Twistor and ambitwistor string theories From twistor strings to quantum gravity?

Lionel Mason

The Mathematical Institute, Oxford lmason@maths.ox.ac.uk

Quantum Gravity at KITP

With David Skinner. arxiv:1311.2564, and collaborations with Tim Adamo, Eduardo Casali, Yvonne Geyer, Arthur Lipstein, Ricardo Monteiro & Kai Roehrig, Piotr Tourkine, 1312.3828, 1404.6219, 1405.5122, 1406.1462, etc..

[Cf. also Cachazo, He, Yuan arxiv:1306.2962, 1306.6575, 1307.2199, 1309.0885, 1412.3479]

Ambitwistors

Ambitwistor spaces: spaces of complex null geodesics.

- Extends Penrose/Ward's gravity/Yang-Mills twistor constructions to non-self-dual fields.
- Yang-Mills Witten and Isenberg, et. al. 1978, 1985.
- Conformal and Einstein gravity LeBrun [1983,1991] Baston & M. [1987] -

Ambitwistor Strings:

- Tree S-Matrices in all dimensions for gravity, YM etc. [CHY]
- From strings in ambitwistor space [M. & Skinner 1311.2564]
- Models for Einstein-YM, DBI, BI, NLS, etc. CGMMRS 150?.?.
- Related to \mathscr{I} , null geodesic scattering and the BMS group
- New form of maximal supergravity loop integrand.

Provide string theories at $\alpha' = 0$ for field theory amplitudes.

Bosonic ambitwistor string action:

- Σ Riemann surface, coordinate $\sigma \in \mathbb{C}$
- Complexify space-time (M, g), coords $X \in \mathbb{C}^d$, g hol.
- $(X, P) : \Sigma \to T^*M, P \in K$, holomorphic 1-forms on Σ .

$$\mathcal{S}_B = \int_{\Sigma} \mathcal{P}_\mu \bar{\partial} X^\mu - e \, \mathcal{P}^2/2 \,.$$

Underlying geometry:

• e enforces $P^2 = 0$,

*P*² generates gauge freedom: δ(*X*, *P*, *e*) = (α*P*, 0, 2∂̄α).
 So target is

$$\mathbb{A} = T^* M|_{P^2=0} / \{\text{gauge}\}.$$

This is Ambitwistor space, space of complexified light rays.

Space of light rays as primary geometric arena

Ambitwistor space $\mathbb A$ is space of complexified light rays.

- Light rays primary, events determined by lightcones X ⊂ A of light rays incident with x.
- Space-time M = space of such $X \subset \mathbb{A}$.

Space-time geometry is encoded in complex structure of A.

(日) (日) (日) (日) (日) (日) (日)

Deformation theory

Theorem (LeBrun 1983 following Penrose 1976)

Complex structure of \mathbb{A} determines M and conformal metric g. Correspondence is stable under deformations of the complex structure of $P\mathbb{A}$ that preserve symplectic potential $\theta = p_{\mu}dx^{\mu}$.

Preserving $\theta \Rightarrow$ gluing is canonical, generated by Hamiltonians.

Motivation from quantum gravity

・ロト ・四ト ・ヨト ・ヨト

- Normal: fix background space-time manifold and quantize metric components ~> fuzzy lightcone, well-defined events.
- Alternative: fix A as geometric background and quantize *X* to give fuzzy events but well-defined light-rays.

Emphasis on complex geometry is more quantum $\leftrightarrow \mathbb{C}$ numbers of quantum mechanics.

Quantize bosonic ambitwistor string:

•
$$(X, P) : \Sigma \rightarrow T^*M$$
,

$$\mathcal{S}_{\mathcal{B}} = \int_{\Sigma} \mathcal{P}_{\mu}(ar{\partial} + ar{e}\partial) X^{\mu} - e \, \mathcal{P}^2/2 \, .$$

- Gauge fix $\tilde{e} = e = 0$, \sim ghosts & BRST Q
- Introduce vertex operators $V_i \leftrightarrow$ field perturbations.

Amplitudes are computed as correlators of vertex ops

$$\mathscr{M}(1,\ldots,n) = \langle V_1 \ldots V_n \rangle$$

For gravity add type II worldsheet susy $S_{\Psi_1} + S_{\Psi_2}$ where

$$\mathcal{S}_{\Psi} = \int_{\Sigma} \Psi_{\mu} \bar{\partial} \Psi^{\mu} + \chi \mathcal{P} \cdot \Psi \, .$$

・ロト・西ト・西ト・日下・ のくの

From deformations of \mathbbm{A} to the scattering equations

Gravitons \leftrightarrow vertex operators $V_i = \text{def'm of action } \delta S = \int_{\Sigma} \delta \theta$.

