Learning much from little

Compressed sensing ideas for quantum state tomography and other instances of quantum systems identification

Jens Eisert

Potsdam/Institute for Advanced Study Berlin

David Gross Yi-Kai Liu **Steve Flammia Stephen Becker** Potsdam/Hannover CalTech Perimeter Institute

CalTech

Mention joint work with Toby Cubitt, Michael Wolf, Ignacio Cirac

- ullet Consider some **unknown** quantum state ho of n spins, say, of ions in a trap
- We would like to measure that state

- Consider some **unknown** quantum state ρ of n spins, say, of ions in a trap
- We would like to measure that state

3.2Mb

Haeffner et al, Nature 438, 64 (2005)

- ullet Consider some **unknown** quantum state ho of n spins, say, of ions in a trap
- We would like to measure that state
 - ullet Assume that $\operatorname{rank}
 ho=r$, with $r\ll d$, where $d=2^n$
 - How many parameters do we need to know to specify ρ ?
 - ullet Hmm, well, about rd

- Consider some **unknown** quantum state ρ of n spins, say, of ions in a trap
- We would like to measure that state
 - ullet Assume that $\operatorname{rank}
 ho = r$, with $r \ll d$, where $d = 2^n$
 - ullet How many parameters do we need to know to specify ho ?
 - ullet Hmm, well, about rd
 - Now, how many numbers do we have to measure for full tomography?
 - ullet Ok, surely about $d^2\gg rd$
 - What a terrible waste!

Main question of first part of talk:

ullet Can one obtain complete information about an unknown quantum state using substantially fewer than d^2 measurement settings, if the state is (essentially) low rank?

Yes we can

Guided tour through (the rest of) the talk:

- A classical analogue
- The theorem
- Some flavor of proof
- Certified quantum state tomography

• Long outlook: Other ideas related in spirit:

Entanglement bounds in optical systems

• Certifying spectral densities of environments of opto-mechanical systems

• Detecting non-Markovian dynamics from a snapshot in time

A classical analogue

ullet At given time few (r) out of many possible strings (d) sound

 \bullet Spectrum essentially described by $r \ll d$ numbers

• Task: Identify that spectrum using a few measurements

- First idea: Measure in frequency domain
 - ullet Need d sensors!
- Second idea: Take few samples in time domain
 - Shannon-Nyquist: "If a function contains no frequencies higher than ω Hertz, it is completely determined by giving its ordinates at a series of points spaced $1/(2\omega)$ seconds apart"

Compressed sensing

• Classical compressed sensing:

 \bullet Consider discrete time signal x , composed of at most r "frequencies"

$$x = \sum_{i=1} s_i \psi_i$$

so $x=\Psi s$, and perform measurements $y_i=\langle x,\phi_i
angle$, $y=\Phi x$

Theorem (Candes, Tao, et al, 2004):

- Knowing only $O(r \log d)$ different such measurements, with randomly chosen measurement vectors ϕ_i , one can recover any discrete-time signal x composed of at most r frequencies
- Scheme is probabilistic, succeeds with overwhelming probability
- Recovery is exact
- Computationally efficient: Signal uniquely solves convex optimization problem

$$\min \|s'\|_{l_1}$$
 subject to $\Phi \Psi s' = y$

Quantum compressed sensing

• Back to unknown rank- r density matrices ρ ...

... which we would like to learn in an economic fashion

 Want to learn about a sparse object, without knowing sparsity pattern, does resemble compressed sensing

> • Indeed, previous results extend to **matrix completion**: Reconstruct unknown matrix from only few matrix elements

> > Candes, Recht, arXiv:0805.4471 Candes, Tao, arXiv:0903.1476 Candes, Plan, arXiv:0903.3131

Not quite applicable to quantum case

More natural in quantum case:

• Measure **Pauli matrix** expectation values $\{\mathbb{I}, \sigma_x, \sigma_y, \sigma_z\}$ so collect data $\mathrm{tr} \rho(\sigma_{i_1} \otimes \cdots \otimes \sigma_{i_n})$

Unknown quantum state

Reconstruction

Quantum compressed sensing:

Theorem (Gross, Liu, Flammia, Becker, Eisert, 2009):

- ullet Knowing $O(rd\log d)$ randomly chosen Pauli expectation values $\mathrm{tr}(w(A_i)
 ho)$ one can recover any unknown density matrix ho of rank r
- Scheme is probabilistic, succeeds with overwhelming probability
- Recovery is exact
- Achieved computationally efficiently: Quantum state uniquely solves convex optimization problem

$$\min \|\omega\|_1$$
 subject to $\mathrm{tr}(w(A_i)\omega)=\mathrm{tr}(w(A_i)\rho)\,,\,\,i=1,\ldots,m$
$$\mathrm{tr}(\omega)=1$$

