Rigorous RG: An efficient algorithm for low energy states of 1D quantum systems

Umesh V. Vazirani U.C. Berkeley

Joint work with Itai Arad, Zeph Landau and Thomas Vidick

Local Hamiltonian in 1D

Assume each particle is a d-level system (qudit) with nearest neighbor interactions

Each term H_i is a d²xd² Hermitian matrix

$$H = H_1 + \cdots + H_m$$

- Do low energy states states of H have succinct classical description?
- Is there an efficient classical algorithm to find such a description?

Physically relevant corner of Hilbert space n particles

CMP: low energy states are special

- DMRG (Density Matrix Renormalization Group)
 [White '92] has been remarkably successful in
 practice for 1D quantum systems. Quickly outputs
 compact representation of ground/low energy state.
- Doesn't always work. Artificial hard examples known [Eisert '06]

Local Hamiltonian in 1D

 Do low energy states states of H have succinct classical description?

[Hastings '06] (Close approximations to) Ground states of gapped 1D Hamiltonians ($E_1 = E_0 + c$) have compact description as an MPS with poly(n) bond dimension.

 Is there an efficient classical algorithm to find such a description?

[Landau, V, Vidick '14] Polynomial time algorithm to find ground states of gapped 1D Hamiltonians.

Area Law/Succinct Description for Ground State

$$|\psi\rangle = \sum_{i} c_i |a_i\rangle \otimes |b_i\rangle, \quad c_i \ge 0$$

Schmidt decomposition: $\{|a_i\rangle\}$, $\{|b_i\rangle\}$ orthonormal sets

Schmidt rank = number of non-zero terms

If $|\psi\rangle$ has low Schmidt rank then if $|a_i\rangle$ and $|b_i\rangle$ vectors compactly representable then so is $|\psi\rangle$

If $|\psi\rangle$ has low Schmidt rank across all cuts then $|\psi\rangle$ has a compact representation (in the form of a tensor network called an MPS).

Two classes of Hamiltonians:

- 1. Gapless Hamiltonians with a low density of low-energy states r=poly(n) dimensional space of eigenstates with energy in the range $[E_0, E_0 + c]$
- 2. Degenerate gapped ground space: H has smallest eigenvalue E_0 with associated eigenspace of dimension r=poly(n), and $E_1=E_0+c$

Constant degeneracy: [Huang; Chubb, Flammia 2014]

Do Low Energy States have compact descriptions?

- Will consider the case of a degenerate ground space of polynomial dimension
- All proofs bounding entanglement across cuts show that for every cut there is some ground state with low complexity.
- Want to show: there is a ground state with low complexity across all cuts.
 Or better still, all ground states have low complexity across all cuts.

Results:

 Polynomial time algorithm for computing basis for poly(n)-degenerate ground space for 1D gapped Hamiltonian.

Implies area law + succinct MPS description for poly(n)-degenerate ground spaces.

• $n^{O(log\ n)}$ algorithm for computing MPS descriptions of low energy states of 1D systems in gapless case (poly(n) eigenstates of energy ϵ_0 + c).

Implies area law (up to log correction) + succinct MPS description.

What we would like!

Once this is done, can compute eigenvectors quickly!

Local Approach

Suppose we are trying to find unique ground state $|\psi>$

What does a partial solution on the first few particles look like?

If
$$|\psi\rangle = \sum_{i} c_i |a_i\rangle \otimes |b_i\rangle$$
, $c_i \ge 0$

then partial solution looks like $S = span\{|a_i>\}$

Local Approach

T = Target subspace of low energy states

Ideally: Identify a subspace $S \subseteq T$ such that $T \subseteq S \otimes X$

Definition: We will say that S is a δ –viable set if

$$P_T P_{S_{\otimes} X} P_T \ge (1 - \delta) P_T$$

$$\delta = \text{error.}$$
 $(1-\delta) = \text{overlap}$

Want: dim(S) small, δ small.

Local Approach

Definition: We will say that S is a δ –viable set if

$$P_T P_{S_{\infty} X} P_T \ge (1 - \delta) P_T$$

Interpretation: A unit ball of S \otimes X when projected onto T contains a ball of radius (1- δ)

Viable sets

 Think of S interchangeably as subspace or as a a compactly represented basis for the subspace.

