Classical Applications of Quantum Information Theory

Ronald de Wolf

Centrum Wiskunde \& Informatica

Amsterdam

Unexpected proofs: Complex numbers

Unexpected proofs: Complex numbers

How to prove

$$
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) ?
$$

Unexpected proofs: Complex numbers

How to prove
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) ?$

Go to complex numbers!
$e^{i x}=\cos (x)+i \sin (x)$

Unexpected proofs: Complex numbers

How to prove
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) ?$

Go to complex numbers!
$e^{i x}=\cos (x)+i \sin (x)$
$\cos (x+y)$

Unexpected proofs: Complex numbers

How to prove
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) ?$

Go to complex numbers!

$$
\begin{aligned}
& e^{i x}=\cos (x)+i \sin (x) \\
& \cos (x+y)=\Re\left(e^{i(x+y)}\right)
\end{aligned}
$$

Unexpected proofs: Complex numbers

How to prove
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) ?$

Go to complex numbers!

$$
\begin{aligned}
& e^{i x}=\cos (x)+i \sin (x) \\
& \cos (x+y)=\Re\left(e^{i(x+y)}\right)=\Re\left(e^{i x} e^{i y}\right)
\end{aligned}
$$

Unexpected proofs: Complex numbers

How to prove
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) ?$

Go to complex numbers!
$e^{i x}=\cos (x)+i \sin (x)$
$\cos (x+y)=\Re\left(e^{i(x+y)}\right)=\Re\left(e^{i x} e^{i y}\right)$
$=\Re($

Unexpected proofs: Complex numbers

How to prove
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) ?$

Go to complex numbers!
$e^{i x}=\cos (x)+i \sin (x)$
$\cos (x+y)=\Re\left(e^{i(x+y)}\right)=\Re\left(e^{i x} e^{i y}\right)$
$=\Re(\cos (x) \cos (y)-\sin (x) \sin (y)+$ $i \cos (x) \sin (y)+i \sin (x) \cos (y))$

Unexpected proofs: Probabilities

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. pick vertex-set $T \subseteq V$ at random

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. pick vertex-set $T \subseteq V$ at random
2. set $X_{i j}=1$ if edge (i, j) crosses T (either $i \in T$ or $j \in T$)

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. pick vertex-set $T \subseteq V$ at random
2. set $X_{i j}=1$ if edge (i, j) crosses T (either $i \in T$ or $j \in T$)
3. $\operatorname{Exp}\left[\sum_{(i, j) \in E} X_{i j}\right]=\sum_{(i, j) \in E} \operatorname{Exp}\left[X_{i j}\right]$

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. pick vertex-set $T \subseteq V$ at random
2. set $X_{i j}=1$ if edge (i, j) crosses T (either $i \in T$ or $j \in T$)
3. $\operatorname{Exp}\left[\sum_{(i, j) \in E} X_{i j}\right]=\sum_{(i, j) \in E} \underbrace{\operatorname{Exp}\left[X_{i j}\right]}_{=1 / 2}$

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges
Proof:

1. pick vertex-set $T \subseteq V$ at random
2. set $X_{i j}=1$ if edge (i, j) crosses T (either $i \in T$ or $j \in T$)
3. $\operatorname{Exp}\left[\sum_{(i, j) \in E} X_{i j}\right]=\sum_{(i, j) \in E} \underbrace{\operatorname{Exp}\left[X_{i j}\right]}_{=1 / 2}=m / 2$

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. pick vertex-set $T \subseteq V$ at random
2. set $X_{i j}=1$ if edge (i, j) crosses T (either $i \in T$ or $j \in T$)
3. $\operatorname{Exp}\left[\sum_{(i, j) \in E} X_{i j}\right]=\sum_{(i, j) \in E} \underbrace{\operatorname{Exp}\left[X_{i j}\right]}_{=1 / 2}=m / 2$
4. but then there is a T with at least $m / 2$ crossing edges!

