Frontiers in Quantum Information Physics

Tensor networks
as
path integral geometry

Guifre Vidal

Frontiers in Quantum Information Physics

SIMONS FOUNDATION

tensor network formalism:

sparse (efficient) representation and manipulation of

matrix product state MPS

tensor network formalism:

sparse (efficient) representation and manipulation of

Z =

Euclidean path integral or partition function

RG flow

tensor network ∼ geometry

2d partition function on cylinder

flat space (flat cylinder)

hyperbolic space (Poincare disk)

tensor network ∼ geometry

so what?

MERA = time slice of AdS_3

Swingle 2009, 2012

(hyperbolic Disk)

MERA = kinematic space (integral transform)

Czech, Lamprou, McCandlish, Sully, 2015-2016

(de Sitter dS_2)

Outline

tensor networks as ...

- geometry
- path integral geometry

Outline

tensor networks as ...

• geometry

path integral geometry

Manifold

2d manifold \mathcal{M} = Euclidean spacetime

Manifold -> Discretization

2d manifold \mathcal{M} = Euclidean spacetime

if each tensor is equivalent...

then we lost the metric!

Manifold -> Discretization -> connectivity

flat spacetime ———— curve

curved spacetime

this is NOT what we will do today

In this talk we focus instead in two other types of discretizations

(1) scale discretization

(2) lapse and shift discretization

(1) scale discretization

2d topological disk is conformally flat
$$\Rightarrow$$
 coordinates (τ, x) such that

$$g_{\mu\nu}(\tau,x) = e^{2\phi(\tau,x)} \delta_{\mu\nu}$$

we can find

(1) scale discretization

we can find coordinates
$$(\tau, x)$$
 such that

$$g_{\mu\nu}(\tau,x) = e^{2\phi(\tau,x)} \delta_{\mu\nu}$$

$$g_{\mu\nu}(\tau,x)=2^{2n(\tau,x)}\delta_{\mu\nu}\qquad n\in\mathbb{Z}$$

(1) scale discretization

$$\begin{array}{c} \text{we can find} \\ \text{2d topological disk} \\ \text{is conformally flat} \end{array} \Rightarrow \begin{array}{c} \text{we can find} \\ \text{coordinates} \\ (\tau,x) \\ \text{such that} \end{array} \qquad \mathcal{G}_{\mu\nu}(\tau,x) = e^{2\phi(\tau,x)}\delta_{\mu\nu}$$

$$g_{\mu\nu}(\tau,x) = 2^{2n(\tau,x)} \delta_{\mu\nu} \qquad \text{$n \in \mathbb{Z}$}$$

two types of tensors:

tensor A
= patch of flat
spacetime

tensor w
= glue connecting
regions
with different
scale factor

lapse and shift discretization

tensor networks as ...

geometry

path integral geometry

Manifold + Euclidean path integral

2d manifold \mathcal{M} = Euclidean spacetime

+ Euclidean path integral
$$Z = \int D\varphi e^{-S_E[\varphi]}$$

 S_E is an Euclidean action e.g.

$$S_E[\varphi] = \int d au dx\, \sqrt{g}\; g^{\mu
u}\partial_\mu arphi\partial_
u arphi$$

	geometry	path integral geometry
\leftarrow tensor A	patch of flat Euclidean spacetime	φ_{4} φ_{2} φ_{2} φ_{2} φ_{3} φ_{3} φ_{4} φ_{2} φ_{3} φ_{4} φ_{5} φ_{5} φ_{6} φ_{7} φ_{1} φ_{1} φ_{2} φ_{3} φ_{4} φ_{5} φ_{6} φ_{7} φ_{7} φ_{7} φ_{7} φ_{7} φ_{8} φ_{9} φ_{1} φ_{1} φ_{2} φ_{3} φ_{4}
tensors w, u	rescaling of coordinates at fixed time slice	rescaling of coordinates and fields at fixed time slice

From now on, we focus on lapse & shift representation

Claim:

