Outline

Atoms in touch with standing light fields

- Geometrical optics: atom lithography
- Optics with cold atoms: integrated optics, Bragg diffraction
- Backaction on light: slow light in BECs
- Collective effects: Matter wave amplification
- Future
Optics with Atoms and Light (ITP Quantum Info Program 10/15/01)

Light and Matter

- Propagation of a Photon through a Medium
- Propagation of a Photon through a Vacuum

Matter and light

- Induced dipole interaction
- Harmonic osc. model

\[
\hat{H} = -\hat{d} \cdot \mathbf{E} \\
V_{pot} = -\alpha_{dc} E^2 / 2 < 0
\]

Greek:

- \(\omega < \omega_0 \):
 \[\hat{d} \cos \alpha \]
- \(\omega > \omega_0 \):
 \[\hat{d} \cos \alpha \]

- High field seekers
- Low field seekers

See dispersion theory for light.

Dr. Tilman Pfau, University of Stuttgart
Atom lithography

G. Timp et al. PRL 69 1636 (1992)
2D structures: hexagonal

light field configuration

red detuning blue detuning

a = \frac{2}{3}\lambda = 284 \text{ nm}

long range order

various structures

Intensity gradients \(\frac{\lambda}{2} \) limit
Polarization gradients

- \(\sigma_- \) and \(\sigma_+ \) for \(J=1/2 \to J'=3/2 \) atom
- \(\sigma_- \) and \(\sigma_+ \) for \(J=2 \to J'=3 \) atom

Nano structures

- DRAM, Full pitch: 360 nm (1999)
- 260 nm (2002)
- 200 nm (2005)
- 140 nm (2008)
- 100 nm (2011)
- 70 nm

1. D. lithography (J. Guptt et al., PRL 76, 4689 (1996))
2. D. lithography (T. Neubauer et al., Proceedings MNE '08)
Unconventional application

light mask is selective
structured doping
possible application:
photonic crystals

SEM AES Analysis

Chromium map by AES
20nm etching, probe volume 20nm x 2nm

In coll. with
Dr. E. Nold FZ Karlsruhe
Th. Schulze et al.
APL, 78, 1781 (2001)
New optical materials?

Outline

Atoms in touch with standing light fields

- Geometrical optics: atom lithography
- Optics with cold atoms: integrated optics, Bragg diffraction
- Backaction on light: slow light in BECs
- Collective effects: Matter wave amplification
- Future
integrated atom optics

Setup
Cold atoms approaching a surface

\[\Delta = 500 \text{ MHz} \]
\[I = \frac{P}{(6 \text{ mm}^2)} \]

Ar*: Loading by optical pumping

Ar*

Level scheme:

\[|a> \]
\[|g> \]

\[\lambda_{\text{th}} \]

reflection

pump

slow atoms

trap beam
Linear wave guide & Beam shutter

(Top view)

Waveguide potential

Shutter

Cyl. focussed laser forms linear waveguide

Shutter position

1 mm

Linear waveguide on surface

(Top view)

Waveguide potential

Shutter

Red detuned cyl. beam $\delta\lambda=1.2$ nm forms linear waveguide

Load for 200 ms

& open shutter

3 mm

Total time 35 msec
cw integrated circuit

local ev. attraction field
red detuned

parallel:

~ 30% in first well
i.e. 820 nm from surface

1D surface lattice

steady state with point source in lattice

Dr. Tilman Pfau, University of Stuttgart
Outline

Atoms in touch with standing light fields

- Geometrical optics: atom lithography
- Optics with cold atoms: integrated optics, Bragg diffraction
- Backaction on light: slow light in BECs
- Collective effects: Matter wave amplification
- Future
Split a condensate

Laser beam

A giant matter wave interferes

40 msec time of flight

Bragg diffraction

\[p_f = p_i + G \]

\[G = 2hk \]
Bragg diffraction

\[p_f = p_i + G \]

\[G = 2\hbar k \]

Matter waves in touch with light waves

\[\Delta p = 2\hbar k \]

\[\Delta E = \frac{(2\hbar k)^2}{2m} \]
Bragg resonance

\[
\omega + 4 \omega_{\text{rec}}
\]

\[\omega\]

Laser beam

Time of flight

Bragg scattering as 4WM

\[|2\hbar k\rangle\]

\[|0\hbar k\rangle\]

\[\Omega: \text{Two-photon Rabi-frequency}\]

\[\Gamma: \text{Bragg linewidth}\]

For \(\Gamma \gg \Omega\): linear gain!
Outline

Atoms in touch with standing light fields

Geometrical optics:
atom lithography

Optics with cold atoms:
integrated optics
Bragg diffraction

Backaction on light:
slow light in BECs

Collective effects:
Matter wave amplification

Future

Slow group velocity

\[v_g = \frac{c}{\frac{d}{d\omega} (n(\omega) \omega)} \]

\[\approx \frac{c}{\frac{dn}{d\omega}} \]

\[= \frac{\lambda}{dn} \Gamma_{\text{Bragg}} \propto \frac{\Gamma_{\text{Bragg}}}{\ln(G)} \]
Outline

Atoms in touch with standing light fields

- Geometrical optics: atom lithography
- Optics with cold atoms: integrated optics, Bragg diffraction
- Backaction on light: slow light in BECs
- Collective effects: Matter wave amplification
- Future

Slow group velocities

\[
\Omega < \Gamma; \\
\text{Delay } \approx 20 \mu \text{sec} \\
\text{Size } \approx 20 \mu \text{m} \\
\text{Group velocity } \approx 1 \text{m/sec}
\]

Gain for matter?