Unexpected proofs: Quantum

Unexpected proofs: Quantum

- We all know and love quantum information \& computation for its algorithms, crypto-schemes, weird communication protocols, non-local effects, etc.

Unexpected proofs: Quantum

- We all know and love quantum information \& computation for its algorithms, crypto-schemes, weird communication protocols, non-local effects, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.

Unexpected proofs: Quantum

- We all know and love quantum information \& computation for its algorithms, crypto-schemes, weird communication protocols, non-local effects, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.
- Bonus: no need to implement anything in the lab :-)

Unexpected proofs: Quantum

- We all know and love quantum information \& computation for its algorithms, crypto-schemes, weird communication protocols, non-local effects, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.
- Bonus: no need to implement anything in the lab :-)
- We'll focus on two sets of examples:

Unexpected proofs: Quantum

- We all know and love quantum information \& computation for its algorithms, crypto-schemes, weird communication protocols, non-local effects, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.
- Bonus: no need to implement anything in the lab :-)
- We'll focus on two sets of examples:

1. Using quantum information theory

Unexpected proofs: Quantum

- We all know and love quantum information \& computation for its algorithms, crypto-schemes, weird communication protocols, non-local effects, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.
- Bonus: no need to implement anything in the lab :-)
- We'll focus on two sets of examples:

1. Using quantum information theory
2. Using the connections between quantum algorithms and polynomials

Unexpected proofs: Quantum

- We all know and love quantum information \& computation for its algorithms, crypto-schemes, weird communication protocols, non-local effects, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.
- Bonus: no need to implement anything in the lab :-)
- We'll focus on two sets of examples:

1. Using quantum information theory
2. Using the connections between quantum algorithms and polynomials

- Based on forthcoming survey with Andy Drucker

Part 1:

Using quantum information theory

Example: Locally decodable codes (KdW03)

Example: Locally decodable codes (KdW03)

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$

Example: Locally decodable codes (KdW03)

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ decoding: $D(w)=x$ if w is "close" to $C(x)$

Example: Locally decodable codes (KdW03)

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ decoding: $D(w)=x$ if w is "close" to $C(x)$
- Inefficient if you only want to decode a small part of x

Example: Locally decodable codes (KdW03)

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ decoding: $D(w)=x$ if w is "close" to $C(x)$
- Inefficient if you only want to decode a small part of x
- C is k-query locally decodable if there is a decoder D that only looks at k bits of w, and $D(w, i)=x_{i}$ (w.h.p.)

Example: Locally decodable codes (KdW03)

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ decoding: $D(w)=x$ if w is "close" to $C(x)$
- Inefficient if you only want to decode a small part of x
- C is k-query locally decodable if there is a decoder D that only looks at k bits of w, and $D(w, i)=x_{i}$ (w.h.p.)
- Hard question: optimal tradeoff between k and m ?

Example: Locally decodable codes (KdW03)

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ decoding: $D(w)=x$ if w is "close" to $C(x)$
- Inefficient if you only want to decode a small part of x
- C is k-query locally decodable if there is a decoder D that only looks at k bits of w, and $D(w, i)=x_{i}$ (w.h.p.)
- Hard question: optimal tradeoff between k and m ?
- Using quantum, we can show: $k=2 \Rightarrow m=2^{\Omega(n)}$

Example: Locally decodable codes (KdW03)

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ decoding: $D(w)=x$ if w is "close" to $C(x)$
- Inefficient if you only want to decode a small part of x
- C is k-query locally decodable if there is a decoder D that only looks at k bits of w, and $D(w, i)=x_{i}$ (w.h.p.)
- Hard question: optimal tradeoff between k and m ?
- Using quantum, we can show: $k=2 \Rightarrow m=2^{\Omega(n)}$
- Still the only superpolynomial bound known for LDCs

Exponential bound on 2-query LDC

Exponential bound on 2-query LDC

- Given $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, 2-query classical decoder

Exponential bound on 2-query LDC

- Given $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, 2-query classical decoder
- Can replace 2 classical queries by 1 quantum query!

