Available Positions

Dr. Poul Jessen, University of Arizona (ITP 9-13-01)
Quantum Control in Optical Lattices: First Steps Toward Quantum Logic With Trapped Atoms.

- Quantum Control in Optical Double Wells
- Quantum Logic in Optical Lattices
- Measuring a spin density matrix
- Quantum State Reconstruction
- General Ideas
- Coherent tunneling & "Schrödinger Cats"
- Quantum vs. classical physics (chaos)

Postdoc Positions

John Groombridge
Gaylin Bromer
Paul Adams
Shahid Ghose
Jian Dehesh

Department of Physics
University of New Mexico

Optical Sciences Center
The University of Arizona

OPTICAL SCIENCES CENTER

Poul Jessen
Quantum Control in Optical Lattices: First Steps

Can we perform entangling operations?

Quantum gates

Advantages
- Weak coupling to environment
- Good neutral atom traps
- Laser cooling
- Quantum control
- Much like ion trap qubits

Disadvantages
- Weak coupling between atoms

Neutral Atom Quantum Logic

Bring qubits together

Encoding qubits

Encoding qubits with neutral atoms

Quantum Information Processing
Dr. Poul Jessen, University of Arizona (ITP 9-13-01) Quantum Control in Optical Lattices: First Steps

Good qubit encoding

- scalar potential + effective magnetic field

\[\frac{1}{2} \left((x \cdot \mathbf{E})_0 \right)_0 - \frac{1}{2} \left((x \cdot \mathbf{B})_0 \right) = (x \cdot \mathbf{f}) \]

Optical Potential = \(-d \cdot \mathbf{E}(x) \)

Light Shift of Alkali Atoms

Neutral Atom Traps

\[\text{Neutral trap} \]

\[\text{Ion trap} \]

\[\text{Comparison} \]

\[\text{Magnetic dipole} \]

\[\text{Electric dipole (optical)} \]
Preparing a Quantum State in the Lab

Optical Lattice Traps

S. E. Harnett et al., PRX 9, 041029 (2019)
Moving qubits in 3D lattices

Design Lattices
Broader Perspective

Quantum state preparation, control & measurement in complex quantum systems
- Fundamental interest
- Resource for new technology

Paradigm
quantum coherent evolution & control
- micro- to mesoscopic
 - action $x_0p_0 = 0.1-20 \hbar$
- complex:
 - motion & spin entangled
 - classical chaos
- powerfull toolbox:
 - state preparation, control & measurement

Optical Double-Well Potentials

Spin-1/2 atom 1D lin–θ–lin lattice

$B_{\text{loc}} \propto \sigma_\theta \Rightarrow No coupling!$

External magnetic field

$B_c \neq 0$

$B_\perp \neq 0$
Coherent Tunneling of Spinor Wavepackets

Preparation

- Tunneling \leftrightarrow precession of spin
- entangled spin & space degrees of freedom

Rabi oscillation

- Spin-1/2 system coupled to harmonic oscillator
- Jaynes-Cummings or spin-boson problem

Real (Cesium) Atoms

1D lin–80°–lin

$U(z)$

Cs ($F = 4$), $\Delta >> \Delta_{HFS}$

- much like simple atom -
Experiment

Haycock et al., PRL 85, 3365 (2000)

1D in-plane lattice

"Zeeman microscope"

- precool (laser cooling)
 - load into optical lattice
 \(\Delta = -300 \text{C} \)
 - select ground state
 - pump into \(m = 4 \) (left well)

Stern-Gerlach analysis

TOF signal (arb. units)

\[\langle \psi| \hat{A} |\psi \rangle \]

Detection

Intersecting spinor wavepackets

\[\Psi \sim 5 \times 10^{-2} \text{cm}^{-1} \]

Characteristic length

\[\Psi_{\text{Kohn}} \sim 3 \text{nm} \]

Schrodinger quantum coherence

mesoscopic

Typical bandstructure

\[\langle \psi| \hat{A} |\psi \rangle \]

Localised states

Bloch spinors

\[\psi \sim 5 \times 10^{-2} \text{cm}^{-1} \]

\[\Psi_{\text{Kohn}} \sim 3 \text{nm} \]

D. Poul Jessen, University of Arizona (ITP 9-13-01) Quantum Control in Optical Lattices: First Steps
Tunneling Rabi Oscillations

