

Entropic constraints on causal structures

Roger Colbeck
University of York

joint with Mirjam Weilenmann

arXiv:1709.08988 (review) and arXiv:1605.02078

Why are we interested in causal structures?

Attempt to explain how correlations come about

Observe $P_{ABCD...}$ Why do we get these correlations?

What caused these things to be correlated?

Reichenbach's principle:

Observe two correlated things, i.e. $P_{AB} \neq P_A P_B$

$$A \rightarrow B$$

$$B \to A$$

$$B \to A$$
 $A \leftarrow \Lambda \to B$

Reichenbach's principle:

Observe two correlated things, i.e. $P_{AB} \neq P_A P_B$

$$A \rightarrow B$$

$$B \to A$$

$$B \to A$$
 $A \leftarrow \Lambda \to B$

$$P_{AB} = P_A P_{B|A}$$

$$P_{AB} = P_B P_{A|B}$$

$$P_{AB} = P_A P_{B|A}$$
 $P_{AB} = P_B P_{A|B}$ $P_{AB\Lambda} = P_\Lambda P_{A|\Lambda} P_{B|\Lambda}$

Reichenbach's principle:

Observe two correlated things, i.e. $P_{AB} \neq P_A P_B$

$$A \rightarrow B$$

$$B \to A$$

$$B \to A$$
 $A \leftarrow \Lambda \to B$

$$P_{AB} = P_A P_{B|A}$$

$$P_{AB} = P_B P_{A|B}$$

$$P_{AB} = P_A P_{B|A}$$
 $P_{AB} = P_B P_{A|B}$ $P_{AB\Lambda} = P_\Lambda P_{A|\Lambda} P_{B|\Lambda}$

trivial

trivial

non-trivial (unless Λ unseen)

Reichenbach's principle:

Observe two correlated things, i.e. $P_{AB} \neq P_A P_B$

 Λ unseen

$$A \to B$$
 $B \to A$ $A \leftarrow \Lambda \to B$

$$P_{AB} = P_A P_{B|A}$$
 $P_{AB} = P_B P_{A|B}$ $P_{AB} = \sum_{\Lambda} P_{\Lambda} P_{A|\Lambda} P_{B|\Lambda}$ trivial trivial

Causal structure

Directed Acyclic Graph

- Encodes: each variable is conditionally independent of its non-descendants given parents e.g. $P_{G|FI} = P_{G|F}$.
- \Rightarrow Here: $P_{EFGHJ} = P_F P_J P_{G|F} P_{E|GF} P_{H|GJ}$

- Observe X and Y correlated
- By Reichenbach's principle, something missing in the causal structure

- Observe X and Y correlated
- Hypothesise the existence of additional common cause Λ.

- Observe X and Y correlated
- \circledast Hypothesise the existence of Λ .
- This diagram encodes local causality and free choice.

- This diagram encodes local causality and free choice.
- $P_{ABXY} = \sum_{\Lambda} P_{\Lambda} P_{A} P_{B} P_{X|A\Lambda} P_{Y|B\Lambda}$

There exist quantum correlations that are incompatible with this causal structure

There exist quantum correlations that are incompatible with this causal structure:

Options

Reject free choice

There exist quantum correlations that are incompatible with this causal structure:

Options

- Reject free choice
- Reject locality

There exist quantum correlations that are incompatible with this causal structure:

Options

- Reject free choice
- Reject locality
- Extend the notion of cause

There exist quantum correlations that are incompatible with this causal structure:

Options

- Reject free choice
- Reject locality

Fine-tuned explanation [Wood Spekkens]

Extend the notion of cause

Quantum cause

- Think of the "usual" quantum explanation of the correlations as a quantum causal explanation.
- i.e., correlations arise because an entangled state is shared by the source.
 POVMS

$$P_{ABXY} = P_A P_B \operatorname{tr}(\rho(E^{a,x} \otimes F^{b,y}))$$

Post-Quantum cause

Correlations arise because a resource is shared by the source (e.g. a no-signalling distribution).

$$P_{ABXY} = P_A P_B R_{XY|AB}$$

Quantum-classical separation

Natural questions:

- Given some correlations, which causal structures are compatible?
- Which casual structures have a separation between different theories?
- What are good ways to detect the separation?
- In a given theory, how can different causal structures be separated?

Quantum-classical separation

Natural questions:

- Given some correlations, which causal structures are compatible?
- Which casual structures have a separation between different theories?
- What are good ways to detect the separation?
- In a given theory, how can different causal structures be separated?

Application: cryptography

Cryptographic protocols involve exchanges of information and hence always take place within a causal structure.

Finding good ways to detect quantum-classical separations is crucial for device-independent cryptography.