Exponential bound on 2-query LDC

- Given $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, 2-query classical decoder
- Can replace 2 classical queries by 1 quantum query!
- Some massaging: make the quantum query uniform

Exponential bound on 2-query LDC

- Given $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, 2-query classical decoder
- Can replace 2 classical queries by 1 quantum query!
- Some massaging: make the quantum query uniform
- Consider query-result $\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$

Exponential bound on 2-query LDC

- Given $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, 2-query classical decoder
- Can replace 2 classical queries by 1 quantum query!
- Some massaging: make the quantum query uniform
- Consider query-result $\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- $\left|\phi_{x}\right\rangle$ has $\log m$ qubits, but allows us to predict each of the encoded bits x_{1}, \ldots, x_{n}

Exponential bound on 2-query LDC

- Given $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, 2-query classical decoder
- Can replace 2 classical queries by 1 quantum query!
- Some massaging: make the quantum query uniform
- Consider query-result $\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- $\left|\phi_{x}\right\rangle$ has $\log m$ qubits, but allows us to predict each of the encoded bits x_{1}, \ldots, x_{n}
- Nayak's random access code bound: $\log m \geq \Omega(n)$

Exponential bound on 2-query LDC

- Given $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, 2-query classical decoder
- Can replace 2 classical queries by 1 quantum query!
- Some massaging: make the quantum query uniform
- Consider query-result $\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- $\left|\phi_{x}\right\rangle$ has $\log m$ qubits, but allows us to predict each of the encoded bits x_{1}, \ldots, x_{n}
- Nayak's random access code bound: $\log m \geq \Omega(n)$
\Rightarrow 2-query LDCs need exponential length

Other examples using q info theory

Other examples using q info theory

- Lower bound for communication complexity of inner product (CDNT'98)

Other examples using q info theory

- Lower bound for communication complexity of inner product (CDNT'98)
- This uses Holevo's theorem

Other examples using q info theory

- Lower bound for communication complexity of inner product (CDNT'98)
- This uses Holevo's theorem
- Lower bounds on rigidity of Hadamard matrix (dW'06)

Other examples using q info theory

- Lower bound for communication complexity of inner product (CDNT'98)
- This uses Holevo's theorem
- Lower bounds on rigidity of Hadamard matrix (dW'06)
- This uses the fact (due to Nayak) that encoding of n objects in a d-dimensional quantum system has average recovery probability $\leq d / n$

Part 2:

Using connections with polynomials

Quantum query algorithms

Quantum query algorithms

- T-query quantum algorithm interleaves fixed unitaries with queries to its input $x \in\{0,1\}^{n}$

Quantum query algorithms

- T-query quantum algorithm interleaves fixed unitaries with queries to its input $x \in\{0,1\}^{n}$

$$
O:|i, b\rangle \mapsto\left|i, b \oplus x_{i}\right\rangle
$$

Quantum query algorithms

- T-query quantum algorithm interleaves fixed unitaries with queries to its input $x \in\{0,1\}^{n}$

$$
O:|i, b\rangle \mapsto\left|i, b \oplus x_{i}\right\rangle
$$

- A final measurement determines output

Quantum query algorithms

- T-query quantum algorithm interleaves fixed unitaries with queries to its input $x \in\{0,1\}^{n}$

$$
O:|i, b\rangle \mapsto\left|i, b \oplus x_{i}\right\rangle
$$

- A final measurement determines output
- Most known quantum algorithms function in this setting:

Quantum query algorithms

- T-query quantum algorithm interleaves fixed unitaries with queries to its input $x \in\{0,1\}^{n}$

$$
O:|i, b\rangle \mapsto\left|i, b \oplus x_{i}\right\rangle
$$

- A final measurement determines output
- Most known quantum algorithms function in this setting:

Deutsch-Jozsa, Simon, Shor, Grover, random walks

Quantum query algorithms

- T-query quantum algorithm interleaves fixed unitaries with queries to its input $x \in\{0,1\}^{n}$

$$
O:|i, b\rangle \mapsto\left|i, b \oplus x_{i}\right\rangle
$$

- A final measurement determines output
- Most known quantum algorithms function in this setting:

Deutsch-Jozsa, Simon, Shor, Grover, random walks

- Connection with polynomials (BBCMW 98):

Quantum query algorithms

- T-query quantum algorithm interleaves fixed unitaries with queries to its input $x \in\{0,1\}^{n}$

$$
O:|i, b\rangle \mapsto\left|i, b \oplus x_{i}\right\rangle
$$

- A final measurement determines output
- Most known quantum algorithms function in this setting:

Deutsch-Jozsa, Simon, Shor, Grover, random walks

- Connection with polynomials (BBCMW 98):
$\operatorname{Pr}[$ algo outputs 1] is polynomial $P(x)$ of degree $\leq 2 T$

Quantum lower bounds by polynomials

Quantum lower bounds by polynomials

- Pr [algo outputs 1] is polynomial $P(x)$ of degree $\leq 2 T$

Quantum lower bounds by polynomials

- $\operatorname{Pr}[$ algo outputs 1$]$ is polynomial $P(x)$ of degree $\leq 2 T$
- Because amplitudes of final state have degree $\leq T$:

Quantum lower bounds by polynomials

- Pr [algo outputs 1] is polynomial $P(x)$ of degree $\leq 2 T$
- Because amplitudes of final state have degree $\leq T$: 1. At the start: amplitudes are constants (degree 0)

Quantum lower bounds by polynomials

- Pr [algo outputs 1] is polynomial $P(x)$ of degree $\leq 2 T$
- Because amplitudes of final state have degree $\leq T$: 1. At the start: amplitudes are constants (degree 0) 2. Query increases degree by 1 :

Quantum lower bounds by polynomials

- Pr [algo outputs 1] is polynomial $P(x)$ of degree $\leq 2 T$
- Because amplitudes of final state have degree $\leq T$: 1. At the start: amplitudes are constants (degree 0)

2. Query increases degree by 1 :
$\alpha|i, 0\rangle+\beta|i, 1\rangle$

Quantum lower bounds by polynomials

- $\operatorname{Pr}[$ algo outputs 1$]$ is polynomial $P(x)$ of degree $\leq 2 T$
- Because amplitudes of final state have degree $\leq T$: 1. At the start: amplitudes are constants (degree 0)

2. Query increases degree by 1 :
$\alpha|i, 0\rangle+\beta|i, 1\rangle \mapsto\left(\alpha\left(1-x_{i}\right)+\beta x_{i}\right)|i, 0\rangle+\left(\alpha x_{i}+\beta\left(1-x_{i}\right)\right)|i, 1\rangle$

Quantum lower bounds by polynomials

- $\operatorname{Pr}[$ algo outputs 1$]$ is polynomial $P(x)$ of degree $\leq 2 T$
- Because amplitudes of final state have degree $\leq T$: 1. At the start: amplitudes are constants (degree 0)

2. Query increases degree by 1 :
$\alpha|i, 0\rangle+\beta|i, 1\rangle \mapsto\left(\alpha\left(1-x_{i}\right)+\beta x_{i}\right)|i, 0\rangle+\left(\alpha x_{i}+\beta\left(1-x_{i}\right)\right)|i, 1\rangle$
3. Fixed unitaries don't change degree

Quantum lower bounds by polynomials

- Pr [algo outputs 1] is polynomial $P(x)$ of degree $\leq 2 T$
- Because amplitudes of final state have degree $\leq T$: 1. At the start: amplitudes are constants (degree 0)

2. Query increases degree by 1 :
$\alpha|i, 0\rangle+\beta|i, 1\rangle \mapsto\left(\alpha\left(1-x_{i}\right)+\beta x_{i}\right)|i, 0\rangle+\left(\alpha x_{i}+\beta\left(1-x_{i}\right)\right)|i, 1\rangle$
3. Fixed unitaries don't change degree

