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Motivation

tensor network formalism:

projected entangled 
pair state

PEPS

multi-scale entanglement 
renormalization ansatz

MERA

matrix product state
MPS

sparse (efficient) 
representation and 

manipulation of 

many-body 
wavefunctions

|Ψ⟩ =



tensor network formalism:

Euclidean path integral
or

partition function

𝑍 =sparse (efficient) 
representation and 

manipulation of 

Motivation

RG flow



Motivation

tensor network geometry∼

hyperbolic space
(Poincare disk)

HaPPY code MERA

flat space
(flat cylinder)

2d partition 
function on cylinder



Motivation tensor network geometry∼

so what?

• holography

exponential
correlations

𝐶 𝑙 ∼ 𝑒−𝑙/𝜉

𝑆 𝑙 ∼ 𝑐𝑜𝑛𝑠𝑡
constant

entanglement 
entropy

𝐶 𝑙 ∼
1

𝑙𝑝
power-law

correlations

𝑆 𝑙 ∼ log 𝑙

logarithmic
entanglement 

entropy

Ψ𝑖1𝑖2⋯𝑖𝑁

2𝑁 complex 
coefficients

• geometry contains structural information 

|Ψ⟩
𝑁 spins

AdS3/CFT2

Swingle 2009, 2012

MERA = time slice of AdS3

(hyperbolic Disk)

Czech, Lamprou, McCandlish, Sully, 2015-2016

MERA = kinematic space (integral transform)

(de Sitter 𝑑𝑆2)
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• path integral geometry
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(𝜏, 𝑥)
set of coordinates

𝑔𝜇𝜈(𝜏, 𝑥)

metric

𝜏 = 𝜏0

𝑥 = 𝑥0
(𝜏0, 𝑥0)

Manifold

2d manifold ℳ = Euclidean spacetime

ℳ



Manifold -> Discretization

(𝜏, 𝑥)
set of coordinates

𝑔𝜇𝜈(𝜏, 𝑥)

metric

if each tensor is equivalent…

then we lost the metric!

(𝜏0, 𝑥0)

tensor = patch 
of spacetime

2d manifold ℳ = Euclidean spacetime

ℳ



flat spacetime

excess 
angle

curved spacetime

deficit 
angle

tensor       

Manifold -> Discretization -> connectivity

this is NOT what we will do today

=

patch of flat 
spacetime



In this talk we focus instead in two other types of discretizations

(1) scale discretization 

(2) lapse and shift discretization 



(1) scale discretization 

2d topological disk 
is conformally flat

𝑔𝜇𝜈(𝜏, 𝑥) = 𝑒2𝜙 𝜏,𝑥 𝛿𝜇𝜈⇒

we can find 
coordinates 

(𝜏, 𝑥)
such that

𝑥

𝜏

𝜙(𝜏, 𝑥)

− 0 log 2

− 1 log 2

− 2 log 2
continuous
scale factor

e2𝜙(𝜏,𝑥)
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(1) scale discretization 

2d topological disk 
is conformally flat

𝑔𝜇𝜈(𝜏, 𝑥) = 𝑒2𝜙 𝜏,𝑥 𝛿𝜇𝜈⇒

we can find 
coordinates 

(𝜏, 𝑥)
such that

− 0 log 2

− 1 log 2

− 2 log 2

gμν(τ, x) = 22n(τ,x)δμν n ∈ ℤ

region of flat 
geometry

𝑔𝜇𝜈(𝜏, 𝑥) = 12𝛿𝜇𝜈

region of flat 
geometry

𝑔𝜇𝜈(𝜏, 𝑥) =
1

22
𝛿𝜇𝜈

discrete
scale factor

e2𝜙(𝜏,𝑥)



(1) scale discretization 

2d topological disk 
is conformally flat

𝑔𝜇𝜈(𝜏, 𝑥) = 𝑒2𝜙 𝜏,𝑥 𝛿𝜇𝜈⇒

we can find 
coordinates 

(𝜏, 𝑥)
such that

− 0 log 2

− 1 log 2

− 2 log 2

gμν(τ, x) = 22n(τ,x)δμν n ∈ ℤ

𝑥

𝜏



𝑥

𝜏

two types of tensors:

tensor 𝐴
= patch of flat 

spacetime

tensor 𝑤
= glue connecting

regions 
with different

scale factor

𝑤

𝑢

𝑤

actually, …



(2) lapse and shift discretization 

𝑥 = 𝑥1𝑥 = 𝑥0 𝑥 = 𝑥2

Σ

Σ′

shift 𝛽(𝑥)

distance 
in direction 

parallel 
to  Σ

lapse
𝛼(𝑥)

distance 
in direction 

normal 
to  Σ

𝛽(𝑥1)