- θ determines complex structure on $P\mathbb{A}$ via $\theta \wedge d\theta^{d-2}$. So:
- Deformations of complex structure $\leftrightarrow [\delta\theta] \in H^1_{\overline{\partial}}(P\mathbb{A}, L)$. For gluing given by a Hamiltonian

$$\delta\theta = \bar{\partial}h$$

Proposition

For perturbation $\delta g_{\mu\nu} = e^{ik \cdot x} \epsilon_{\mu} \epsilon_{\nu}$ of flat space-time

$$h = \frac{e^{ik \cdot x} (\epsilon \cdot P)^2}{k \cdot P}, \qquad \delta \theta = \bar{\partial} h = \bar{\delta} (k \cdot P) e^{ik \cdot X} (\epsilon \cdot P)^2,$$

Ambitwistor repn $\Rightarrow \overline{\delta}(k \cdot P) \Rightarrow$ scattering equs.

Proposition

CHY formulae for massless tree amplitudes e.g. YM & gravity arise from appropriate choices of worldsheet matter.

The scattering equations

(日) (日) (日) (日) (日) (日) (日)

Take *n* null momenta $k_i \in \mathbb{R}^d$, i = 1, ..., n, $k_i^2 = 0$, $\sum_i k_i = 0$, • define $P : \mathbb{CP}^1 \to \mathbb{C}^d$

$$\mathcal{P}(\sigma) := \sum_{i=1}^n rac{k_i}{\sigma - \sigma_i}, \qquad \sigma, \sigma_i \in \mathbb{CP}^1.$$

• Solve for $\sigma_i \in \mathbb{CP}^1$ with the *n* scattering equations

$$k_i \cdot P(\sigma_i) = \operatorname{Res}_{\sigma_i} P(\sigma) \cdot P(\sigma) = \sum_{j=1}^n \frac{k_i \cdot k_j}{\sigma_i - \sigma_j} = 0.$$

 $\Rightarrow P(\sigma) \cdot P(\sigma) = \mathbf{0} \ \forall \sigma.$

- For Mobius invariance $\Rightarrow P \in \mathbb{C}^d \otimes K, K = \Omega^{1,0} \mathbb{CP}^1$
- There are (n-3)! solutions.

Arise in large α' strings [Gross-Mende 1988] & twistor-strings [Witten 2004].

Amplitude formulae for massless theories.

Theorem (Cachazo, He, Yuan 2013,2014)

Tree-level massless amplitudes in d-dims are integrals/sums

$$\mathcal{M}(1,\ldots,n) = \delta^{d}\left(\sum_{i} k_{i}\right) \int_{\mathbb{CP}^{1^{n}}} \frac{l'(\epsilon_{i}',k_{j})l'(\epsilon_{i}',k_{j})}{\operatorname{Vol}\operatorname{SL}(2,\mathbb{C})} \prod_{i} '\bar{\delta}(k_{i} \cdot P(\sigma_{i})) d\sigma_{i}$$

where $I^{l}(\epsilon_{i}^{l}, k_{i}, \sigma_{i})$ and $I^{r}(\epsilon_{i}^{r}, k_{i}, \sigma_{i})$ depend on the theory.

• polarizations ϵ_i^l for spin 1, $\epsilon_i^l \otimes \epsilon_i^r$ for spin-2 ($k_i \cdot \epsilon_i = 0...$).

• Introduce skew $2n \times 2n$ matrices $M = \begin{pmatrix} A & C \\ -C^t & B \end{pmatrix}$,

$$A_{ij} = rac{k_i \cdot k_j}{\sigma_i - \sigma_j}, \quad B_{ij} = rac{\epsilon_i \cdot \epsilon_j}{\sigma_i - \sigma_j}, \quad C_{ij} = rac{k_i \cdot \epsilon_j}{\sigma_i - \sigma_j}, \quad \text{for } i \neq j$$

and $A_{ii} = B_{ii} = 0$, $C_{ii} = \epsilon_i \cdot P(\sigma_i)$.

- For YM, I' = Pf'(M), $I' = \prod_i \frac{1}{\sigma_i \sigma_{i-1}}$.
- For GR I' = Pf'(M'), I' = Pf'(M'), & many more.

