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s Attempt to explain how correlations come about

Observe Pygcp
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Why do we get these correlations?

What caused these things to be correlated?
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What constitutes explanation? & Gonroneanons
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What constitutes explanation? £ fomnesmons
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s Reichenbach’s principle:

Observe two correlated things, 1.e. P,z # P,Pg

A—-B B - A A< A-B
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What constitutes explanation? S conmunications

/

s Reichenbach’s principle:

Observe two correlated things, 1.e. P,z # P,Pg

A—-B B - A A< A-B

Pap = PyPp4 Pap = PpPyp Papp = PpPyiaPpia
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What constitutes explanation? & fosnonicanons

/

s Reichenbach’s principle:

Observe two correlated things, 1.e. P,z # P,Pg

A-B B-A A<A-B
Pap = PyPp4 Pap = PpPyp Papn = PaPaiaPpiag
trivial trivial non-trivial (unless A unseen)
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What constitutes explanation? S conmunications

/

s Reichenbach’s principle:

Observe two correlated things, 1.e. P,z # P,Pg

A unseen
A—-B B—-A A<A-B
Pap = PyPp|a Pyp = PgPyp Pyp = ZA PpPyaPp A
trivial trivial trivial
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Causal structure O oo

/

s Directed Acyclic Graph

E

F .J

Wy

s Encodes: each variable is conditionally independent of
Iits non-descendants given parents e.9. P;r; = Pgr.

s Here: Pgrgy; = PePiPgirPgicrPhic)
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Example: Bipartite Bell scenario S
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W

Two space-like separated measurements

(%)

Observe X and Y correlated

By Reichenbach’s principle, something missing
In the causal structure

W

W
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Example: Bipartite Bell scenario S

/

W

Two space-like separated measurements

]

Observe X and Y correlated

Hypothesise the existence of additional common
cause A.

W

W
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s Two space-like separated measurements

]

Observe X and Y correlated
Hypothesise the existence of A.

This diagram encodes local causality and free
choice.

W
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Example: Bipartite Bell scenario S

/

s Two space-like separated measurements

]

s This diagram encodes local causality and free
choice.

N Pypxy = 2p PAPaPgPx|anPy|sa
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s There exist quantum correlations that are
Incompatible with this causal structure

]
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Bell’s theorem &\{2

9

s There exist quantum correlations that are
incompatible with this causal structure:

s Options
s Reject free choice
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Bell’s theorem &

/

s There exist quantum correlations that are
Incompatible with this causal structure:

(%) (¥
O C

s Options
Reject free choice

s Reject locality

I
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Bell’s theorem &
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W

There exist quantum correlations that are
Incompatible with this causal structure:

D]

Options

+ Reject free choice

Reject locality

s Extend the notion of cause

W
73

U
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Bell’'s theorem S o

/

W

There exist quantum correlations that are
Incompatible with this causal structure:

D]

Options

W

U

Reject locality
s Extend the notion of cause

W

s Reject free choice _ _
Fine-tuned explanation [Wood Spekkens]
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Think of the “usual” quantum explanation of the
correlations as a quantum causal explanation.

l.e., correlations arise because an entangled
state Is shared by the source.

1

Pigxy = PyPgtr(p(E™" QF"Y))

I

POVMs
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Post-Quantum cause N
(%)
| %
»

s Correlations arise because a resource Is shared
by the source (e.g. a no-signalling distribution).

Papxy = PAPBRXY|AB
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s Natural guestions:

Given some correlations, which causal structures are
compatible?

Which casual structures have a separation between
different theories?

What are good ways to detect the separation?

In a given theory, how can different causal structures
be separated?

I

I

I
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Quantum-classical separation

0

s Natural guestions:

s Given some correlations, which causal structures are
compatible?

Which casual structures have a separation between
different theories?

What are good ways to detect the separation?

In a given theory, how can different causal structures
be separated?

I

I

I
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Application: cryptography SU

W

Cryptographic protocols involve exchanges of
iInformation and hence always take place within
a causal structure.

W

Finding good ways to detect quantum-classical
separations is crucial for device-independent

cryptography.
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Detecting the separation S

s In the bipartite Bell scenario this is relatively
well-understood, at least for small alphabet
sizes (note that the number of Bell inequalities
grows very rapidly)

Pxy|ag = 24 PaPxjanPyipa OF tr(p(E“ ®FY))

s Violate Bell inequality - non-classical
Semi-definite hierarchy = non-quantum
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Other causal structures — examples =3

¢

N\
X )< ' > Y
s Triangle
B A

Pyyz = z PyPgPcPx\pcPy|acPzaB
ABC

Information causality
(%) !

Px,x,zvR = z PyPx Px,PrPz1ax,x, Py|arz Q
A

A1 2

W

Y
~<
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Entropy vectors S

s Take the given correlations and construct a
vector of all the joint entropies:

h(Pagc) = (H(A),H(B),H(C),H(AB), ..., H(ABC())

s Ask: which entropy vectors are compatible with
a causal structure? [Fritz, Chaves, Majenz,
Gross, ...]
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Entropy vectors S
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s Why might this help?