 $we \ can \ use \ tensors \ A, w, u$ $to \ apply \ geometric \ gates$ $in \ the \ Hilbert \ space \ V_{\Sigma} \ of \ a \ time \ slice$

homogeneous Euclidean time evolution

lapse

inhomogeneous Euclidean time evolution

homogeneous rescaling

shift

inhomogeneous rescaling

rest of the talk: provide evidence for this claim

plan:

quantum spin chain (QFT on the lattice)

Hilbert space

• show that such gates act geometrically on the low energy states $\,V_{\Sigma}\,$

problem: how do geometric gates act on low energy states?

solution: we know the answer for a critical quantum spin chain (= CFT on the lattice)

geometric gates = conformal transformations

inhomogeneous
Euclidean time evolution

inhomogeneous rescaling

critical
Ising model

from quantum spin Hamiltonian

$$H = \sum_{i} \sigma_i^x \sigma_{i+1}^x + \sigma_i^z$$

or from statistical Boltzmann weights

transfer matrix

$$e^{-\delta \tau H}$$

Example: Ising spin chain on 24 sites

$$H = \frac{2\pi}{L} \left(L_0 + \overline{L}_0 - \frac{c}{12} \right)$$
 scaling dimensions
$$E_{\alpha} = \frac{2\pi}{L} \left(\Delta_{\alpha} - \frac{c}{12} \right)$$

translation

$$_{o}$$
 $-i\delta x P$

$$P = \frac{2\pi}{L}(L_0 - \bar{L}_0)$$

$$P_{\alpha} = \frac{2\pi}{L} s_{\alpha}^{\star}$$
conformal spins

Example: Ising spin chain on 24 sites

this is a geometric gate

there are 3 conformal towers

towers are not mixed by geometric/conformal transformations

$$|\Psi_{\alpha}\rangle \longrightarrow G|\Psi_{\alpha}\rangle = \sum_{\beta} A_{\alpha\beta} |\Psi_{\beta}\rangle$$
low energy state in one tower geometric states in same tower

this is not a geometric gate

inhomogeneous Euclidean time evolution

$$e^{-\alpha K}$$

$$K \approx e^{i\theta} H_1 + e^{-i\theta} H_{-1}$$

$$H_1 \equiv L_1 + \bar{L}_{-1}$$

$$H_{-1} \equiv L_{-1} + \bar{L}_1$$

inhomogeneous Euclidean time evolution

$$e^{-\alpha K}$$

$$K \approx e^{i\theta} P_1 + e^{-i\theta} P_{-1}$$

$$P_1 \equiv L_1 - \overline{L}_{-1}$$

$$P_{-1} \equiv L_{-1} - \overline{L}_1$$

ground state $|1\rangle$

stress tensor $|\bar{T}\rangle = |\bar{L}_{-2}\mathbb{I}\rangle$

energy density $|\mathcal{E} angle$

global descendant $|\tilde{L}_{-1}\mathcal{E}\rangle$

Conclusions

joint work (in preparation)

Ash MilstedPerimeter Institute

2d partition function on cylinder

flat space (flat cylinder)

HaPPY code

MERA

hyperbolic space (Poincare disk)

tensor network ∼ geometry?

Conclusions

(1) tensor networks can be used to represent

Euclidean path integrals on curved spacetime geometry

(2) tensor networks can implement *geometric transformations* (in the Hilbert space of a quantum spin chain) **corresponding to**

joint work (in preparation)

Ash Milsted
Perimeter Institute

homogeneous
Euclidean time evolution

inhomogeneous Euclidean time evolution

homogeneous rescaling

inhomogeneous rescaling

*smoothers X_L , X_R , Y_L , Y_R , are required

Conclusions

(3) from this path integral geometric perspective,

MERA is "rescaling without Euclidean time evolution"

joint work (in preparation)

Ash Milsted

Euclidean path integral in flat spacetime

Euclidean path integral in hyperbolic space

MERA = limit of shift without lapse

(only Euclidean time evolution)

(both Euclidean time evolution and rescaling)

(only rescaling, i.e. no Euclidean time evolution)