- Quantum compressed sensing: Flavor of proof
- \bullet For $m=\kappa dr$ measurements, define measurement operator

$$\mathcal{R}: \rho \mapsto \frac{d}{m} \sum_{i=1}^{m} w(A_i) \operatorname{tr}(\rho w(A_i))$$

- ullet For a state σ , consider deviation $\Delta=\sigmaho$ from "true state"
- Let T be column and row space of ρ , \mathcal{P}_T projection onto T, decompose deviation as $\Delta=\Delta_T+\Delta_T^\perp$

Δ_T $\Delta_{T^{\perp}}$

- \bullet Have uniqueness if for all deviations Δ either
 - $\| \rho + \Delta \|_1 > \| \rho \|_1$ ("worse solution") or
 - $\mathcal{R}\Delta \neq 0$ ("infeasible")

- Quantum compressed sensing: Flavor of proof
- ullet Now consider two cases: Case (i): $\|\Delta_T\|_2 < d^2 \|\Delta_{T^\perp}\|_2$

$$\Pr(\|\mathcal{P}_T \mathcal{R} \mathcal{P}_T - \mathbb{I}_T\| > t) < 4dre^{-t^2 \kappa/4}$$

$$\|\mathcal{R} \Delta\|_2 > 0$$

- Matrix-valued Bernstein inequality (Ahlswede, Winter, 2002):
- ullet Let $S=\sum X_i$ with X_i i.i.d. matrix-valued random variables, $\mathbb{E}(X)=0$,

set
$$\sigma^2 = \stackrel{i=1}{\|\mathbb{E}(X^2)\|}$$
 , then, for $t < 2m\sigma^2/\|X\|$ one finds

$$\Pr(||S|| > t) \le 2de^{-t^2/(4m\sigma^2)}$$

- Quantum compressed sensing: Flavor of proof
- ullet Now consider two cases: Case (ii): $\|\Delta_T\|_2 > d^2 \|\Delta_{T^\perp}\|_2$

Task: Find subgradient $Y \in \mathrm{range}\mathcal{R}$ such that

$$\|\rho + \Delta\|_1 > \|\rho\|_1 + \text{tr}[Y\Delta] \ge \|\rho\|_1$$

for all
$$\Delta \in \mathrm{range} \mathcal{R}^{\perp} \neq 0$$

$$\|\rho + \Delta\|_1 > \|\rho\|_1$$

- Quantum compressed sensing: Flavor of proof
- ullet Now consider two cases: Case (ii): $\|\Delta_T\|_2 > d^2 \|\Delta_{T^\perp}\|_2$

Task: Find subgradient $Y \in \mathrm{range}\mathcal{R}$ such that

$$\|\rho + \Delta\|_1 > \|\rho\|_1 + \operatorname{tr}[Y\Delta] \ge \|\rho\|_1$$
 for all $\Delta \in \operatorname{range} \mathcal{R}^\perp \ne 0$

Sweat goes into construction of such Y, again

- using large deviation bounds, and
- an adaptive scheme of using data, "golfing"

$$\|\mathcal{P}_T Y - \mathbb{I}_T\|_2 \le 1(2d^2), \ \|\mathcal{P}_T Y\|_2 < 1/2$$
 (End of proof)

$$\|\rho + \Delta\|_1 > \|\rho\|_1$$

Certified tomography:

• Nice, but how do we know that the state is low rank in the first place?

- ullet One does not have to! (Say, r=1)
 - Make use of part of the data $O(rd\log d)$ to estimate the purity $\operatorname{tr}(\rho^2)$,
 - ... formulate a version of theorem allowing for **errors**
 - ... **use** the estimate for the purity in the bound

Assumption-free quantum state tomography

Lesson of the main part of talk:

• (Methods general enough to get simpler - and in effort scaling improved - proof of matrix completion)

Long outlook: Related ideas

- Trying to further "learn much from little"
 - **Directly measure** interesting quantities in experiments, without detour via quantum process or state tomography
 - Do it with error bars
 - Measure the "unexpected"

I. Directly estimating entanglement

- Estimate the quantitative entanglement content of states
- ...from much less than tomographic knowledge
 - Find good and feasible lower bounds to solution of

$$\begin{aligned} & \min & E(\rho) \\ & \text{subject to} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

for entanglement measure E and some expectation values of W_i

 Applied to continuous-variable entanglement distillation schemes, where tomographic knowledge is too expensive/noisy

Lundeen, Feito, Coldenstrodt-Ronge, Pregnell, Silberhorn, Ralph, Eisert, Plenio, Walmsley, *Nature Physics* **5**, 27 (2009) Puentes, Datta, Feito, Eisert, Plenio, Walmsley, arXiv:0911.2482

Eisert, Brandao, Audenaert, New J Phys 8, 46 (2007) Guehne, Reimpell, Werner, Phys Rev Lett 98, 110502 (2007)

2. Assessing decoherence of optomechanical systems:

• Learn about otherwise inaccessible **spectral density** of the heat bath of mechanical mode from spectral properties of light leaving the optical cavity

3. Detecting non-Markovian dynamics from a snapshot in time?

3. Detecting non-Markovian dynamics from a snapshot in time?

- ullet Dynamical map: Completely positive map T specifying dynamics after given time
- Typical setting in process tomography: Do process tomography at many time slices

3. Detecting non-Markovian dynamics from a snapshot in time?

• But could we have known whether dynamics was Markovian from just a single snapshot in time?