•
$$\delta = \text{error.}$$
 $(1-\delta) = \text{overlap}$

• No efficient test for whether a set is viable or to estimate δ

Algorithm design primitives for viable sets:

1. Tensoring

If S_1 is δ_1 -viable and S_2 is δ_2 -viable then $S_1 \otimes S_2$ is $(\delta_1 + \delta_2)$ -viable

$$Dim(S_1 \otimes S_2) = Dim(S_1) Dim(S_2)$$

Algorithm design primitives for viable sets:

2. Random projection If S is δ -viable i.e. overlap = 1- δ , and Dim(S) = s, Let R be a random subspace of S of dimension r. Then R has overlap $\sim (1-\delta) \, \mathrm{r/s}$

Algorithm design primitives for viable sets:

3. Error Reduction If S is δ -viable and Dim(S) = s. Then error reduction yields S' which is $\Delta/(1-\delta)^2$ -viable and with Dim(S') = D²s.

Error reduction carried out by applying D- Δ AGSP, which satisfies D¹⁶ Δ << 1

Merge Process

Step 1: Tensor S_1 , $S_2 \delta$ -viable, each of Dim = s, to get $S_1 \otimes S_2 2\delta$ -viable and of Dim = s^2

Step 2: Random projection to Dim = r to get $\sim (1 - r/s^2)$ -viable

Step 3: Error reduction to Dim = $s = D^2r$ to get $\Delta/(1-\delta)2$ -viable

$$\Delta s^4/r^2 << s^4/r^2 r^8/s^8 = r^6/s^4 << 1$$

Results:

• Polynomial time (n^{1/c^2}) algorithm for computing basis for r = poly(n)-degenerate ground space for 1D gapped Hamiltonian.

Implies area law:
$$O(\log r + \frac{\log^3 d}{c})$$

• $n^{O(log\ n)}$ algorithm for computing MPS descriptions of low energy states of 1D systems in gapless case $(r = poly(n) \text{ eigenstates of energy } \epsilon_0 + c)$.

Implies area law (up to log correction):

$$O(\log r + \frac{\log^3 d}{c}) \log n$$

AGSP: Approximate Ground State Projector

An AGSP is an operator K that is not "too complex" and approximately projects onto the ground state:

AGSP: Approximate Ground State Projector

An AGSP is an operator K that is not "too complex" and approximately projects onto the ground state:

- K|GS> = |GS>
- Shrinks orthogonal space by $\Delta < 1$
- Has low entanglement rank D: $D\Delta << 1$

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_{i=1}^{C} A_i \otimes B_i$ will be said to have entanglement rank C.

AGSP Construction

 $K = C_l(H')$, where C_l is a scaled Chebyshev polynomial

Must modify AGSP construction to ensure:

- 1. Bond dimension away from special cuts is O(poly(n))
- 2. Computationally efficient

Discussion

Implementation of heuristic version by [Roberts, Vidick, Motrunich]:

- Uses heuristic version of AGSP, trotter expansion of e^{-kH/t}
- Random sampling replaced by taking bottom s minimal eigenvectors of restricted Hamiltonian
- 5-10 times slower than DMRG
- RRG appears to do better when the ground state degeneracy is large or when reconstructing low energy space (Bravyi-Gosset model, XY model with random couplings)

 For frustration-free Hamiltonians with unique ground state, the algorithm works in ~O(nM(n)) time. If a conjecture about bond trimming is correct, then the running time can be reduced to ~O(n).

Renormalization

 For frustration-free Hamiltonians with unique ground state, the algorithm works in ~O(nM(n)) time. If a conjecture about bond trimming is correct, then the running time can be reduced to ~O(n).

Renormalization

- Random projection step acts on a bond in the tensor network.
- Consider a toy model for quantum states where we think of an underlying physically manifested tensor network. Suppose the bonds of the tensor network are subjected to a noise process, described by random projections. What is the computational complexity of this model? BQP? BPP?
 i.e. does it support fault-tolerance?