Useful way to distinguish different causal structures

Causal constraints, which are non linear for probabilities,
become linear

E.J. Pxjapa = Pxjaa becomes I(X:B|AA) =0
For many causal structures [in particular all classical ones], the
set of achievable entropy vectors is convex.

l.e. {v: 3P valid for the causal structure with h(P) = v}.
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Classical entropy vectors S
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h(Pagc) = (H(A),H(B),H(C),H(AB), ..., H(ABC())

s Shannon constraints:
Strong subadditivity (H(A|B) = H(A|BC))
Positivity (H(A) = 0)
s Monotonicity (H(A|B) = 0)
s Non-Shannon constraints:

s Additional relations valid for all entropy vectors that don’t follow
from the above

s Not well understood
s Causal constraints
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Quantum entropy vectors S

/

h(pasc) = (H(A),H(B),H(C),H(4B), ..., H(ABC))

s VN constraints:
Strong subadditivity (H(A4|B) = H(A|BC))
Positivity (H(A) = 0)

+ Weak monotonicity (H(A|B) + H(A|C) = 0)
s Non-vN constraints:

s Additional relations valid for all guantum entropy vectors that
don’t follow from the above

s Conjectured, but none are proven
s Causal constraints
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s We apply the constraints to the causal structure
with all variables, but want constraints only for
the observed (classical) variables.

s These can be derived using Fourier-Motzkin
elimination [cf. Chaves et al.]

Constraints on Constraints on
all variables observed variables
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W

Input: causal structure

W

Output: set of linear entropic constraints that are
necessary for this causal structure

W

[We also have another technique for finding
sufficient conditions.]
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Sometimes we can consider effective causal
structures after post-selection.
[BraunsteinCaves]

Post-select on observed classical nodes.
Example:

W

W

W
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Post-selection — example S

Information causality @ A
A

> Y
Post-select on binary R
“

@® QUANTUM EPS RC

TECHNOLOGIES

/

W

W




. “ QUANTUM
Post-selection — example £ capmmesmons

Theory obeys information causality if

1(Xo: Yig=o) + I1(X1:Yig=1) < H(Z)
for all pre-shared resources allowed by the theory.
- The fact that this follows for classical and quantum
theory follows immediately from the techniques |

have discussed (as do lots of other inequalities for
this causal structure).

W
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Entropy vectors S

Quantum
Take entropies
> Q
or

)

In some cases these
are already equal
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4

Use algorithm
to give outer

approximation /\
Quantum

Take entropies

>
or

In some cases these C=Q
are already equal

‘ ' T
) ® ?S@ﬁJSFwes E PS RC




Example: Line-like causal structures & &Siiiemons
(no post-selection)

/

Outer approximation
tight

Take entropies
>
observed
Ay A; Ap_q

unobserved (either RVs or bipartite quantum states)

arXiv:1603.02553
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Example: Line-like causal structures & &milcmons
(no post-selection)

/

s In other words, for all members of this family
(i.e. for all n), any entropy vector that can be
obtained using (hidden) qguantum states can be

obtained classically

This holds, in spite of the existence of non-local
correlations for all n > 4.

W

unobserved
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There is separation at
level of correlations

Was this just bad luck?

We studied other cases taking “interesting” examples
from Henson, Lal, Pusey.

Some cases were as previously (no entropic
separation). Others had a separation in outer
approximations

Outer approximations
entropies
>
C
Q Q
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Other cases O oo
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s However, we don’'t know whether this is a real
separation: we weren't able to find distributions
In the gap.

Outer approximations

entropies
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Concrete example with potential gap =35

/

s Triangle causal structure, simplest non-trivial

causal structure - Derived a new tighter outer

approximation in the classical case
using non-Shannon inequalities

« Known outer approximation in the
guantum case is less constrained

« Known non-classical correlations do
not lie outside the classical entropic
boundary

« Post-selection not possible here

« We also have an inner approximation
for this case ( —1(X:Y:Z) = 0 where
I(X:Y:Z) =1X:Y)—-1(X:Y|Z))
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Summary of entropic techniques

Case Entropic C-Q Sep. in best Example
sep. known approx.

No post-selection Sometimes no Line-like
Sometimes Yes Triangle
unknown

Post-selection Usually Yes Info. causality

/G

s If non-Shannon inequalities are useful, we get a
separation in the approximations
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Open gquestions S
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Does taking entropy always destroy classical-quantum
separation at the level of observed variables (i.e. without
post-selection)?

Are there non-vN inequalities? Do any non-Shannon
Inequalities fail for vN entropy?

What other methods can distinguish quantum and
classical causal structures?
s Generic, reasonably tight, simple to compute
s Note that there are other proposals including
Polynomial Bell inequalities [Rosset et al]

Techniques via algebraic geometry [Lee & Spekkens]
Inflation technique [Wolfe et al]
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