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Local Hamiltonian in 1D

H1

Assume each particle is a d-level system (qudit) with
nearest neighbor interactions

Each term Hi is a d2xd2 Hermitian matrix

• Do low energy states states of H have succinct 
classical description?

• Is there an efficient classical algorithm to find such 
a description?

H2 H3 Hn-1

 H = H1 ++ Hm



n particles 
C2n

Physically relevant corner of Hilbert space

CMP: low energy states are special



• DMRG (Density Matrix Renormalization Group) 
[White ’92] has been remarkably successful in 
practice for 1D quantum systems. Quickly outputs 
compact representation of ground/low energy state. 

• Doesn’t always work. Artificial hard examples known
[Eisert ’06]



Local Hamiltonian in 1D

H1

• Do low energy states states of H have succinct 
classical description?

[Hastings ‘06] (Close approximations to) Ground states 
of gapped 1D Hamiltonians (E1 = E0 + c) have compact 
description as an MPS with poly(n) bond dimension.

• Is there an efficient classical algorithm to find such 
a description?

[Landau, V, Vidick ’14] Polynomial time algorithm to find 
ground states of gapped 1D Hamiltonians.  

H2 H3 Hn-1



Area Law/Succinct Description for Ground State 

A B

Schmidt decomposition: {|ai>}, {|bi>} orthonormal sets

Schmidt rank = number of non-zero terms

If |𝜓> has low Schmidt rank then if |ai> and |bi> vectors compactly
representable then so is |𝜓>

If | 𝜓	> has low Schmidt rank across all cuts then | 𝜓	> has a compact
representation (in the form of a tensor network called an MPS). 

€ 

ψ =  ci ai∑ ⊗ bi ,    ci ≥ 0



Two classes of Hamiltonians: 

1. Gapless Hamiltonians with a low density of 
low-energy states 

r=poly(n) dimensional space of eigenstates 
with energy in the range [E0, E0 + c]

2. Degenerate gapped ground space:
H has smallest eigenvalue E0 with associated 
eigenspace of dimension r=poly(n), and E1 = E0 +c

Constant degeneracy: [Huang; Chubb, Flammia 2014]



Do Low Energy States have compact descriptions?

• Will consider the case of a degenerate ground space  
of polynomial dimension

• All proofs bounding entanglement across cuts show
that for every cut there is some ground state with 
low complexity. 

• Want to show: there is a ground state with low 
complexity across all cuts. 
Or better still, all ground states have low complexity
across all cuts.  



Results:

• Polynomial time algorithm for computing basis
for poly(n)-degenerate ground space for 
1D gapped Hamiltonian. 

Implies area law + succinct MPS description for
poly(n)-degenerate ground spaces. 

• nO(log n) algorithm for computing MPS descriptions 
of low energy states of 1D systems in gapless case
(poly(n) eigenstates of energy ε0 + c). 

Implies area law (up to log correction) + succinct 
MPS description. 



H = H1 + H2 + … Hn-1

C2n

Subspace T of low energy states

Once this is done, can compute eigenvectors quickly!

What we would like!

Quickly identify a small subspace 
in which the solution is 
guaranteed to lie



Local Approach
A X

Suppose we are trying to find unique ground state |𝜓>

What does a partial solution on the first few particles
look like?

If

then partial solution looks like S = span{|ai>}
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ψ =  ci ai∑ ⊗ bi ,    ci ≥ 0



Local Approach
A X

T = Target subspace of low energy states

Ideally: Identify a subspace S ⊆ T such that T ⊆ S⊗X

Definition: We will say that S is a 𝛿 −viable set if 

PTPS⊗XPT	≥ (1- 𝛿)PT

𝛿 = error.       (1- 𝛿) = overlap

Want: dim(S) small, 𝛿 small. 



Local Approach
A X

Definition: We will say that S is a 𝛿 −viable set if 

PTPS⊗XPT	≥ (1- 𝛿)PT

Interpretation: A unit ball of S⊗X when projected 
onto T contains a ball of radius (1- 𝛿)



Viable sets

• Think of S interchangeably as subspace or as a
a compactly represented basis for the subspace.