Can’t create atoms like photons

reservoir

N_{in} \quad N_{in} \rightarrow N_{out} > N_{in}

mechanism: light scattering

Matter wave amplification

input atoms

BEC
Matter wave amplification

Pump light

BEC

input atoms

Total gain

Gain: 30
Phase coherence

\[\phi_{\text{out}} = \phi_{\text{in}} ? \]

Interference experiment

Ramsey interferometer

- Pulse 1: generate seed pulse
- Pulse 3: generate reference pulse

\[
\begin{align*}
\text{N/N}_0 & = f(\text{Phase}/\pi) \\
\text{N} & = \text{Number of atoms} \\
\text{N}_0 & = \text{Number of atoms at equilibrium} \\
\text{Phase} & = \phi
\end{align*}
\]
Weak signal in one arm

Phase-coherent amplification

Pulse 1: generate seed pulse
Pulse 2: amplify
Pulse 3: generate reference pulse
Active atom interferometer

Two-pulse interferometer with phase-coherent amplification in one arm

Atom laser vs. Amplifier?

Compare: injection locked lasers

Related work at University of Tokyo
Outline

Atoms in touch with standing light fields

Geometrical optics: atom lithography
Optics with cold atoms: integrated optics
Bragg diffraction
Backaction on light: slow light in BECs
Collective effects: Matter wave amplification

Future

Quantum gases in lattices

perfect lattice in 1D, 2D, 3D
@T ~ 0K
few two-level atoms per lattice cite

Solid state physics
Cold collisions
Quantum optics
Mott Insulator transition

"Little do we reliably know about the Mott transition, and we are far from a complete understanding of the Metal-insulator transition due to electron-electron interactions."

Questions:
- Groundstate?
- Phasediagram?
- Dimensional crossover?
- Elementary excitations?
- Dynamics?

\[
|\psi_{\text{out}}\rangle = \left[\frac{1}{\sqrt{2}} (|\psi_3\rangle + |\psi_4\rangle)\right]^N
\]

Nonclassical states

|\psi_{\text{in}}\rangle = |\psi_1\rangle^N

No interaction

50/50 beamsplitter

Repulsive interaction

\[
|\psi_{\text{out}}\rangle = |\psi_3\rangle^{N/2} + |\psi_4\rangle^{N/2}
\]

Attractive interaction

\[
|\psi_{\text{out}}\rangle = \frac{1}{\sqrt{2}} (|\psi_3\rangle^N + |\psi_4\rangle^N)
\]

Fisher et al., PRB, 40 546 (1989)
Tunable atom-atom interaction

Feshbach resonances:
Change molecular potential by external fields

Dipole dipole interaction

vectorial potential in the polarized case:

\[V(r, \alpha) = \frac{\mu_0 \mu^2}{4\pi} \frac{1 - 3\cos^2 \alpha}{r^3} \]

\[\sigma \sim \mu^4 \quad \text{e.g.} \quad \text{Cr (}\mu = 6 \, \mu_\text{B}) \]

Rydberg atoms
Molecules

stability and shape of the condensate?
Elementary excitations
Spinor physics
Super solids?
Dipole blockade
Quantum gates
Conclusion:

Light waves meet matter waves

- **Lithography:** sub 100 nm structures
 - structured doping

- **Integrated atom optics**

- **Optical properties of cold matter**
 - $v_g = 1 \text{ m/s}$

- **Matter wave amplification:**
 - active atom interferometer

The Team @ KN

- **Lithography:**
 - B. Brezger
 - Th. Schulze
 - D. Jürgens
 - M. Oberthaler
 - T. Mütther

- **Cold Cr atoms:**
 - J. Stuhler
 - P.O. Schmidt
 - S. Hensler
 - J. Werner

- **Integrated atom optics**
 - D. Schneble
 - Th. Anker
 - M. Hasuo

- **LS Mlynek, University of Konstanz**
The team @ MIT

- **Light scattering from BECs**
 - S. Inouye
 - A. Görlitz
 - D. Stamper-Kurn
 - T. Gustavson
 - S. Gupta
 - A. Chikkatur
 - D.E. Pritchard
 - W. Ketterle

- **BEC group @ MIT**

Now in...

- **More performance...**
 - A. Görlitz
 - Y. Ovchinnikov
 - J. Schoser
 - R. Löw
 - A. Grabowski
 - A. Batär
 - P. Schmidt
 - S. Hensler
 - J. Werner

- **5. Physikalisches Institut**
 - Th. Binhammer
 - R. Heidemann
 - A. Griesmayer
 - V. Schweikhard
 - S. Kroboth