Operator growth, Toda chain flow, and chaos

Anatoly Dymarsky
University of Kentucky

Gravitational Holography KITP, 24 January, 2020

Outline

- Euclidean operator growth as a probe of chaos arXiv:1911.09672, with Alexander Avdoshkin
 - generic non-integrable system: time-correlation function continued to imaginary time develops a singularity
- time-correlation function = tau-function of Toda arXiv:1912.12227, with Alexander Gorsky
 - Euclidean time evolution = Toda chain dynamics
 - singularity in Euclidean time = delocalization in Krylov space

Euclidean Operator Growth

Upper bound on infinity-norm

Euclidean time evolution

$$A(t) \equiv e^{tH} A e^{-tH} = \sum_{k} \underbrace{[H, \dots [H, A]]}_{k \text{ times}} \frac{t^k}{k!}$$

locality of interaction

$$H = \sum_{I} h_{I}, \qquad [H, \dots [H, A]] = \sum_{I_{1}, \dots, I_{k}} [h_{I_{k}}, \dots [h_{I_{1}}, A]]$$

the bound

$$|A(t)| \le |A|f(t), \quad f(t) = \sum_{\text{clusters}} \sum_{k} n(k) \frac{(2J|t|)^k}{k!}$$

n(k) – number of sets I_1, \ldots, I_k , which satisfy adjacency condition, associated with a given cluster (lattice animal)

Counting the sets I_1, \ldots, I_k

• Each set I_1, \ldots, I_k defines lattice animal *history*

$$\{I\} \equiv I_1, \dots, I_k \to \{J\} \equiv J_1, \dots, J_j, \qquad j \le k$$

• the map $\{I\} \to \{J\}$ defines a partition of k objects into j groups, and vice versa

$$n(k) = S(k, j)\phi(j)$$

n(k) – number of sets $\{I\}$ associated with a given cluster $\phi(j)$ – number this cluster's histories $\{J\}$

$$N(k) = \sum_{\text{clusters}} n(k) = \sum_{j} S(k,j) \phi(j)$$

Summing over histories

Stirling transform

$$N(k) = \sum_{j} S(k, j)\phi(j), \quad \phi(j) = \sum_{k} s(k, j)N(k)$$

Stirling transform

$$f(t) \equiv \sum_{k} N(k) \frac{t^k}{k!} = \sum_{j} \phi(j) \frac{q^j}{j!}, \quad q \equiv e^t - 1.$$

• summing over histories - new expansion parameter

$$|A(t)| \le |A|f(t), \qquad f = \sum_{i} \phi(j) \frac{q^{j}}{j!}, \quad q \equiv e^{2J|t|} - 1.$$

Bound for Bethe lattices

- Bethe lattice of coordination number $z \geq 2$
- exact number of lattice animal histories

$$\phi(j) = (z-2)^{j} \frac{\Gamma(j+z/(z-2))}{\Gamma(z/(z-2))}$$

the bound

$$f = (1 - (z - 2)q)^{-z/(z-2)}$$

for z > 2 there is a pole at some $t = \beta^*$

for z = 2, i.e. 1D lattices, $f = e^{2q}$

 for arbitrary lattices Bethe lattices provide an upper bound

Euclidean operator growth and chaos

• generic non-integrable quantum lattice models $D \ge 2$, singularity at finite $t = \beta^*$

$$|A(t)| \lesssim \frac{|A|}{(1 - q/q_0)}$$

D=1, double-exponential growth

$$|A(t)| \lesssim |A|e^{2q}$$

Euclidean Lieb-Robinson

 $D \ge 2$, operators spread to spatial infinity at finite $t = \beta^*$ D = 1, operators spread exponentially, $t \sim \ln(\ell)$

$$|[A(t), B]| \le 2|A||B|e^q \frac{q^\ell}{\ell!}$$

(Equivalent) signatures of "quantum chaos"

• singularity of time-correlation function in Euclidean time

$$C(t) = \frac{1}{N} \text{Tr}(A(t)A(0)) \equiv ||A(t/2)||^2 \le |A(t/2)|^2$$

Avdoshkin, AD'19

• maximal growth of Lanczos coefficients orthogonal Krylov basis A_n

$$A_{n+1} = [H, A_n] - b_{n-1}^2 A_{n-1}, \quad b_n \propto n$$

Parker, Cao, Avdoshkin, Scaffidi, Altman'18

exponential decay of power spectrum

$$C(t) = \int d\omega \, \Phi(\omega) \, e^{i\omega t}, \qquad \Phi(\omega) \sim e^{-\omega/\omega_0}$$