𝛼(𝑥1)

(𝜏, 𝑥)
set of coordinates

𝑔𝜇𝜈(𝜏, 𝑥)

metric

2d manifold ℳ
= Euclidean spacetime

ℳ

𝜏 = 𝜏0

Σtime 
slice

𝜏 = 𝜏1

Σ′
time 
slice



𝑥 = 𝑥1𝑥 = 𝑥0 𝑥 = 𝑥2

Σ

Σ′

shift 𝛽(𝑥)

distance 
in direction 

parallel 
to  Σ

lapse
𝛼(𝑥)

distance 
in direction 

normal 
to  Σ

𝛽(𝑥1)

𝛼(𝑥1)

Σ

Σ′
lapse 𝛼(𝑥)

without shift

Σ′ shift 𝛽(𝑥)
without lapse



Σ

Σ′
lapse 𝛼(𝑥)

without shift

Σ′ shift 𝛽(𝑥)
without lapse

discrete 
lapse 𝛼(𝑥)

discrete
shift 𝛽(𝑥)

lapse and shift discretization 



• geometry

• path integral geometry

tensor networks as …



(𝜏, 𝑥)
set of coordinates

𝑔𝜇𝜈(𝜏, 𝑥)

metric

2d manifold ℳ = Euclidean spacetime

Manifold + Euclidean path integral

𝑆𝐸 𝜑 =  𝑑𝜏𝑑𝑥 𝑔 𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑

𝑆𝐸 is an Euclidean action

e.g.

𝜑(𝜏, 𝑥)

field
+

ℳ

𝑍 =  𝐷𝜑𝑒−𝑆𝐸[𝜑]

Euclidean path integral
+



geometry path integral geometry

patch of flat
Euclidean 
spacetime

tensor 𝐴 𝑍(𝜑1, 𝜑2, 𝜑3, 𝜑4)

=  𝐷𝜑𝑒−𝑆𝐸[𝜑]  
𝜑1,𝜑2,𝜑3,𝜑4

path integral 
on patch of 

flat Euclidean
spacetime

𝜑1

𝜑3

𝜑4 𝜑2

rescaling of 
coordinates

at fixed time slice

tensors 𝑤, 𝑢

rescaling of 
coordinates
and fields

at fixed time slice

(MERA tensors)



inhomogeneous 
Euclidean time evolution

𝐴

𝑋𝐿 𝑋𝑅

inhomogeneous 
rescaling

𝑤

𝑢𝑌𝐿 𝑌𝑅

homogeneous 
Euclidean time evolution

𝐴

lapse

homogeneous 
rescaling

𝑤

𝑢

shift 

From now on, we focus on lapse & shift representation

Claim: 

we can use tensors 𝐴, 𝑤, 𝑢
to apply geometric gates 

in the Hilbert space 𝑉Σ of a time slice

ℳ

Σ

time 
slice



rest of the talk:  provide evidence for this claim

geometric gates  = conformal transformations

solution: we know the answer for a critical quantum spin chain (= CFT on the lattice)

plan: 

• show that such gates act geometrically on the low energy states  𝑉Σ

inhomogeneous 
Euclidean time evolution

𝐴

𝑋𝐿 𝑋𝑅

inhomogeneous 
rescaling

𝑤

𝑢𝑌𝐿 𝑌𝑅

problem: how do geometric gates act on low energy states?