- If the algorithm computes $f:\{0,1\}^{n} \rightarrow\{0,1\}$, then $P(x) \approx f(x)$ for all $x \in\{0,1\}^{n}$

Quantum lower bounds by polynomials

- Pr [algo outputs 1] is polynomial $P(x)$ of degree $\leq 2 T$
- Because amplitudes of final state have degree $\leq T$: 1. At the start: amplitudes are constants (degree 0) 2. Query increases degree by 1 :
$\alpha|i, 0\rangle+\beta|i, 1\rangle \mapsto\left(\alpha\left(1-x_{i}\right)+\beta x_{i}\right)|i, 0\rangle+\left(\alpha x_{i}+\beta\left(1-x_{i}\right)\right)|i, 1\rangle$

3. Fixed unitaries don't change degree

- If the algorithm computes $f:\{0,1\}^{n} \rightarrow\{0,1\}$, then $P(x) \approx f(x)$ for all $x \in\{0,1\}^{n}$
- Lower bounds on degrees of approximating polynomials give lower bounds on quantum query complexity

Quantum lower bounds by polynomials

- Pr [algo outputs 1] is polynomial $P(x)$ of degree $\leq 2 T$
- Because amplitudes of final state have degree $\leq T$: 1. At the start: amplitudes are constants (degree 0) 2. Query increases degree by 1 :
$\alpha|i, 0\rangle+\beta|i, 1\rangle \mapsto\left(\alpha\left(1-x_{i}\right)+\beta x_{i}\right)|i, 0\rangle+\left(\alpha x_{i}+\beta\left(1-x_{i}\right)\right)|i, 1\rangle$

3. Fixed unitaries don't change degree

- If the algorithm computes $f:\{0,1\}^{n} \rightarrow\{0,1\}$, then $P(x) \approx f(x)$ for all $x \in\{0,1\}^{n}$
- Lower bounds on degrees of approximating polynomials give lower bounds on quantum query complexity
- Instead of a lower bound method, we can also view this as a method for constructing polynomials!

Example: ε-approximations for symmetric f

Example: ε-approximations for symmetric f

- Sherstov (08) solved a problem in probability theory using the minimal degree of ε-approximating polynomials for symmetric Boolean functions

Example: ε-approximations for symmetric f

- Sherstov (08) solved a problem in probability theory using the minimal degree of ε-approximating polynomials for symmetric Boolean functions
- Symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$ only depends on Hamming weight $|x|$.

Example: ε-approximations for symmetric f

- Sherstov (08) solved a problem in probability theory using the minimal degree of ε-approximating polynomials for symmetric Boolean functions
- Symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$ only depends on Hamming weight $|x|$. Examples: OR, Parity, Majority

Example: ε-approximations for symmetric f

- Sherstov (08) solved a problem in probability theory using the minimal degree of ε-approximating polynomials for symmetric Boolean functions
- Symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$ only depends on Hamming weight $|x|$. Examples: OR, Parity, Majority
- W.I.o.g.: Assume $f(x)=1$ if x has weight $|x| \geq t$

Example: ε-approximations for symmetric f

- Sherstov (08) solved a problem in probability theory using the minimal degree of ε-approximating polynomials for symmetric Boolean functions
- Symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$ only depends on Hamming weight $|x|$. Examples: OR, Parity, Majority
- W.I.o.g.: Assume $f(x)=1$ if x has weight $|x| \geq t$
- Sherstov used Chebyshev polynomials to construct ε-error polynomials of degree

$$
O(\sqrt{t n}+\sqrt{n \log (1 / \varepsilon)}) \log n
$$

Example: ε-approximations for symmetric f

Example: ε-approximations for symmetric f

- We can do better using quantum algorithms

Example: ε-approximations for symmetric f

- We can do better using quantum algorithms
- Simple proof for optimal degree bound (dW 08)

$$
O(\sqrt{t n}+\sqrt{n \log (1 / \varepsilon)})
$$

Example: ε-approximations for symmetric f

- We can do better using quantum algorithms
- Simple proof for optimal degree bound (dW 08)

$$
O(\sqrt{t n}+\sqrt{n \log (1 / \varepsilon)})
$$

- Ingredients:

Example: ε-approximations for symmetric f

- We can do better using quantum algorithms
- Simple proof for optimal degree bound (dW 08)

$$
O(\sqrt{t n}+\sqrt{n \log (1 / \varepsilon)})
$$

- Ingredients:
- "exact Grover": if there are exactly i s, we can find one with certainty using $\frac{\pi}{4} \sqrt{n / i}$ queries

Example: ε-approximations for symmetric f

- We can do better using quantum algorithms
- Simple proof for optimal degree bound (dW 08)

$$
O(\sqrt{t n}+\sqrt{n \log (1 / \varepsilon)})
$$

- Ingredients:
- "exact Grover": if there are exactly $i 1 \mathrm{~s}$, we can find one with certainty using $\frac{\pi}{4} \sqrt{n / i}$ queries
- " ε-error Grover": we can find one with error ε using $O(\sqrt{n \log (1 / \varepsilon)})$ queries (BCWZ 99)

ε-approximations for symmetric f (cntd)

ε-approximations for symmetric f (cntd)

- Goal: compute symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$, error $\leq \varepsilon$

ε-approximations for symmetric f (cntd)

- Goal: compute symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$, error $\leq \varepsilon$
- Quantum algorithm:

ε-approximations for symmetric f (cntd)

- Goal: compute symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$, error $\leq \varepsilon$
- Quantum algorithm:

1. Run exact Grover $t-1$ times, for

$$
|x|=t-1, t-2, \ldots, 3,2,1
$$

ε-approximations for symmetric f (cntd)

- Goal: compute symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$, error $\leq \varepsilon$
- Quantum algorithm:

1. Run exact Grover $t-1$ times, for
$|x|=t-1, t-2, \ldots, 3,2,1$
Note: if $|x|<t$, then this finds all 1s with certainty

ε-approximations for symmetric f (cntd)

- Goal: compute symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$, error $\leq \varepsilon$
- Quantum algorithm:

1. Run exact Grover $t-1$ times, for
$|x|=t-1, t-2, \ldots, 3,2,1$
Note: if $|x|<t$, then this finds all 1 s with certainty
Queries: $\sum_{i=1}^{t-1} \frac{\pi}{4} \sqrt{n / i}=O(\sqrt{t n})$

ε-approximations for symmetric f (cntd)

- Goal: compute symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$, error $\leq \varepsilon$
- Quantum algorithm:

1. Run exact Grover $t-1$ times, for
$|x|=t-1, t-2, \ldots, 3,2,1$
Note: if $|x|<t$, then this finds all 1 s with certainty
Queries: $\sum_{i=1}^{t-1} \frac{\pi}{4} \sqrt{n / i}=O(\sqrt{t n})$
2. Run ε-error Grover to try to find another 1

ε-approximations for symmetric f (cntd)

- Goal: compute symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$, error $\leq \varepsilon$
- Quantum algorithm:

1. Run exact Grover $t-1$ times, for
$|x|=t-1, t-2, \ldots, 3,2,1$
Note: if $|x|<t$, then this finds all 1 s with certainty
Queries: $\sum_{i=1}^{t-1} \frac{\pi}{4} \sqrt{n / i}=O(\sqrt{t n})$
2. Run ε-error Grover to try to find another 1

Queries: $O(\sqrt{n \log (1 / \varepsilon)})$

ε-approximations for symmetric f (cntd)

- Goal: compute symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$, error $\leq \varepsilon$
- Quantum algorithm:

1. Run exact Grover $t-1$ times, for
$|x|=t-1, t-2, \ldots, 3,2,1$
Note: if $|x|<t$, then this finds all 1 s with certainty
Queries: $\sum_{i=1}^{t-1} \frac{\pi}{4} \sqrt{n / i}=O(\sqrt{t n})$
2. Run ε-error Grover to try to find another 1

