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Nuclear spins are (almost)
everywhere...

NV centers in diamond Quantum dots




Coherence
Problem: One spin sees many

N ~ 10°

nuclei

WAC and J. Baugh, "Nuclear spins in nanostructures',
Phys. Stat. Solidi B (2009)



Free-induction vs. Echoes

Free-induction decay -
approximate error rate?:
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Free-induction vs. Echoes

Free-induction decay -
approximate error rate?:
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In general, even for a single spin: 15, "~ £ T,



Hyperfine Hamiltonian

Electron Zeeman e/nergy A= zk: Ak

Coupling to nuclear field




Hyperfine Hamiltonian
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Electron Zeeman energy

Coupling to nuclear field
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Hyperfine Hamiltonian
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Coupling to nuclear field
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Nuclear-spin bath preparation
B

F/h = (Sz), X e~ (t/7) T~ NS

Ah.|

measurement

- >/h = (Sz); X el

(narrowed state)

Theory: WAC and Loss, PRB (2004), Klauser, WAC and Loss, PRB (2006,2008),
Stepanenko et al., PRL (2006), Giedke et al., PRA (2006),
Ribeiro and Burkard, PRL (2009),

Expt.:  Greilich et al., Science (2006), (2007), Reilly et al., Science (2008),
Xu et al., Nature (2009), Vink et al., Nat. Phys. (2009), Latta et al., Nat. Phys. (2009)



After Narrowing...

Dynamics in nuclear-spin system lead to decay

Beg ~ B+ By (1)

(Sz); X et/ T2



FREYSICAL EYDEW VOLUME 123, NIMBEER 4 FEBEUARY 1. 1043

Spectral Diffusion Decay in Spin Resonance Experiments
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maotion,? there is hitile hope of real progres in thil
direction on such immensely complicated gueitions as
spectral diffuzion,
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Not an 'easy’ problem!



Nuclear-spin dynamics
D. Klauser, WAC, D. Loss, PRB (2008)

Short time:

TCN%Nlo—ﬁs Taiff 2, 1 — 10

(Nuclear correlation time) (Dipolar spin diffusion)



Mean and variance
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Free-induction decay: history

Khaetskii, Loss, Glazman, PRL (2002), PRB (2003)
WAC and Loss, PRB (2004)

Exact solution for p=1,
t / Generalized Master Equation for p<1.




Free-induction decay: history

Equation-of-motion method.

~ t Deng and Hu, PRB (2006), (2008)
b N




Free-induction decay: history

N t Effective Hamiltonian, pair correlation approximation.
<Sw> - T T T l‘N (;})zi Yao, Liu, Sham, PRB (2006), NJP (2007)




Free-induction decay: history

Effective Hamiltonian,
Born-Markov approximation.

_ WAC, Fischer, Loss, PRB (2008)
ST
< [~ @)%




Free-induction decay: history

Effective Hamiltonian,
High-order resummation, low b-field.

Cywinski, Witzel, Das Sarma, PRL (2009), PRB (2009)




Free-induction decay: history

Generalized Master Equation, Higher order.
WAC, Fischer, Loss, arXiv:0911.4149




Free-induction decay: history

WAC, Fischer, Loss, arXiv:0911.4149
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Envelope modulations




Free-induction decay: history

WAC, Fischer, Loss, arXiv:0911.4149

Non-monotonic
decay rate for p>1
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Envelope modulations




Solve the problem in two ways:

(0), = (¥(0)] " O™ [1(0))
H = Ho + Vi

(1) Effective Hamiltonian
H=e¢"He ® =Hy+ Veg + O/M

neglected
3(0)) = 5 [4(0)) = [4(0)) + O47)

A
Expand in powers of Veg ~ O (Vf?) ~ O <3>

(2) Work directly with the 'real’ Hamiltonian

Expand in powers of Vg



Initial conditions

Fast initialization:
p(0) = ps(0) ® pr(0)
Sufficient condition: Tinit 5 1/A ~ 50 ps

Narrowed bath:

p1(0) = sz‘z‘ 1) (n w|n;) = wp [n;)



Generalized Master Equation

(GME)
Coherence factor: x; = 2 UwntAW) (S+)y
t ~
GME: Zi?t — —iAwa:t — ’L/ dt’Z(t — t’)azt/
0
Lamb shift: Aw = —Re/ dt>(t)
0

1

Markov: T —Im/O dt3i(t) zs ~ zoe t/ T2



Direct expansion vs. effective H
d.(s) = e 5ty
@= ()
Expanding in Vi Expanding in Vg ~ Vi
5o 5@ 45O 40 (V) Ser = St + O (Vi)

Aw~ —ReX® (s =07) = O(VZ)| Awer = —ReS2) (s = 0) = O(V)

1 ~ 1 ~
T ~ —Im2(4)(8 =07") T ~ —ImEgg (s=0")
For one isotope: >4 = Sgﬁ) (with 1/N corrections)

L . o
Multiple isotopes: ~ £® % £&)



Non-monotonic
decoherence Rate!
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Full non-Markovian
time dependence
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Exponential decay or
sustained oscillations

Power-law decay

See also, e.g., DiVincenzo and Loss, PRB (2005) (spin-boson model)



ap=- Envelope modulations!
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Non-pe

rturbative regime b~A
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Biexponential decay, strong modulations

V\

Higher-order corrections needed



Conclusions

New envelope modulations of the free-induction
decay envelope (distinct from ESEEM)

In general, non-monotonic dependence of 1/T2
on magnetic field (reaches a maximum!)

Neither of these result is recovered correctly from
the leading-order effective Hamiltonian.
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