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Local Hamiltonian in 1D
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Assume each particle is a d-level system (qudit) with
nearest neighbor interactions

Each term H, is a d?xd? Hermitian matrix

H=H +--+H_

Do low energy states states of H have succinct
classical description?

« Is there an efficient classical algorithm to find such
a description?



Physically relevant corner of Hilbert space
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CMP: low energy states are special



« DMRG (Density Matrix Renormalization Group)
[White '92] has been remarkably successful in
practice for 1D quantum systems. Quickly outputs
compact representation of ground/low energy state.

 Doesn’t always work. Artificial hard examples known
[Eisert '06]



Local Hamiltonian in 1D
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Do low energy states states of H have succinct
classical description?

[Hastings '06] (Close approximations to) Ground states
of gapped 1D Hamiltonians (E; = E; + ¢) have compact
description as an MPS with poly(n) bond dimension.

« Is there an efficient classical algorithm to find such
a description?

[Landau, V, Vidick "14] Polynomial time algorithm to find
ground states of gapped 1D Hamiltonians.



Area Law/Succinct Description for Ground State
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Schmidt decomposition: {|ai>}, {|bi>} orthonormal sets

ai>®

bl.>, c,z0
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Schmidt rank = number of non-zero terms

If [¢> has low Schmidt rank then if |a,> and |b,> vectors compactly
representable then so is |y >

If | ¥ > has low Schmidt rank across all cuts then | ¥ > has a compact
representation (in the form of a tensor network called an MPS).

LR AN I R (I ¢




Two classes of Hamiltonians:

1. Gapless Hamiltonians with a low density of

low-energy states

r=poly(n) dimensional space of eigenstates
with energy in the range [E,, E; + C]

2. Degenerate gapped ground space:
H has smallest eigenvalue E, with associated
eigenspace of dimension r=poly(n), and E; = E; +C

Constant degeneracy: [Huang; Chubb, Flammia 2014]



Do Low Energy States have compact descriptions?

« Will consider the case of a degenerate ground space
of polynomial dimension

« All proofs bounding entanglement across cuts show
that for every cut there is some ground state with
low complexity.

 Want to show: there is a ground state with low
complexity across all cuts.
Or better still, all ground states have low complexity
across all cuts.



Results:

« Polynomial time algorithm for computing basis
for poly(n)-degenerate ground space for
1D gapped Hamiltonian.

Implies area law + succinct MPS description for
poly(n)-degenerate ground spaces.

« nOUog N algorithm for computing MPS descriptions
of low energy states of 1D systems in gapless case
(poly(n) eigenstates of energy g, + ).

Implies area law (up to log correction) + succinct
MPS description.



What we would like!

Subspace T of low energy states

Quickly identify a small subspace
in which the solution is
guaranteed to lie

H=H;+Hy+ .. Hy,

Once this is done, can compute eigenvectors quickly!



Local Approach
A X
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Suppose we are trying to find unique ground state |y >

What does a partial solution on the first few particles
look like?

If |y) = E o ai>®

then partial solution looks like S = span{|a,>}

bi>, c,=z0
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Local Approach
A X
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T = Target subspace of low energy states
Ideally: Identify a subspace S € T such that T € S®QX
Definition: We will say that S is a § —viable set if

PrPsxPr= (1- 6)Py

§d = error. (1-8) = overlap

Want: dim(S) small, § small.



Local Approach
A X
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Definition: We will say that S is a § —viable set if

PrPsxPr= (1- 8)Py

Interpretation: A unit ball of S®X when projected
onto T contains a ball of radius (1- §)



Viable sets

 Think of S interchangeably as subspace or as a
a compactly represented basis for the subspace.

e § = error. (1-8) = overlap

« No efficient test for whether a set is viable or
to estimate §



Algorithm design primitives for viable sets:

A B

1. Tensoring
If S; is §;-viable and S, is §,-viable then
S;®S,is (6;+5,)-viable

Dim(5:;8S,) = Dim(S;) Dim(S,)






Algorithm design primitives for viable sets:

A B

2. Random projection
If S is §-viable i.e. overlap = 1- 6§, and Dim(S) = s,
Let R be a random subspace of S of dimension r.
Then R has overlap ~ (1-6)r/s






Algorithm design primitives for viable sets:

A B

3. Error Reduction
If S is 6-viable and Dim(S) = s. Then error reduction
yields S’ which is A/ (1-6)% -viable and with
Dim(S’) = D4s.

Error reduction carried out by applying D-A AGSP,
which satisfies D1°A << 1



Merge Process
A B

Step 1: Tensor S, S, §-viable, each of Dim = s,
to get S;®S, 25-viable and of Dim = s?

Step 2: Random projection to Dim = r
to get ~(1-r/s?)-viable

Step 3: Error reduction to Dim = s = D?4r to get
A/ (1-6)2 -viable

As?/r? << s%/r2 r8/s8 = rb/s% << 1
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Results:

. Polynomial time (n1/¢*) algorithm for computing basis
for r = poly(n)-degenerate ground space for
1D gapped Hamiltonian.

3
Implies area law: 0(logr + 22-%)

Cc

« nOUog M) algorithm for computing MPS descriptions
of low energy states of 1D systems in gapless case
(r = poly(n) eigenstates of energy g, + c).

Implies area law (up to log correction):
O(logr +




AGSP: Approximate Ground State Projector
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An AGSP is an operator K that is not
“too complex” and approximately
projects onto the ground state:




AGSP: Approximate Ground State Projector
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An AGSP is an operator K that is not

“too complex” and approximately
projects onto the ground state:

« K|GS> = |GS>

* Shrinks orthogonal space by A < 1

 Has low entanglement rank D: DA << 1

An operator on H; @ Hz of the form 3°{ A; @ B; will be said to have entanglement
rank C.
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AGSP Construction

[Arad, Kitaev, Landau, V '13]

= }-M%H:@

/= HL + H, +Hy -9 Fg + Hp

. ’d
ﬂeouni : S O(kg—!) , "{"" ch=0 L‘g—)

1A

\AAAA/\I\AA/\/ >

\V/ |74
E, VVVV VY VELVE ts+c

K = C(H’), where C,is a scaled Chebyshev polynomial




Must modify AGSP construction to ensure:
1. Bond dimension away from special cuts is O(poly(n))

2. Computationally efficient



Discussion

Implementation of heuristic version by
[Roberts, Vidick, Motrunich]:

« Uses heuristic version of AGSP, trotter expansion
of en{-kH/t}

« Random sampling replaced by taking bottom s
minimal eigenvectors of restricted Hamiltonian

« 5-10 times slower than DMRG

« RRG appears to do better when the ground state
degeneracy is large or when reconstructing low
energy space (Bravyi-Gosset model, XY model with
random couplings)



For frustration-free Hamiltonians with unique
ground state, the algorithm works in ~O(nM(n))
time. If a conjecture about bond trimming is
correct, then the running time can be reduced
to ~O(n).

Renormalization
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For frustration-free Hamiltonians with unique
ground state, the algorithm works in ~O(nM(n))
time. If a conjecture about bond trimming is
correct, then the running time can be reduced
to ~O(n).

Renormalization
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« Random projection step acts on a bond in the
tensor network.

« Consider a toy model for qguantum states where we
think of an underlying physically manifested tensor
network. Suppose the bonds of the tensor network
are subjected to a noise process, described by
random projections. What is the computational
complexity of this model? BQP? BPP?

i.e. does it support fault-tolerance?