Queries: $O(\sqrt{n \log (1 / \varepsilon)})$
3. If step 2 found a 1, conclude $|x| \geq t$ and output 1;

ε-approximations for symmetric f (cntd)

- Goal: compute symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$, error $\leq \varepsilon$
- Quantum algorithm:

1. Run exact Grover $t-1$ times, for
$|x|=t-1, t-2, \ldots, 3,2,1$
Note: if $|x|<t$, then this finds all 1 s with certainty
Queries: $\sum_{i=1}^{t-1} \frac{\pi}{4} \sqrt{n / i}=O(\sqrt{t n})$
2. Run ε-error Grover to try to find another 1

Queries: $O(\sqrt{n \log (1 / \varepsilon)})$
3. If step 2 found a 1 , conclude $|x| \geq t$ and output 1; else assume all 1 s have been found and output $f(x)$

ε-approximations for symmetric f (cntd)

- Goal: compute symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$, error $\leq \varepsilon$
- Quantum algorithm:

1. Run exact Grover $t-1$ times, for
$|x|=t-1, t-2, \ldots, 3,2,1$
Note: if $|x|<t$, then this finds all 1 s with certainty
Queries: $\sum_{i=1}^{t-1} \frac{\pi}{4} \sqrt{n / i}=O(\sqrt{t n})$
2. Run ε-error Grover to try to find another 1

Queries: $O(\sqrt{n \log (1 / \varepsilon)})$
3. If step 2 found a 1 , conclude $|x| \geq t$ and output 1; else assume all 1 s have been found and output $f(x)$

- ε-error algorithm using $O(\sqrt{t n}+\sqrt{n \log (1 / \varepsilon)})$ queries

ε-approximations for symmetric f (cntd)

- Goal: compute symmetric $f:\{0,1\}^{n} \rightarrow\{0,1\}$, error $\leq \varepsilon$
- Quantum algorithm:

1. Run exact Grover $t-1$ times, for
$|x|=t-1, t-2, \ldots, 3,2,1$
Note: if $|x|<t$, then this finds all 1 s with certainty
Queries: $\sum_{i=1}^{t-1} \frac{\pi}{4} \sqrt{n / i}=O(\sqrt{t n})$
2. Run ε-error Grover to try to find another 1

Queries: $O(\sqrt{n \log (1 / \varepsilon)})$
3. If step 2 found a 1, conclude $|x| \geq t$ and output 1; else assume all 1 s have been found and output $f(x)$

- ε-error algorithm using $O(\sqrt{t n}+\sqrt{n \log (1 / \varepsilon)})$ queries $\Rightarrow \varepsilon$-error polynomial of degree $O(\sqrt{t n}+\sqrt{n \log (1 / \varepsilon)})$

Connections polynomials $\leftrightarrow q$ algos

Connections polynomials $\leftrightarrow q$ algos

- Polynomials of different types are prominent in complexity theory, communication, learning theory, ...

Connections polynomials $\leftrightarrow q$ algos

- Polynomials of different types are prominent in complexity theory, communication, learning theory, ...
- Approximate polynomials \leftrightarrow bounded-error q algos

Connections polynomials $\leftrightarrow q$ algos

- Polynomials of different types are prominent in complexity theory, communication, learning theory, ...
- Approximate polynomials \leftrightarrow bounded-error q algos
- Sign-representing polynmls \leftrightarrow unbounded-error q algos

Connections polynomials $\leftrightarrow q$ algos

- Polynomials of different types are prominent in complexity theory, communication, learning theory, ...
- Approximate polynomials \leftrightarrow bounded-error q algos
- Sign-representing polynmls \leftrightarrow unbounded-error q algos
- Robust polynomials \leftrightarrow robust quantum algorithms

Connections polynomials $\leftrightarrow q$ algos

- Polynomials of different types are prominent in complexity theory, communication, learning theory, ...
- Approximate polynomials \leftrightarrow bounded-error q algos
- Sign-representing polynmls \leftrightarrow unbounded-error q algos
- Robust polynomials \leftrightarrow robust quantum algorithms
- Rational polynomials $\leftrightarrow q$ algos with postselection