Figure: Theories studied by CHY and operations relating them.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ambitwistor strings with combinations of matter

CGMMRS 150?

S' S'	S_{Ψ}	S_{Ψ_1,Ψ_2}	$\mathcal{S}_{ ho,\Psi}^{(ilde{m})}$	$S_{CS,\Psi}^{(ilde{\mathcal{N}})}$	$S_{CS}^{(ilde{N})}$
S_{Ψ}	E				
S_{Ψ_1,Ψ_2}	BI	Galileon			
$\mathcal{S}^{(m)}_{ ho,\Psi}$	EM U(1) ^m	DBI	$EMS \\ U(1)^m \times U(1)^{\tilde{m}}$		
$S^{(N)}_{CS,\Psi}$	EYM	ext. DBI	EYMS SU(N)×U(1) ^m	EYMS SU(N)×SU(Ñ)	
$S_{CS}^{(N)}$	YM	Nonlinear σ	EYMS SU(N)×U(1) ^m	<i>gen. YMS</i> SU(<i>N</i>)×SU(<i>Ñ</i>)	Biadjoint Scalar SU(N)×SU(Ñ)

Table: Theories arising from the different choices of matter models.

Models from different geometric realizations of A

We can start with other formulations of null superparticles

Green-Schwarz version:

$${\cal S} = \int {\cal P} \cdot ar\partial X + {\cal P}_\mu \gamma^\mu_{lphaeta} heta^lpha ar\partial heta^eta \,.$$

- Pure spinor version (Berkovits) $S = \int P \cdot \bar{\partial} X + p_{\alpha} \bar{\partial} \theta^{\alpha} + \dots$
- d = 4, Twistor-strings of Witten, Berkovits & Skinner

$$\mathbb{A} = \{(Z, W) \in \mathbb{T} imes \mathbb{T}^* | Z \cdot W = 0\} / \{Z \cdot \partial_Z - W \cdot \partial_W\}$$

 $S = \int_{\Sigma} W \cdot \bar{\partial}Z + aZ \cdot W$

In 4d have full ambitwistor representation [Geyer, Lipstein, M. 1404.6219]

$$S = \int_{\Sigma} Z \cdot \bar{\partial} W - W \cdot \bar{\partial} Z + a Z \cdot W$$

Not twistor string: $(Z, W) \in K^{1/2}$ gives simpler 4d formulae with no moduli. Nonchiral, working at N = 0. ▲□▶▲□▶▲□▶▲□▶ □ りへで

Also can use null infinity:

Relation to null infinity, BMS and soft gravitons

Geyer, Lipstein & M. 1406.1462 (cf. Adamo, Casali & Skinner 1405.5122, 1503.02304).

Take space-time asymptotically simple:

Real light rays intersect \mathscr{I}^+ and \mathscr{I}^- , $\mathbb{A}_{\mathbb{R}} = T^* \mathscr{I}^+ = T^* \mathscr{I}^-$.

- Flat space-time: identification is identity and global.
- Curved space-time: identification only for real light rays:

 $\mathbb{A} = T^* \mathscr{I}^+_{\mathbb{C}} \cup T^* \mathscr{I}^-_{\mathbb{C}} \qquad \text{glued over } \mathbb{A}_{\mathbb{R}} \,.$

Infinitesimally glued by Hamiltonian h for light ray scattering

Vertex op = $\delta\theta = \bar{\partial}h$.

BMS and soft gravitons

BMS[±] group acts on \mathscr{I}^{\pm} hence on $T^*\mathscr{I}^{\pm}$ with Hamiltonians *h*.

• worldsheet generators have same form as Vertex Ops:

$$\oint_{\Sigma} h = \int_{\Sigma} \bar{\partial} h.$$

- **Soft gravitons:** $k \rightarrow 0$ then $h \rightarrow$ supertranslation.
- Subleading term generates 'superrotation'.
- Diagonal subgroup \subset BMS⁺×BMS⁻ are symmetries.

 \rightsquigarrow versions of (subleading) soft graviton thm as Ward identity.

Theorem (Lysov/Strominger/Weinberg) Weinberg soft theorem: as $k_n \rightarrow 0$

$$\mathcal{M}(1,\ldots,n) \rightarrow \mathcal{M}(1,\ldots,n-1) \sum_{i=1}^{n-1} \frac{(\epsilon_n \cdot k_i)^2}{k_n \cdot k_i},$$

follows from supertranslation equivariance.

