found by summing over twist sectors:

ρN(∆) ∼


exp (2π∆) ∆ < c

12

exp
(
2π
√

c
3 ∆
)

∆ > c
6

The transition between Hagedorn and Cardy regimes is the
Hawking-Page phase transition:

I Canonical: at temperature T = 1
2π .

I Microcanonical: in the “enigmatic” regime c
12 < ∆ < c

6 .



Example: SN Orbifold
The grand canonical partition function

Z(p, q) =
∑

N

pNZN(q) =
∏

n≥1,m≥−1

(1− pnqm)−ρ(nm)

is invariant under τ → −1/τ , where q = e2πiτ

=⇒ ρN(∆) ∼ e
√

c(∆−c) for c fixed and ∆− c large.

It is (almost) invariant under µ→ −1/µ, where p = e2πiµ

=⇒ ρN(∆) ∼ e
√

c(∆−c) for c large and ∆− c fixed.

Lesson: The second (µ→ −1/µ) Cardy formula is the
semi-classical Bekenstein-Hawking entropy, not the first.

Question: What is AdS/CFT in the grand canonical ensemble?

P. de Lange, A. M. & E. Verlinde



Future Directions
Question: What fraction of CFT2’s are holographic?

Consider lattice theories (N free scalars on RN/Λ):

Z = q−N

( ∞∏
n=1

1

1− qn

)N

ΘΛ(q)

and their orbifolds by G ⊆ Aut(Λ) (like the Monster CFT ).

I To keep ρ∞(∆) finite we need |G | → ∞ as N →∞.

The number of lattices grows like NN2/4, but (Bannai)

Prob(Aut(Λ) ≥ Z2) ∼ N−N

using a measure on the space of lattices where Λ is an orbifold
point of measure 1/Aut(Λ).

Lesson: Holographic theories are rare.

S. Kachru, A. M. & G. Moore


