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Outline

e Euclidean operator growth as a probe of chaos
arXiv:1911.09672, with Alexander Avdoshkin

- generic non-integrable system: time-correlation
function continued to imaginary time develops a
singularity

e time-correlation function = tau-function of Toda
arXiv:1912.12227, with Alexander Gorsky

- Euclidean time evolution = Toda chain dynamics
- singularity in Euclidean time = delocalization in

Krylov space



Euclidean Operator Growth



Upper bound on infinity-norm

o Euclidean time evolution
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n(k) — number of sets I, ..., I, which satisfy adjacency
condition, associated with a given cluster (lattice animal)



Counting the sets I, ..., I,

e Each set I4,..., I defines lattice animal history
{I}Efl,...,fk—){J}EJl,...,Jj, 1<k

o the map {/} — {J} defines a partition of k£ objects into j
groups, and vice versa

n(k) = S(k,7)o(7)

n(k) — number of sets {I} associated with a given cluster
¢(j) — number this cluster’s histories {J}

N(k)y= > n(k)=_S(k,j)e()
J
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Summing over histories

e Stirling transform
k)= Sk )o(i), é(7) = sk, )HN(k)
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e Stirling transform
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e summing over histories — new expansion parameter

AW < AIf@),  f= Zﬁ %—ngm_l



Bound for Bethe lattices

o Bethe lattice of coordination number z > 2
e exact number of lattice animal histories

(U +2/(z=2)

N

e the bound
f=(01—(2=2)q) 2
for z > 2 there is a pole at some t = 5*

for z = 2, i.e. 1D lattices, f = ¢

e for arbitrary lattices Bethe lattices
provide an upper bound




Euclidean operator growth and chaos

@ generic non-integrable quantum lattice models
D > 2, singularity at finite t = g*

4
OIS T 0/m0)

D =1, double-exponential growth
[A)] < |Ale*

e Euclidean Lieb-Robinson
D > 2, operators spread to spatial infinity at finite ¢t = §*
D =1, operators spread exponentially, ¢ ~ In(¥)

0
[[A(t), B]| < 2/A||Ble*";



(Equivalent) signatures of “quantum chaos”

e singularity of time-correlation function in Euclidean time

ct) = %Tr(A(t)A(O)) =[|A(t/2)I” < |A®t/2)]”

Avdoshkin, AD’19

e maximal growth of Lanczos coefficients
orthogonal Krylov basis 4,

Apyr = [H Ay — b2 An_1, b, xn

Parker, Cao, Avdoshkin, Scaffidi, Altman’18
e exponential decay of power spectrum

C(t) = /dw D(w) e, P(w) ~ e w/w0

Elsayed, Hess, Fine’l14



Euclidean operator growth and OTOC
e location of the singularity of C'(8* = 7/(2a)) — slope of
Lanczos coefficients growth b,, oc an bounds Aoroc
Aotoc < 2a

Parker, Cao, Avdoshkin, Scaffidi, Altman’18
Murthy, Srednicki’19

e improved bound on chaos for large T’

2T
AoToc < o5

- exact SYK .

- improved bound

- MSS bound 7T'UT = COS(TF'U/Q)
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Singularity of C'()
o scalar product in the space of operators
(BIA) = L TH(ABY),  C(1) = (AJA(1)
o adjoint action [H, | is self-adjoint with (| )
Ot +ta) = (A(t)|A(t2)) = (A(t1/2)[e"I™ ]| A(t1/2))
o assuming A(t/2) is typical

Cle+8) = AOIPTGT = [Aw|retr O-r -

qualitatively, singularity of C'(¢) is associated with A(t)
spreading within Krylov space and becoming more typical



Toda chain flow in Krylov space



Recursion method C Toda chain flow

@ scalar product in the space of operators
1
(B|A) = NTY(mAszT), C(t) = (A]A(t))
[H, ] is self-adjoint with (| )
e orthogonal basis in Krylov space
Api1 = [H, Ay] — an Ay — b2 _1Ap

uniquely determined by the choice of the initial operator Ag
e a family of t-dependent Krylov bases A,
A = A(t/2), an(t) = In(A7 | A7),

an(t) = Qnu bi(t) e eq"+l_Qn



Recursion method C Toda chain flow
e Euclidean time evolution of A(¢) — Toda chain dynamics
G = eInt17n _ gn—dn-1
e time-correlation function = tau-function of Toda
C(t) = (AJA(t)) = (A(t/2)|A(t/2)) = e =79
Toda EOMs in Hirota’s bilinear form, ¢, = In7, /7,1
TnTn — 7'7% = Tn4+1Tn—1

e Toda chain flow in Krylov space

Gnm(t) = <An|Am(t)>7 %(G_IG) =0



Exact solutions
o Toda EOMs in Flaschka form

2
() = By — 20 Wy

e anzats b2 = b*(t)p(n), asymptotic behavior b, o n
p(n) = (n+c)(n+1), V2 (t) = J?/sin?(J (to — 1)),
Ct) = sin(J(tog—1t))~¢, an = (2n+ c¢)J cot(J(tg —t))

in general non-integrable case both a,, b, x n; slope of
an, by, determines the location of singularity
e asymptotic behavior b, oc n'/?

Ct) ~ e, Oft) ~ /2



Dynamics of A(t) in Krylov space
“wave-function” of A(t)
t) = ||A(t Hch An/b), ||An/ball =1
Inverse Participating Ratio I =1/(>_ ;)
relation to QR decomposition
M =QMR(), AWM = Roo(t), ea(t) = Quo(t)
assuming C'(t) = ||A(t/2)||? diverges at t = t*

|A(t — t*/2)]] — oo, cn(t = t7/2) =0,
(An|A(t — t*/2)) — regular, I(t—1t"/2) — o0

operator delocalizes in Krylov space at t = t*/2



Chaos vs localization in Krylov space

e when the system is chaotic and C(t) has a singularity at
t =t*, A(t) delocalizes in Krylov space at t = t*/2

e when the system is integrable and C'(¢) is analytic, IPR is
finite and the operator is Localized

qualitatively similar to: localization/ergodicity in physical space
= localization / delocalization in Fock space

Altshuler, Gefen, Kamenev, Levitov’97

Basko, Aleiner, Altshuler’06



Main results

e universal bounds on the operator norm growth in lattice
models, Euclidean Lieb-Robinson bound

e Toda chain interpretation of the recursion method,
time-correlation function

@ chaos in the underlying quantum many-body system as
delocalization in Krylov space



Outlook

e Connection between Euclidean and Minkowski dynamics

e Can Toda help connect different manifestations of chaos?

- connection with OTOC

- connection with spectral properties

e Chaos as delocalization? Connection to BH physics?