The quantum gravity loop integrand

[Adamo, Casali, Skinner 2013, Casali Tourkine 2015 Geyer, M., Monteiro, Tourkine. . .]]

(ロ) (同) (三) (三) (三) (三) (○) (○)

10d type II gravity model is critical so extends to higher genus:

- At genus *g*, *P* is a 1-form and acquires *dg* zero-modes.
- These are the loop momenta for *g*-loops.
- Standard string technology can be adapted at all g.
- E.g., at 1-loop, *n* = 4, obtain modular invariant sum over spin structures of

$$\mathcal{M}_{n}^{(1)}(\alpha;\beta) = \delta^{10} \left(\sum_{i} k_{i}\right) \int \mathrm{d}^{10} \boldsymbol{p} \wedge \mathrm{d}\tau \wedge \bar{\delta} \left(\boldsymbol{P}^{2}(\sigma_{1};\tau)\right)$$
$$\prod_{j=2}^{4} \boldsymbol{d}\sigma_{j} \,\bar{\delta}(\boldsymbol{k}_{j} \cdot \boldsymbol{P}(\sigma_{j})) \,\frac{\vartheta_{\alpha}(\tau)^{4} \vartheta_{\beta}(\tau)^{4}}{\eta(\tau)^{24}} \,\mathrm{Pf}(\boldsymbol{M}_{\alpha}) \,\mathrm{Pf}(\widetilde{\boldsymbol{M}}_{\beta})$$

Now checked in many ways and related to standard integrand. Is power counting better than that from space-time?

Summary & Outlook

(ロ) (同) (三) (三) (三) (三) (○) (○)

Chiral $\alpha' = 0$ ambitwistor strings use LeBrun's correspondence to give theories underlying CHY formulae old & new.

- Incorporates colour/kinematics Yang-Mills/gravity ideas. Any insight into geometry of kinematic factors?
- Quantization ties scattering of null geodesics into that for gravitational waves.
- Critical models extend to loops .
- Does new representation give new insights into loop integrands?
- Insight into nonperturbative phenomena? Creation of mass? Black holes?

The end

Thank You

Evaluation of amplitude

• Take $e^{ik_i \cdot X(\sigma_i)}$ factors into action to give

$$S = rac{1}{2\pi} \int_{\Sigma} P \cdot \bar{\partial} X + 2\pi \sum_{i} i k \cdot X(\sigma_{i}) \, .$$

• Gives field equations $\bar{\partial}X = 0$ and,

$$\bar{\partial} \boldsymbol{P} = 2\pi \sum_{i} i k \delta^2 (\sigma - \sigma_i) \,.$$

• Solutions $X(\sigma) = X = \text{const.}$, $P(\sigma) = \sum_{i} \frac{k_i}{\sigma - \sigma_i} d\sigma$.

Thus path-integral reduces to

$$\mathcal{M}(1,\ldots,n) = \delta^{d}(\sum_{i} k_{i}) \int_{(\mathbb{CP}^{1})^{n-3}} \frac{\prod_{i} \sqrt{\delta}(k_{i} \cdot P) (\epsilon_{i} \cdot P(\sigma_{i}))^{2}}{\operatorname{Vol} G}$$

We see $P(\sigma)$ appearing and scattering equations.

Unfortunately: amplitudes for $S \sim \int_M R + R^3$;

Evaluation of amplitude

• Take $e^{ik_i \cdot X(\sigma_i)}$ factors into action to give

$$S = rac{1}{2\pi} \int_{\Sigma} P \cdot \bar{\partial} X + 2\pi \sum_{i} i k \cdot X(\sigma_{i}) \, .$$

• Gives field equations $\bar{\partial}X = 0$ and,

$$\bar{\partial} \boldsymbol{P} = 2\pi \sum_{i} i k \delta^2 (\sigma - \sigma_i) \,.$$

• Solutions $X(\sigma) = X = \text{const.}$, $P(\sigma) = \sum_{i} \frac{k_i}{\sigma - \sigma_i} d\sigma$.

Thus path-integral reduces to

$$\mathcal{M}(1,\ldots,n) = \delta^{d}(\sum_{i} k_{i}) \int_{(\mathbb{CP}^{1})^{n-3}} \frac{\prod_{i} \bar{\delta}(k_{i} \cdot P) (\epsilon_{i} \cdot P(\sigma_{i}))^{2}}{\text{Vol } G}$$

We see $P(\sigma)$ appearing and scattering equations. **Unfortunately:** amplitudes for $S \sim \int_M R + R^3$.