
David Gross
Yi-Kai Liu
Steve Flammia
Stephen Becker

Learning much from little 
Compressed sensing ideas for quantum state tomography 

and other instances of quantum systems identification

Potsdam/Hannover
CalTech
Perimeter Institute
CalTech

Jens Eisert Potsdam/Institute for Advanced Study Berlin

Mention joint work with Toby Cubitt, Michael Wolf, Ignacio Cirac



  Consider some unknown quantum state    of     spins, say, of ions in a trap

  We would like to measure that state
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  Now, how many numbers do we have to measure for full tomography?

  Ok, surely about 

  What a terrible waste!



 Can one obtain complete information about an unknown quantum state  
   using substantially fewer than     measurement settings, if the state is
   (essentially) low rank?   

d2

 Yes we can

 Main question of first part of talk:

Unknown quantum state Measurement
Reconstruction



 Guided tour through (the rest of) the talk:

 A classical analogue

 The theorem

 Some flavor of proof

 Long outlook: Other ideas related in spirit:

 Entanglement bounds in optical systems

 Certifying spectral densities of environments of opto-mechanical systems

 Detecting non-Markovian dynamics from a snapshot in time

 Certified quantum state tomography



 A classical analogue



 At given time few (   ) out of many possible strings (   ) sound

 Spectrum essentially described by            numbers

 Task: Identify that spectrum using a few measurements

r d

r ! d



 First idea: Measure in frequency domain

    Need    sensors!

 Second idea: Take few samples in time domain

    Shannon-Nyquist: "If a function contains no frequencies
      higher than    Hertz, it is completely determined by
      giving its ordinates at a series of points spaced  
      seconds apart"

d

ω
1/(2ω)



 Compressed sensing



 Consider discrete time signal    , composed of at most    "frequencies" 

   so              , and perform measurements                      ,   

 Classical compressed sensing:

x r

x =
r∑

i=1

siψi

x = Ψs yi = 〈x, φi〉 y = Φx

Theorem (Candes, Tao, et al, 2004):

 Knowing only                    different such measurements, with 
   

   randomly chosen measurement vectors     , one can recover
   any discrete-time signal    composed of at most    frequencies 

 Scheme is probabilistic, succeeds with overwhelming probability

 Recovery is exact

 Computationally efficient: Signal uniquely solves convex optimization 
   problem

           min
  

        subject to 

r

O(r log d)

x

‖s′‖l1

ΦΨs′ = y

φi

Candes, Tao, IEEE Trans Inf Th 51, 4203 (2005)
Candes, Romberg, Tao, IEEE Trans Inf Th 52, 489 (2006)



 Quantum compressed sensing



Unknown quantum state Measurement
Reconstruction

 Back to unknown rank-    density matrices    ...r ρ

... which we would like to learn in an economic fashion

 Want to learn about a sparse object, without knowing sparsity pattern,  
   does resemble compressed sensing 

 Indeed, previous results extend to matrix completion: 
   Reconstruct unknown matrix from only few matrix elements

 Not quite applicable to quantum case

Candes, Recht, arXiv:0805.4471
Candes, Tao, arXiv:0903.1476
Candes, Plan, arXiv:0903.3131



Unknown quantum state Measurement
Reconstruction

 More natural in quantum case: 

 Measure Pauli matrix expectation values

 so collect data

{I, σx, σy, σz}
trρ(σi1 ⊗ · · ·⊗ σin)

w(A), A ∈ [1, d2]

 Physical dimension is             , write d = 2n

w =
n⊗

i=1

wi, wi ∈ {I, σx, σy, σz}



Theorem (Gross, Liu, Flammia, Becker, Eisert, 2009):

 Knowing                     randomly chosen Pauli expectation values 
  

  one can recover any unknown density matrix    of rank   

 Scheme is probabilistic, succeeds with overwhelming probability

 Recovery is exact

 Achieved computationally efficiently: Quantum state uniquely solves convex 
   optimization problem

     min
  

     subject to 

O(rd log d) tr(w(Ai)ρ)
ρ r

‖ω‖1

tr(w(Ai)ω) = tr(w(Ai)ρ) , i = 1, . . . ,m

Gross, Liu, Flammia, Becker, Eisert, arXiv:0909.3304

tr(ω) = 1

 Quantum compressed sensing: 



 For                 measurements, define measurement operator

 For a state    , consider deviation                     from "true state"

R : ρ !→ d

m

m∑

i=1

w(Ai)tr(ρw(Ai))

σ ∆ = σ − ρ

 Quantum compressed sensing: Flavor of proof

m = κdr

 Let     be column and row space of    ,        projection onto    , 

     decompose deviation as ∆ =∆ T + ∆⊥T

T ρ PT T ∆T

∆T⊥

 Have uniqueness if for all deviations     either

-                                    ("worse solution") or

-                   ("infeasible")