ℳ
Σtime 

slice

• quantum spin chain (QFT on the lattice)
VΣ

Hilbert 
space



Example: Ising spin chain on 24 sites

𝑒−𝛿𝜏 𝐻transfer matrix

𝐻 =
2𝜋

𝐿
𝐿0 +  𝐿0 −

𝑐

12

𝐸𝛼 =
2𝜋

𝐿
𝜟𝜶 −

𝑐

12

scaling 
dimensions 

𝑒−𝑖𝛿𝑥 𝑃

𝑃 =
2𝜋

𝐿
𝐿0 −  𝐿0

𝑃𝛼 =
2𝜋

𝐿
𝒔𝜶

conformal 
spins

translation

tensor 𝐴

from quantum spin 
Hamiltonian (                        ) or from statistical 

Boltzmann weights  

critical
Ising model        

algorithm𝐻 =  

𝑖

𝜎𝑖
𝑥𝜎𝑖+1

𝑥 + 𝜎𝑖
𝑧



this is not a geometric gate

Example: Ising spin chain on 24 sites

this is a geometric gate

|Ψ𝛼⟩ 𝐺 Ψ𝛼 =  

𝛽

𝐴𝛼𝛽 |Ψ𝛽⟩

low energy
state in 

one tower

low energy
states in 

same tower

geometric 
gate

towers are not mixed by 
geometric/conformal transformations

there are 3 conformal towers



inhomogeneous 
Euclidean time evolution

𝑒−𝛼𝐾

𝐻1 ≡ 𝐿1 +  𝐿−1

𝐻−1 ≡ 𝐿−1 +  𝐿1

𝐾 ≈ 𝑒𝑖𝜃𝐻1 + 𝑒−𝑖𝜃𝐻−1
𝑥

𝜏

|Ψ𝛼⟩

𝐴

𝑋𝐿 𝑋𝑅

smoothers

algorithm



= 𝑒−𝛼𝐾

𝐻1 ≡ 𝐿1 +  𝐿−1

ground state |𝕝⟩ stress tensor |  𝑇⟩ = | 𝐿−2𝕝⟩

energy density |𝜀⟩ global descendant |𝐿−1𝜀⟩

Example: Ising model on 24 sites (12 - 12) 𝐻−1 ≡ 𝐿−1 +  𝐿1

𝐾 ≈ 𝑒𝑖𝜃𝐻1 + 𝑒−𝑖𝜃𝐻−1

𝑥
𝜏



inhomogeneous 
Euclidean time evolution

|Ψ𝛼⟩

𝑒−𝛼𝐾

𝑃1 ≡ 𝐿1 −  𝐿−1

𝑃−1 ≡ 𝐿−1 −  𝐿1

𝐾 ≈ 𝑒𝑖𝜃𝑃1 + 𝑒−𝑖𝜃𝑃−1

𝑥
𝑠

tensor 
network
equalities

smoothers

𝑌𝐿 𝑌𝑅

TNR
algorithm

𝑤 𝑢

MERA
tensors

𝐴

Euclidean 
path 

integral



= 𝑒−𝛼𝐾

𝑃1 ≡ 𝐿1 −  𝐿−1

𝑃−1 ≡ 𝐿−1 −  𝐿1

𝐾 ≈ 𝑒𝑖𝜃𝑃1 + 𝑒−𝑖𝜃𝑃−1

ground state |𝕝⟩ stress tensor   𝑇 = | 𝐿−2𝕝⟩

energy density |𝜀⟩ global descendant |𝐿−1𝜀⟩

𝑥
𝑠
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Conclusions

(1) tensor networks can be used to represent 

(2) tensor networks can implement geometric transformations
(in the Hilbert space of a quantum spin chain) corresponding to

homogeneous 
Euclidean time evolution

homogeneous 
rescaling

𝑤

𝑢

𝐴

inhomogeneous 
Euclidean time evolution

inhomogeneous 
rescaling

𝑤

𝑢

𝐴

𝑋𝐿

𝑌𝐿

𝑋𝑅

𝑌𝑅

*smoothers 𝑋𝐿 , 𝑋𝑅 , 𝑌𝐿, 𝑌𝑅, are required 

Euclidean path integrals on curved spacetime geometry

joint work 
(in preparation) 



Conclusions

(3) from this path integral geometric perspective, 

𝑒−𝑖 𝐷

change
of scale

Euclidean path integral
in hyperbolic space

(both Euclidean time evolution and rescaling)

𝑒− 𝐻

Euclidean 
time 

evolution

Euclidean path integral
in flat spacetime

(only Euclidean time evolution)

limit of shift without lapse 

(only rescaling,

MERA = 

i.e. no Euclidean 
time evolution)

MERA is “rescaling without Euclidean time evolution”

joint work 
(in preparation) 



THANKS!