- Coherent dynamics
- Dephasing due to inhomogeneity

\[\tau_{\text{exc}} = 303 \, \mu\text{s} \]
\[\tau_{\text{damp}} = 335 \, \mu\text{s} \]

Average Magnetization

\[\langle m \rangle \]

\[t (\mu\text{s}) \]

Center-of-Mass

(Theory)

Magnetic Populations

(Theory)

(Experiment)

\[\rho(k,z) \]

\[\pi_m \]

- excellent quantitative agreement
- characteristic

\[\Omega_R = \sqrt{\Omega_x^2 + \Omega_z^2} \]

dependence of 2-level system

Tunneling Rabi frequency: theory vs. experiment

- vs. depth

\[\Omega_R / E_R \]

\[U_1 / E_R \]

- no free parameters
- 4% underestimate of depth

- vs. \(B_x \)

\[\Omega_R / E_R \]

\[B_x (\text{mG}) \]

- vs. \(B_z \)

\[\Omega_R / E_R \]

\[-B_z \text{ (mG)} \]
Quantum vs. Classical Dynamics

- Observables diverge rapidly
- Classical trajectories
- Chaos

Is this Quantum Tunneling?

- Above barrier motion?
- Spin state cannot follow changing polarization

Quantum Picture

Classical Picture

Particle w/magnetic moment in trap + magnetic field
\(\vec{\mu} \) cannot follow changes in \(B(z) \)
Quantum State Reconstruction

Motivation: Better tools to track evolution of spinor wavepackets in optical lattices can now allow for measuring full density matrix of trapped atomic systems. Magnetic populations alone do not distinguish this.

Solution: Explicit knowledge of spin coherence in atomic wavepackets could be used as a meter for center-of-mass motion.

- State reconstruction in analogy to light fields.
- Mössbauer molecular vibrations.
- Motion of trapped ions coupled via spins.
- NMR photon pairs.

Quantum Feedback:
- Optimal control?
- Heisenberg?
- How to implement it?
- Current diagnostic adequate?
- Experimental signature?
- How to study quantum/classical transition in the laboratory?
- By continuous measurement?
- By adding decoherence?
- By recovering classical dynamics?

Where to go with this?

Quantum/classical transition in chaotic systems an outstanding issue.
Spin-1/2: density matrix constraints 3 indep. real numbers
\[\rho = \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix}, \quad Tr \rho = 1, \quad \rho = \rho^\dagger \]
\[\rho_{11}, \quad \text{Re}[\rho_{12}], \quad \text{Im}[\rho_{12}] \]

Stern-Gerlach measurement:

\[\hat{S}_z \rightarrow \rho_{11}, \rho_{22} \]
\[\hat{S}_x \rightarrow \text{Re}[\rho_{12}] \]
\[\hat{S}_y \rightarrow \text{Im}[\rho_{12}] \]

Note: can equally well rotate system 3 ways & measure \(\hat{S}_z \).

Large Angular Momenta

Cesium: \(F = 4 \) ground hyperfine manifold

Measure: \(\hat{F}_z \) (2F+1 = 9 populations)

use 4F+1 = 17 geometrical rotations

Each rotation:

\[\rho^{(\theta, \varphi)} = \hat{R} \rho \hat{R}^\dagger \]
\[\hat{R} = \hat{R}(\theta, \varphi) \]
\[\rho_{ii} = \sum_{j,k} R_{ij} R_{ik} \rho_{jk} \]

4F+1 rotations \(\Rightarrow \) linear system is invertible
Stern-Gerlach Analysis of Laser-Cooled Atoms

well separated arrival times

Quantum State Reconstruction

Test with known input states
(Cs $6S_{1/2}(F=4)$ ground state)
What does it mean when this Wigner function is negative?

A state that is not quasi-classical

Measured Wigner Function for $|\phi, 0\rangle$

Precession of a Spin-Coherent State

Angular Momentum Wigner Functions

$A_{\theta}^{\phi}(\theta, \phi)$; Dzurak & Sorensen (1994)
Outlook

Quantum Information Science
Based on laser traps & lattices
- Ties into other "quantum technologies"
- Experimental capabilities
- Will continue to develop
- Clean laboratory realization
- Very rich physical system

Quantum State Reconstruction
Near maximally mixed state (3D optical molasses)