Detecting the separation

In the bipartite Bell scenario this is relatively well-understood, at least for small alphabet sizes (note that the number of Bell inequalities grows very rapidly)

$$P_{XY|AB} = \sum_{\Lambda} P_{\Lambda} P_{X|A\Lambda} P_{Y|B\Lambda} \text{ or } \operatorname{tr}(\rho(E^{a,x} \otimes F^{b,y}))$$

- Wiolate Bell inequality → non-classical
- Semi-definite hierarchy → non-quantum

Other causal structures – examples

Triangle

$$P_{XYZ} = \sum_{ABC} P_A P_B P_C P_{X|BC} P_{Y|AC} P_{Z|AB}$$

Information causality

$$P_{X_0 X_1 Z Y R} = \sum_{A} P_A P_{X_0} P_{X_1} P_R P_{Z|A X_0 X_1} P_{Y|A R Z}$$

Entropy vectors

Take the given correlations and construct a vector of all the joint entropies:

$$h(P_{ABC}) \coloneqq (H(A), H(B), H(C), H(AB), \dots, H(ABC))$$

Ask: which entropy vectors are compatible with a causal structure? [Fritz, Chaves, Majenz, Gross, ...]

Entropy vectors

$$h(P_{ABC}) \coloneqq (H(A), H(B), H(C), H(AB), ..., H(ABC))$$

- Why might this help?
 - Useful way to distinguish different causal structures
 - Causal constraints, which are non linear for probabilities, become linear
 - E.g. $P_{X|AB\Lambda} = P_{X|A\Lambda}$ becomes $I(X:B|A\Lambda) = 0$
 - For many causal structures [in particular all classical ones], the set of achievable entropy vectors is convex.
 - i.e. $\{v: \exists P \text{ valid for the causal structure with } h(P) = v\}.$

Classical entropy vectors

$$h(P_{ABC}) \coloneqq (H(A), H(B), H(C), H(AB), \dots, H(ABC))$$

- Shannon constraints:
 - \circledast Strong subadditivity $(H(A|B) \ge H(A|BC))$
 - \Rightarrow Positivity $(H(A) \ge 0)$
 - $Monotonicity (H(A|B) \ge 0)$
- Non-Shannon constraints:
 - Additional relations valid for all entropy vectors that don't follow from the above
 - Not well understood
- Causal constraints

Quantum entropy vectors

$$h(\rho_{ABC}) \coloneqq (H(A), H(B), H(C), H(AB), \dots, H(ABC))$$

vN constraints:

- \circledast Strong subadditivity $(H(A|B) \ge H(A|BC))$
- \triangleright Positivity $(H(A) \ge 0)$
- Weak monotonicity $(H(A|B) + H(A|C) \ge 0)$

Non-vN constraints:

- Additional relations valid for all quantum entropy vectors that don't follow from the above
- Conjectured, but none are proven
- Causal constraints

Marginalizing

- We apply the constraints to the causal structure with all variables, but want constraints only for the observed (classical) variables.
- These can be derived using Fourier-Motzkin elimination [cf. Chaves et al.]

Constraints on all variables

Constraints on observed variables

Overall algorithm

- Input: causal structure
- Output: set of linear entropic constraints that are necessary for this causal structure

[We also have another technique for finding sufficient conditions.]

Post-selection

- Sometimes we can consider effective causal structures after post-selection. [BraunsteinCaves]
- Post-select on observed classical nodes.
- Example:

Post-selection – example

Information causality

Post-select on binary R

Post-selection – example

Theory obeys information causality if

$$I(X_0: Y_{|R=0}) + I(X_1: Y_{|R=1}) \le H(Z)$$

for all pre-shared resources allowed by the theory.

 The fact that this follows for classical and quantum theory follows immediately from the techniques I have discussed (as do lots of other inequalities for this causal structure).

Entropy vectors

Entropy vectors

Example: Line-like causal structures (no post-selection)

arXiv:1603.02553

Example: Line-like causal structures (no post-selection)

- In other words, for all members of this family (i.e. for all n), any entropy vector that can be obtained using (hidden) quantum states can be obtained classically
- This holds, in spite of the existence of non-local correlations for all $n \ge 4$.

Other cases

There is separation at level of correlations

- Was this just bad luck?
- We studied other cases taking "interesting" examples from Henson, Lal, Pusey.
- Some cases were as previously (no entropic separation). Others had a separation in outer approximations

Other cases

However, we don't know whether this is a real separation: we weren't able to find distributions in the gap.

Concrete example with potential gap

Triangle causal structure, simplest non-trivial

causal structure

- Derived a new tighter outer approximation in the classical case using non-Shannon inequalities
- Known outer approximation in the quantum case is less constrained
- Known non-classical correlations do not lie outside the classical entropic boundary
- Post-selection not possible here
- We also have an inner approximation for this case $(-I(X:Y:Z) \ge 0$ where I(X:Y:Z) := I(X:Y) I(X:Y|Z)

Summary of entropic techniques

Case	Entropic C-Q sep.	Sep. in best known approx.	Example
No post-selection	Sometimes no	No	Line-like
	Sometimes unknown	Yes	Triangle
Post-selection	Usually	Yes	Info. causality

If non-Shannon inequalities are useful, we get a separation in the approximations

Open questions

- Does taking entropy always destroy classical-quantum separation at the level of observed variables (i.e. without post-selection)?
- Are there non-vN inequalities? Do any non-Shannon inequalities fail for vN entropy?
- What other methods can distinguish quantum and classical causal structures?
 - Generic, reasonably tight, simple to compute
 - Note that there are other proposals including
 - Polynomial Bell inequalities [Rosset et al]
 - Techniques via algebraic geometry [Lee & Spekkens]
 - Inflation technique [Wolfe et al]