∆

‖ρ + ∆‖1 > ‖ρ‖1

R∆ != 0



 Quantum compressed sensing: Flavor of proof

Pr(‖PTRPT − IT ‖ > t) < 4dre−t2κ/4 ‖R∆‖2 > 0

 Let                       with       i.i.d. matrix-valued random variables,                   ,        

  set                            , then, for                               one finds 

S =
m∑

i=1

Xi Xi

Pr(‖S‖ > t) ≤ 2de−t2/(4mσ2)

σ2 = ‖E(X2)‖

 Matrix-valued Bernstein inequality (Ahlswede, Winter, 2002):

Ahlswede, Winter, IEEE Trans Inf Th 48, 569 (2002)

t < 2mσ2/‖X‖

"Infeasible"

E(X) = 0

 Now consider two cases: Case (i): ‖∆T ‖2 < d2‖∆T⊥‖2



 Quantum compressed sensing: Flavor of proof

∆ ∈ rangeR⊥

"Data"

"Orthogonal deviations"

Task: Find subgradient                       such that

 for all 

‖ρ + ∆‖1 > ‖ρ‖1

"Not optimal"

‖ρ + ∆‖1 > ‖ρ‖1 + tr[Y ∆] ≥ ‖ρ‖1

Y ∈ rangeR

 Now consider two cases: Case (ii): ‖∆T ‖2 > d2‖∆T⊥‖2

∆ ∈ rangeR⊥ "= 0



 Quantum compressed sensing: Flavor of proof

Task: Find subgradient                       such that

 for all 

‖ρ + ∆‖1 > ‖ρ‖1

"Not optimal"

‖ρ + ∆‖1 > ‖ρ‖1 + tr[Y ∆] ≥ ‖ρ‖1

Y ∈ rangeR

 Now consider two cases: Case (ii): ‖∆T ‖2 > d2‖∆T⊥‖2

Sweat goes into construction of such   , again
- using large deviation bounds, and 
- an adaptive scheme of using data, "golfing"
  
                                         ,
   (End of proof)

Y

‖PT Y − IT ‖2 ≤ 1(2d2) ‖PT Y ‖2 < 1/2

∆ ∈ rangeR⊥ "= 0



 Nice, but how do we know that the state is low rank in the first place?

 One does not have to! (Say,           ) 

 Make use of part of the data                      to 

   estimate the purity           ,

 ... formulate a version of theorem allowing for errors 

 ... use the estimate for the purity in the bound

O(rd log d)
tr(ρ2)

 Certified tomography:

 Assumption-free quantum state tomography

r = 1

Gross, Liu, Flammia, Becker, Eisert, arXiv:0909.3304



Unknown quantum state Measurement
Reconstruction

If a state is close to being low-rank, then perform the
same measurements as for full quantum state tomography, but
just randomly so and much fewer of them, and still 
faithfully (and efficiently) reconstruct the state 

 Lesson of the main part of talk:

 (Methods general enough to get simpler - and in effort scaling improved - proof of matrix completion)
Gross, arXiv:0910.1879

Gross, Liu, Flammia, Becker, Eisert, arXiv:0909.3304



 Long outlook: Related ideas



 Trying to further "learn much from little"

 Directly measure interesting quantities in experiments, without detour via 
   quantum process or state tomography

 Do it with error bars

 Measure the "unexpected"

Unknown quantum state Measurement
Reconstruction



1. Directly estimating entanglement

 Estimate the quantitative entanglement content of states 
  
 ...from much less than tomographic knowledge

Lundeen, Feito, Coldenstrodt-Ronge, Pregnell, Silberhorn, Ralph,
Eisert, Plenio, Walmsley, Nature Physics 5, 27 (2009)
Puentes, Datta, Feito, Eisert, Plenio, Walmsley, arXiv:0911.2482

Eisert, Brandao, Audenaert, New J Phys 8, 46 (2007)
Guehne, Reimpell, Werner, Phys Rev Lett 98, 110502 (2007)

 Find good and feasible lower bounds to solution of 

   for entanglement measure     and some expectation values of

           min
  

        subject to 

E(ρ)
tr(ρWi) = ci

E Wi

 Applied to continuous-variable entanglement distillation schemes, where
   tomographic knowledge is too expensive/noisy



Spectral density

I(ω) =
∑

n

c2
n

2mnωn
δ(ω − ωn)

Heat bath
(inaccessible)

Driving field
Cavity mode

Micromirror

Detection

 Learn about otherwise inaccessible spectral density of the heat bath of 
   mechanical mode from spectral properties of light leaving the optical cavity
 