Connections polynomials $\leftrightarrow q$ algos

- Polynomials of different types are prominent in complexity theory, communication, learning theory, ...
- Approximate polynomials \leftrightarrow bounded-error q algos
- Sign-representing polynmls \leftrightarrow unbounded-error q algos
- Robust polynomials \leftrightarrow robust quantum algorithms
- Rational polynomials $\leftrightarrow \mathrm{q}$ algos with postselection Pair of polynomials p, q such that $\frac{p(x)}{q(x)} \approx f(x)$ for all x

Connections polynomials $\leftrightarrow q$ algos

- Polynomials of different types are prominent in complexity theory, communication, learning theory, ...
- Approximate polynomials \leftrightarrow bounded-error q algos
- Sign-representing polynmls \leftrightarrow unbounded-error q algos
- Robust polynomials \leftrightarrow robust quantum algorithms
- Rational polynomials $\leftrightarrow \mathrm{q}$ algos with postselection Pair of polynomials p, q such that $\frac{p(x)}{q(x)} \approx f(x)$ for all x Related to Aaronson's PostBQP = PP

Applications of these connections

Applications of these connections

- PP is closed under intersection (Aaronson'04)

Applications of these connections

- PP is closed under intersection (Aaronson'04)
- Tight upper bounds on sign-degree of read-once formulas (ACRSZ'07, Lee'09)

Applications of these connections

- PP is closed under intersection (Aaronson'04)
- Tight upper bounds on sign-degree of read-once formulas (ACRSZ'07, Lee'09)
- The only way we know how to construct robust polynomials for functions such as Parity (BNRW'05)

Applications of these connections

- PP is closed under intersection (Aaronson'04)
- Tight upper bounds on sign-degree of read-once formulas (ACRSZ'07, Lee'09)
- The only way we know how to construct robust polynomials for functions such as Parity (BNRW'05)
- Jackson's Theorem in approximation theory (Drucker\& dW'09)

Applications of these connections

- PP is closed under intersection (Aaronson'04)
- Tight upper bounds on sign-degree of read-once formulas (ACRSZ'07, Lee'09)
- The only way we know how to construct robust polynomials for functions such as Parity (BNRW'05)
- Jackson's Theorem in approximation theory (Drucker\& dW'09)
- Separating communication complexity classes PP and UPP (BVW'07)

Applications of these connections

- PP is closed under intersection (Aaronson'04)
- Tight upper bounds on sign-degree of read-once formulas (ACRSZ'07, Lee'09)
- The only way we know how to construct robust polynomials for functions such as Parity (BNRW'05)
- Jackson's Theorem in approximation theory (Drucker\& dW'09)
- Separating communication complexity classes PP and UPP (BVW'07), using Razborov's conversion from quantum communication protocols to polynomials

Summary

Summary

- Quantum proofs for classical theorems

Summary

- Quantum proofs for classical theorems
- Two sets of examples:

Summary

- Quantum proofs for classical theorems
- Two sets of examples:

1. using quantum information theory

Summary

- Quantum proofs for classical theorems
- Two sets of examples:

1. using quantum information theory
2. using connections with polynomials

Summary

- Quantum proofs for classical theorems
- Two sets of examples:

1. using quantum information theory
2. using connections with polynomials

- There are other examples

Summary

- Quantum proofs for classical theorems
- Two sets of examples:

1. using quantum information theory
2. using connections with polynomials

- There are other examples (see our survey)

Summary

- Quantum proofs for classical theorems
- Two sets of examples:

1. using quantum information theory
2. using connections with polynomials

- There are other examples (see our survey)
- Not yet the probabilistic method on steroids, but

Summary

- Quantum proofs for classical theorems
- Two sets of examples:

1. using quantum information theory
2. using connections with polynomials

- There are other examples (see our survey)
- Not yet the probabilistic method on steroids, but this could be the beginning of a beautiful proof method