Elsayed, Hess, Fine'14

Euclidean operator growth and OTOC

• location of the singularity of $C(\beta^* = \pi/(2\alpha))$ – slope of Lanczos coefficients growth $b_n \propto \alpha \, n$ bounds $\lambda_{\rm OTOC}$

$$\lambda_{\text{OTOC}} \le 2\alpha$$

Parker, Cao, Avdoshkin, Scaffidi, Altman'18 Murthy, Srednicki'19

ullet improved bound on chaos for large T

$$\lambda_{\mathrm{OTOC}} \leq \frac{2\pi T}{1 + 2\beta^* T}$$

- · exact SYK
- · improved bound
- · MSS bound

Singularity of C(t)

scalar product in the space of operators

$$\langle B|A\rangle := \frac{1}{N} \text{Tr}(AB^{\dagger}), \qquad C(t) = \langle A|A(t)\rangle$$

ullet adjoint action $[H,\]$ is self-adjoint with $\langle\ |\
angle$

$$C(t_1 + t_2) = \langle A(t_1)|A(t_2)\rangle = \langle A(t_1/2)|e^{t_2[H,\]}|A(t_1/2)\rangle$$

ullet assuming A(t/2) is typical

$$C(t+\beta) = ||A(t)||^2 \frac{Z(\beta)Z(-\beta)}{Z(0)^2} = ||A(t)||^2 e^{2F(0) - F(\beta) - F(-\beta)}$$

qualitatively, singularity of C(t) is associated with A(t) spreading within Krylov space and becoming more typical

Toda chain flow in Krylov space

Recursion method ⊂ Toda chain flow

• scalar product in the space of operators

$$\langle B|A\rangle := \frac{1}{N} \text{Tr}(\rho_1 A \rho_2 B^{\dagger}), \qquad C(t) = \langle A|A(t)\rangle$$

[H,] is self-adjoint with $\langle | \rangle$

orthogonal basis in Krylov space

$$A_{n+1} = [H, A_n] - a_n A_n - b_{n-1}^2 A_{n-1}$$

uniquely determined by the choice of the initial operator A_0

ullet a family of t-dependent Krylov bases A_n^t

$$A_0^t := A(t/2), \qquad q_n(t) = \ln \langle A_n^t | A_n^t \rangle,$$

$$a_n(t) = \dot{q}_n, \qquad b_n^2(t) = e^{q_{n+1} - q_n}$$

Recursion method \subset Toda chain flow

ullet Euclidean time evolution of A(t) – Toda chain dynamics

$$\ddot{q}_n = e^{q_{n+1} - q_n} - e^{q_n - q_{n-1}}$$

• time-correlation function = tau-function of Toda

$$C(t) = \langle A|A(t)\rangle = \langle A(t/2)|A(t/2)\rangle = e^{q_0} = \tau_0$$

Toda EOMs in Hirota's bilinear form, $q_n = \ln \tau_n / \tau_{n-1}$

$$\ddot{\tau}_n \tau_n - \ddot{\tau}_n^2 = \tau_{n+1} \tau_{n-1}$$

• Toda chain flow in Krylov space

$$G_{nm}(t) = \langle A_n | A_m(t) \rangle, \qquad \frac{d}{dt} (G^{-1} \dot{G}) = 0$$

Exact solutions

Toda EOMs in Flaschka form

$$\frac{d^2}{dt^2}\ln(b_n^2) = b_{n+1}^2 - 2b_n^2 + b_{n-1}^2$$

• anzats $b_n^2 = b^2(t)p(n)$, asymptotic behavior $b_n \propto n$

$$p(n) = (n+c)(n+1),$$
 $b^{2}(t) = J^{2}/\sin^{2}(J(t_{0}-t)),$
 $C(t) = \sin(J(t_{0}-t))^{-c},$ $a_{n} = (2n+c)J\cot(J(t_{0}-t))$

in general non-integrable case both $a_n, b_n \propto n$; slope of a_n, b_n determines the location of singularity

• asymptotic behavior $b_n \propto n^{1/2}$

$$C(t) \sim e^{ae^{mt}}, \qquad C(t) \sim e^{at^2/2}$$

Dynamics of A(t) in Krylov space

ullet "wave-function" of A(t)

$$A(t) = ||A(t)|| \sum_{n} c_n(t)(A_n/b_n), \qquad ||A_n/b_n|| = 1$$

Inverse Participating Ratio $I = 1/(\sum c_n^4)$

relation to QR decomposition

$$e^{tM} = Q(t)R(t), \qquad |A(t)| = R_{00}(t), \quad c_n(t) = Q_{n0}(t)$$

• assuming $C(t) = ||A(t/2)||^2$ diverges at $t = t^*$

$$||A(t \to t^*/2)|| \to \infty, \quad c_n(t \to t^*/2) \to 0,$$

 $\langle A_n | A(t \to t^*/2) \rangle \to \text{regular}, \quad I(t \to t^*/2) \to \infty$

operator delocalizes in Krylov space at $t = t^*/2$

Chaos vs localization in Krylov space

- when the system is chaotic and C(t) has a singularity at $t=t^*$, A(t) delocalizes in Krylov space at $t=t^*/2$
- \bullet when the system is integrable and C(t) is analytic, IPR is finite and the operator is Localized

$$C(t) \propto e^{at^2/2}, \qquad I \propto t,$$

 $C(t) \propto e^{ae^{mt}}, \qquad I \propto e^{mt}$

qualitatively similar to: localization/ergodicity in physical space = localization / delocalization in Fock space Altshuler, Gefen, Kamenev, Levitov'97 Basko, Aleiner, Altshuler'06

Main results

- universal bounds on the operator norm growth in lattice models, Euclidean Lieb-Robinson bound
- Toda chain interpretation of the recursion method, time-correlation function
- chaos in the underlying quantum many-body system as delocalization in Krylov space

Outlook

Connection between Euclidean and Minkowski dynamics

- Can Toda help connect different manifestations of chaos?
 - connection with OTOC
 - connection with spectral properties
- Chaos as delocalization? Connection to BH physics?