 Certify non-Ohmic baths

Trubarov, Kieling, Groeblacher, Aspelmeyer, Eisert, in preparation (2009)

2. Assessing decoherence of optomechanical systems:



T (ρ)ρ

Time0 t

Dynamics under 
noise

State at time tState at time 0

Cubitt, Eisert, Wolf, arXiv:0908.2128
Wolf, Eisert, Cubitt, Cirac, Phys Rev Lett 101, 150402 (2008)

3. Detecting non-Markovian dynamics from a snapshot in time?



 Dynamical map: Completely positive map     specifying dynamics after given timeT

 Typical setting in process tomography: Do process tomography 
   at many time slices

State at time 0

ρ T T (ρ)

Dynamics under 
noise

Time0 t

State at time t

3. Detecting non-Markovian dynamics from a snapshot in time?



 But could we have known whether dynamics was
   Markovian from just a single snapshot in time?

ρ T (ρ)

Time0 t

State at time 

Dynamics under 
noise

State at time 0 t

3. Detecting non-Markovian dynamics from a snapshot in time?



 Channel                          has matrix formT : Md → Md

T̂j,k = tr[OjT (Ok)]

T̂

 and Choi matrix      ,T̂
Γ 〈j, k|T̂Γ|a, b〉 = 〈j, a|T̂ |k, b〉

 Channel is Markovian, if               for some generator    (setting time          ) T = e
L

L t = 1

 “Lindblad form” of generator:

 Quantum channels:

L(ρ) = i[ρ, H] +
∑

α,β

Gα,β

(

FαρF †
β −

1

2
{F †

βFα, ρ}+

)



 Logarithm:

 Needless to say, has infinitely many branches

 How do we now “test for Markovianity”?

 Jordan normal form

Real part
Complex part

 Is one of the branches a valid Lindblad generator?

T̂ =
∑

r

λrPr +
∑

c

(λcPc + λ̄cFP̄cF)

log T̂ = L0 + 2πi
∑

c

mc(λcPc + λ̄cFP̄cF)
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 Needless to say, has infinitely many branches
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Real part
Complex part
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∑
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 Lemma: A Hermitian linear map                          is a valid Lindblad
   generator iff it satisfies normalization                   and

L : Md → Md

L
∗( ) = 0

ω maximally entangled state

(I− ω)LΓ(I− ω) ≥ 0



 Putting things together:

A0 +
∑

c

mcAc ≥ 0

T

Ac = 2πi( − ω)(Pc − P̄c )Γ( − ω)

Test for Markovianity! 

(Efficient in input length, practical; interestingly NP hard in 
physical dimension, just as the classical embedding problem)

Can be made quantitative measure of Markovianity

 Known matrices:

 Theorem: A channel     is Markovian (“could have come from 
   Markovian dynamics”) iff there is an integer solution to

A0 = (I− ω)LΓ
0 (I− ω)

Cubitt, Eisert, Wolf, arXiv:0908.2128
Wolf, Eisert, Cubitt, Cirac, Phys Rev Lett 101, 150402 (2008)



 Where are the Markovian channels?

All channels

Identity channel,
“do nothing!”

Markovian 
channels

 For qubit channels: Only 2% Markovian*

* Drawn according to Haar measure for unitaries on system+ environment



 Where are the Markovian channels?

All channels

Identity channel,
“do nothing!”

Markovian 
channels

 Strange enough: Non-convex! E.g.,

T (ρ) = (λ)T1(ρ) + (1 − λ)T2(ρ)

Dephasing channelRabi oscillation channelπ/4

 Non-Markovian effects can arise from environments in mixture
   of states each of which would lead to Markovian dynamics



State at time State at time 0

T (ρ)ρ

t

 Interestingly, for some times, single snapshots
   of phase qubit evolution certify strongly 
   non-Markovian dynamicsNeeley, Ansmann, Bialczak, Hofheinz,

Katz, Lucero, O'Connell, Wang, Cleland,
Martinis, Nature Physics 4, 523 (2008)

 Test for Markovianity at a single time



 Can one even get an estimate for the bath-correlation time, without  
   making a model of environment, without even thinking about it?

State at time State at time 0

T (ρ)ρ

t

 Many snapshots?

 Test for Markovianity at a single time



 Summary



1. Compressed sensing approach to quantum state tomography:

2. Related ideas, like detecting forgetfulness
    of channels from a snapshot in time:

"Measure once, and get a meaningful statement about a 
 continuous process"

Thanks for your attention

"Get reliable estimates from few measurement settings,
 within the paradigm of compressed sensing"

 "Learn much from little"