• 𝛿 = error.       (1- 𝛿) = overlap

• No efficient test for whether a set is viable or 
to estimate 𝛿



Algorithm design primitives for viable sets:

A B

1. Tensoring
If S1 is 𝛿1-viable and S2 is 𝛿2-viable then 
S1⊗S2 is (𝛿1+𝛿2)-viable 

Dim(S1⊗S2) = Dim(S1) Dim(S2)





Algorithm design primitives for viable sets:

A B

2. Random projection
If S is 𝛿-viable i.e. overlap = 1- 𝛿, and Dim(S) = s, 

Let R be a random subspace of S of dimension r. 
Then R has overlap ~ (1- 𝛿)	r/s





Algorithm design primitives for viable sets:

A B

3. Error Reduction
If S is 𝛿-viable and Dim(S) = s. Then error reduction
yields S’ which is Δ/ (1- 𝛿)2	-viable and with 
Dim(S’) = D2s. 

Error reduction carried out by applying D-Δ AGSP,
which satisfies D16Δ << 1



Merge Process
A B

Step 1: Tensor S1, S2 𝛿-viable, each of Dim = s,
to get S1⊗S2 2𝛿-viable and of Dim = s2

Step 2: Random projection to Dim = r 
to get ~(1- r/s2)-viable

Step 3: Error reduction to Dim = s = D2r to get 
																									Δ/ (1- 𝛿)2	-viable

																										Δ𝑠4/r2 << 𝑠4/r2 r8/s8 = r6/s4 << 1
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Results:

• Polynomial time (𝑛1/23) algorithm for computing basis
for r = poly(n)-degenerate ground space for 
1D gapped Hamiltonian. 

Implies area law: 𝑂(log 𝑟 +	 :;<
=>
2

)

• nO(log n) algorithm for computing MPS descriptions 
of low energy states of 1D systems in gapless case
(r = poly(n) eigenstates of energy ε0 + c). 

Implies area law (up to log correction): 
𝑂(log 𝑟 +	 :;<

=>
2

)𝑙𝑜𝑔𝑛



AGSP: Approximate Ground State Projector

An AGSP is an operator K that is not 
“too complex”  and approximately  
projects onto the ground state:



AGSP: Approximate Ground State Projector

An AGSP is an operator K that is not 
“too complex”  and approximately  
projects onto the ground state:

• K|GS> = |GS>
• Shrinks orthogonal space by Δ < 1
• Has low entanglement rank D: DΔ << 1



K = Cl(H’), where Cl is a scaled Chebyshev polynomial

AGSP Construction

[Arad, Kitaev, Landau, V ‘13]

E0 E0+s+c

1



Must modify AGSP construction to ensure:

1. Bond dimension away from special cuts is O(poly(n))

2. Computationally efficient



Implementation of heuristic version by
[Roberts, Vidick, Motrunich]:

• Uses heuristic version of AGSP, trotter expansion 
of e^{-kH/t}

• Random sampling replaced by taking bottom s 
minimal eigenvectors of restricted Hamiltonian

• 5-10 times slower than DMRG

• RRG appears to do better when the ground state 
degeneracy is large or when reconstructing low 
energy space (Bravyi-Gosset model, XY model with 
random couplings)

Discussion



• For frustration-free Hamiltonians with unique 
ground state, the algorithm works in ~O(nM(n))
time. If a conjecture about bond trimming is 
correct, then the running time can be reduced

to ~O(n). 

• Renormalization
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• Random projection step acts on a bond in the 
tensor network. 

• Consider a toy model for quantum states where we
think of an underlying physically manifested tensor 
network. Suppose the bonds of the tensor network 
are subjected to a noise process, described by 
random projections. What is the computational
complexity of this model? BQP? BPP? 
i.e. does it support fault-tolerance?


