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Unexpected proofs: Complex numbers

How to prove

cos(x + y) = cos(x) cos(y) − sin(x) sin(y) ?

Go to complex numbers!

eix = cos(x) + i sin(x)

cos(x + y) = ℜ(ei(x+y)) = ℜ(eixeiy)

= ℜ(cos(x) cos(y) − sin(x) sin(y)+
i cos(x) sin(y) + i sin(x) cos(y))
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Theorem: Every graph (V,E) with m edges contains a
bipartite subgraph with m/2 edges

Proof:

1. pick vertex-set T ⊆ V at random

2. set Xij = 1 if edge (i, j) crosses T (either i ∈ T or j ∈ T )

3. Exp




∑

(i,j)∈E

Xij
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(i,j)∈E

Exp[Xij ]
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Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V,E) with m edges contains a
bipartite subgraph with m/2 edges

Proof:

1. pick vertex-set T ⊆ V at random

2. set Xij = 1 if edge (i, j) crosses T (either i ∈ T or j ∈ T )

3. Exp




∑

(i,j)∈E

Xij



 =
∑

(i,j)∈E

Exp[Xij ]
︸ ︷︷ ︸

=1/2

= m/2

4. but then there is a T with at least m/2 crossing edges!
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Unexpected proofs: Quantum

We all know and love quantum information &
computation for its algorithms, crypto-schemes, weird
communication protocols, non-local effects, etc.

This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

Bonus: no need to implement anything in the lab :-)

We’ll focus on two sets of examples:

1. Using quantum information theory
2. Using the connections between quantum algorithms

and polynomials

Based on forthcoming survey with Andy Drucker
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Example: Locally decodable codes (KdW03)

Error-correcting code: C : {0, 1}n → {0, 1}m, m ≥ n

decoding: D(w) = x if w is “close” to C(x)

Inefficient if you only want to decode a small part of x

C is k-query locally decodable if there is a decoder D
that only looks at k bits of w, and D(w, i) = xi (w.h.p.)

Hard question: optimal tradeoff between k and m?

Using quantum, we can show: k = 2 ⇒ m = 2Ω(n)

Still the only superpolynomial bound known for LDCs
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Exponential bound on 2-query LDC

Given C : {0, 1}n → {0, 1}m, 2-query classical decoder

Can replace 2 classical queries by 1 quantum query!

Some massaging: make the quantum query uniform

Consider query-result |φx〉 =
1√
m

m∑

j=1

(−1)C(x)j |j〉

|φx〉 has log m qubits, but allows us to predict each of
the encoded bits x1, . . . , xn

Nayak’s random access code bound: log m ≥ Ω(n)

⇒ 2-query LDCs need exponential length
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Other examples using q info theory

Lower bound for communication complexity
of inner product (CDNT’98)

This uses Holevo’s theorem

Lower bounds on rigidity of Hadamard matrix (dW’06)

This uses the fact (due to Nayak) that encoding
of n objects in a d-dimensional quantum system
has average recovery probability ≤ d/n
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Using connections with polynomials

Classical Applications of Quantum Information Theory – p. 9/17



Quantum query algorithms

Classical Applications of Quantum Information Theory – p. 10/17



Quantum query algorithms

T -query quantum algorithm interleaves fixed unitaries
with queries to its input x ∈ {0, 1}n

Classical Applications of Quantum Information Theory – p. 10/17



Quantum query algorithms

T -query quantum algorithm interleaves fixed unitaries
with queries to its input x ∈ {0, 1}n

O : |i, b〉 7→ |i, b ⊕ xi〉

Classical Applications of Quantum Information Theory – p. 10/17



Quantum query algorithms

T -query quantum algorithm interleaves fixed unitaries
with queries to its input x ∈ {0, 1}n

O : |i, b〉 7→ |i, b ⊕ xi〉

A final measurement determines output

Classical Applications of Quantum Information Theory – p. 10/17



Quantum query algorithms

T -query quantum algorithm interleaves fixed unitaries
with queries to its input x ∈ {0, 1}n

O : |i, b〉 7→ |i, b ⊕ xi〉

A final measurement determines output

Most known quantum algorithms function in this setting:

Classical Applications of Quantum Information Theory – p. 10/17



Quantum query algorithms

T -query quantum algorithm interleaves fixed unitaries
with queries to its input x ∈ {0, 1}n

O : |i, b〉 7→ |i, b ⊕ xi〉

A final measurement determines output

Most known quantum algorithms function in this setting:

Deutsch-Jozsa, Simon, Shor, Grover, random walks

Classical Applications of Quantum Information Theory – p. 10/17



Quantum query algorithms

T -query quantum algorithm interleaves fixed unitaries
with queries to its input x ∈ {0, 1}n

O : |i, b〉 7→ |i, b ⊕ xi〉

A final measurement determines output

Most known quantum algorithms function in this setting:

Deutsch-Jozsa, Simon, Shor, Grover, random walks

Connection with polynomials (BBCMW 98):

Classical Applications of Quantum Information Theory – p. 10/17



Quantum query algorithms

T -query quantum algorithm interleaves fixed unitaries
with queries to its input x ∈ {0, 1}n

O : |i, b〉 7→ |i, b ⊕ xi〉

A final measurement determines output

Most known quantum algorithms function in this setting:

Deutsch-Jozsa, Simon, Shor, Grover, random walks

Connection with polynomials (BBCMW 98):

Pr[algo outputs 1] is polynomial P (x) of degree≤ 2T
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Quantum lower bounds by polynomials