Quantum channels:

ullet Channel $T:M_d o M_d$ has matrix form \hat{T}

$$\hat{T}_{j,k} = \operatorname{tr}[O_j T(O_k)]$$

and Choi matrix \hat{T}^Γ , $\langle j,k|\hat{T}^\Gamma|a,b\rangle=\langle j,a|\hat{T}|k,b\rangle$

- ullet Channel is **Markovian**, if $T=e^L$ for some generator L (setting time t=1)
- "Lindblad form" of generator:

$$L(\rho) = i[\rho, H] + \sum_{\alpha, \beta} G_{\alpha, \beta} \left(F_{\alpha} \rho F_{\beta}^{\dagger} - \frac{1}{2} \{ F_{\beta}^{\dagger} F_{\alpha}, \rho \}_{+} \right)$$

- How do we now "test for Markovianity"?
- Jordan normal form

$$\hat{T} = \sum_{r} \lambda_r P_r + \sum_{c} (\lambda_c P_c + \bar{\lambda}_c \mathbb{F} \bar{P}_c \mathbb{F})$$
Complex part

Real part

• Logarithm:

$$\log \hat{T} = L_0 + 2\pi i \sum_{c} m_c (\lambda_c P_c + \bar{\lambda}_c \mathbb{F} \bar{P}_c \mathbb{F})$$

- \bullet Needless to say, has infinitely many branches
- Is one of the branches a valid Lindblad generator?

- How do we now "test for Markovianity"?
- Jordan normal form

$$\hat{T} = \sum_{r} \lambda_r P_r + \sum_{c} (\lambda_c P_c + \bar{\lambda}_c \mathbb{F} \bar{P}_c \mathbb{F})$$
Complex part

Real part

• Logarithm:

$$\log \hat{T} = L_0 + 2\pi i \sum m_c (\lambda_c P_c + \bar{\lambda}_c \mathbb{F} \bar{P}_c \mathbb{F})$$

- Needless to say, has infinitely many branches
- Is one of the branches a valid Lindblad generator?
- **Lemma:** A Hermitian linear map $L:M_d \to M_d$ is a valid Lindblad generator iff it satisfies normalization $L^*(\mathbbm{1})=0$ and

$$(\mathbb{I} - \omega)L^{\Gamma}(\mathbb{I} - \omega) \ge 0$$

- Putting things together:
 - ullet Theorem: A channel T is Markovian ("could have come from Markovian dynamics") iff there is an integer solution to

$$A_0 + \sum_c m_c A_c \ge 0$$

Known matrices:

$$A_0 = (\mathbb{I} - \omega) L_0^{\Gamma} (\mathbb{I} - \omega)$$

$$A_c = 2\pi i (\mathbb{1} - \omega) (P_c - \mathbb{F} \bar{P}_c \mathbb{F})^{\Gamma} (\mathbb{1} - \omega)$$

Test for Markovianity!

(Efficient in input length, practical; interestingly NP hard in physical dimension, just as the classical embedding problem)

Can be made quantitative measure of Markovianity

• For qubit channels: **Only 2% Markovian***

^{*} Drawn according to Haar measure for unitaries on system+ environment

Identity channel, "do nothing!"

• Strange enough: Non-convex! E.g.,

$$T(
ho)=(\lambda)T_1(
ho)+(1-\lambda)T_2(
ho)$$

$$\pi/4 \ {
m Rabi \ oscillation \ channel} \qquad {
m Dephasing \ channel}$$

 Non-Markovian effects can arise from environments in mixture of states each of which would lead to Markovian dynamics • Test for **Markovianity** at a single time

Neeley, Ansmann, Bialczak, Hofheinz, Katz, Lucero, O'Connell, Wang, Cleland, Martinis, *Nature Physics* **4**, 523 (2008)

0.50

0.25

 Interestingly, for some times, single snapshots of phase qubit evolution certify strongly non-Markovian dynamics • Test for **Markovianity** at a single time

- Can one even get an estimate for the **bath-correlation time**, without making a model of environment, without even thinking about it?
- Many snapshots?

Summary

• "Learn much from little"

I. Compressed sensing approach to quantum state tomography:

"Get reliable estimates from few measurement settings, within the paradigm of compressed sensing"

2. Related ideas, like detecting forgetfulness of channels from a snapshot in time:

"Measure once, and get a meaningful statement about a continuous process"

Thanks for your attention