Pr[algo outputs 1] is polynomial P (x) of degree≤ 2T

Because amplitudes of final state have degree≤ T :
1. At the start: amplitudes are constants (degree 0)
2. Query increases degree by 1:

α|i, 0〉+β|i, 1〉 7→ (α(1 − xi) + βxi)|i, 0〉+(αxi + β(1 − xi))|i, 1〉
3. Fixed unitaries don’t change degree

If the algorithm computes f : {0, 1}n → {0, 1},
then P (x) ≈ f(x) for all x ∈ {0, 1}n

Lower bounds on degrees of approximating polynomials
give lower bounds on quantum query complexity

Instead of a lower bound method, we can also
view this as a method for constructing polynomials!
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Example: ε-approximations for symmetric f

Sherstov (08) solved a problem in probability theory
using the minimal degree of ε-approximating
polynomials for symmetric Boolean functions

Symmetric f : {0, 1}n → {0, 1} only depends on
Hamming weight |x|. Examples: OR, Parity, Majority

W.l.o.g.: Assume f(x) = 1 if x has weight |x| ≥ t

Sherstov used Chebyshev polynomials to construct
ε-error polynomials of degree

O
(√

tn +
√

n log(1/ε)
)

log n
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O
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Simple proof for optimal degree bound (dW 08)

O
(√

tn +
√

n log(1/ε)
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Ingredients:

“exact Grover”: if there are exactly i 1s, we can find
one with certainty using π

4

√
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Example: ε-approximations for symmetric f

We can do better using quantum algorithms

Simple proof for optimal degree bound (dW 08)

O
(√

tn +
√

n log(1/ε)
)

Ingredients:

“exact Grover”: if there are exactly i 1s, we can find
one with certainty using π

4

√

n/i queries

“ε-error Grover”: we can find one with error ε using
O(

√

n log(1/ε)) queries (BCWZ 99)
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ε-approximations for symmetric f (cntd)

Goal: compute symmetric f : {0, 1}n → {0, 1}, error ≤ ε

Quantum algorithm:
1. Run exact Grover t − 1 times, for

|x| = t − 1, t − 2, . . . , 3, 2, 1
Note: if |x| < t, then this finds all 1s with certainty
Queries:

∑
t−1

i=1

π

4

√

n/i = O(
√

tn)
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4

√

n/i = O(
√

tn)

2. Run ε-error Grover to try to find another 1
Queries: O(

√

n log(1/ε))

3. If step 2 found a 1, conclude |x| ≥ t and output 1;
else assume all 1s have been found and output f(x)

ε-error algorithm using O(
√

tn +
√

n log(1/ε)) queries
⇒ ε-error polynomial of degree O(

√
tn +

√

n log(1/ε))
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Connections polynomials ↔ q algos

Polynomials of different types are prominent in
complexity theory, communication, learning theory, . . .

Approximate polynomials ↔ bounded-error q algos

Sign-representing polynmls ↔ unbounded-error q algos

Robust polynomials ↔ robust quantum algorithms

Rational polynomials ↔ q algos with postselection

Pair of polynomials p, q such that
p(x)

q(x)
≈ f(x) for all x

Related to Aaronson’s PostBQP = PP

Classical Applications of Quantum Information Theory – p. 15/17



Applications of these connections

Classical Applications of Quantum Information Theory – p. 16/17



Applications of these connections

PP is closed under intersection (Aaronson’04)

Classical Applications of Quantum Information Theory – p. 16/17



Applications of these connections

PP is closed under intersection (Aaronson’04)

Tight upper bounds on sign-degree of read-once
formulas (ACRSZ’07, Lee’09)

Classical Applications of Quantum Information Theory – p. 16/17



Applications of these connections

PP is closed under intersection (Aaronson’04)

Tight upper bounds on sign-degree of read-once
formulas (ACRSZ’07, Lee’09)

The only way we know how to construct robust
polynomials for functions such as Parity (BNRW’05)

Classical Applications of Quantum Information Theory – p. 16/17



Applications of these connections

PP is closed under intersection (Aaronson’04)

Tight upper bounds on sign-degree of read-once
formulas (ACRSZ’07, Lee’09)

The only way we know how to construct robust
polynomials for functions such as Parity (BNRW’05)

Jackson’s Theorem in approximation theory
(Drucker& dW’09)

Classical Applications of Quantum Information Theory – p. 16/17



Applications of these connections

PP is closed under intersection (Aaronson’04)

Tight upper bounds on sign-degree of read-once
formulas (ACRSZ’07, Lee’09)

The only way we know how to construct robust
polynomials for functions such as Parity (BNRW’05)

Jackson’s Theorem in approximation theory
(Drucker& dW’09)

Separating communication complexity classes PP and
UPP (BVW’07)

Classical Applications of Quantum Information Theory – p. 16/17



Applications of these connections

PP is closed under intersection (Aaronson’04)

Tight upper bounds on sign-degree of read-once
formulas (ACRSZ’07, Lee’09)

The only way we know how to construct robust
polynomials for functions such as Parity (BNRW’05)

Jackson’s Theorem in approximation theory
(Drucker& dW’09)

Separating communication complexity classes PP and
UPP (BVW’07), using Razborov’s conversion from
quantum communication protocols to polynomials
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Summary

Quantum proofs for classical theorems

Two sets of examples:

1. using quantum information theory

2. using connections with polynomials

There are other examples (see our survey)

Not yet the probabilistic method on steroids, but

this could be the beginning of a beautiful proof method
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