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◮ This model is called Probably Approximately Correct (PAC), it has
been introduced by Valiant [V84].
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Learning under Predictive Setting

“This is an apple”

The learning phase is the same.

In the testing phase the student demonstrates ability to distinguish
apples from oranges.

◮ Clearly, standard learnability implies predictive learnability (a
hypothesis can be used as a distinguishing algorithm).
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?

“This is an apple”

It is well known that in any classical learning model, a predictive
learning algorithm can be turned into a standard one.
The argument does not translate to the case of quantum models.
We will see that, indeed, quantum predictive learning is qualitatively
stronger than quantum standard learning.

◮ Observe that unconditional separation between quantum and classical
learning immediately follows (we will make a more formal statement
later).
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We may allow quantum messages from the teacher.

The student may be a quantum algorithm.

Quantum models are at least as strong as their classical analogues.

A concept class is learnable in a given model if an efficient algorithm
can play the role of the student.

Are quantum models stronger than classical?
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Objects: {0, 1}n (all fruits).

Concepts (functional): c ⊆ {0, 1}n (different types of fruits).

Concept classes: C = {c1, c2, c3 . . . } (learning abilities of a student).

Input length: n.

Number of inputs: 2n.

Number of concepts: 22n

.

◮ C̃ approximates C if ∀c ∈ C ∃c̃ ∈ C̃ s.t. c̃ ≈ c .
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A concept class C is unspeakable if it does not admit efficient
hypotheses representation, even if one only requires that a hypothesis
approximates the target.

More precisely, any concept class H that approximates C must be of
double-exponential size.

Simple counting reveals that almost all concept classes are
unspeakable.

It holds that
◮ no standard algorithm (either quantum or classical) can efficiently learn

an unspeakable class (trivially true);
◮ no classical algorithm can efficiently learn an unspeakable class;
◮ unspeakable classes of functions are not learnable efficiently (either

quantumly or classically).

◮ Therefore, willing to learn unspeakable concepts, we can only hope to
do so for a relational class, in a quantum predictive model.
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We define a quantum predictive version of PAC , denoted by
PQ(Predictive Quantum).

There exists a relational concept class C that is unspeakable but can
be efficiently learnt in PQ.

◮ In particular, C is not learnable classically.
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Let N be prime. Every concept in the class C is represented by
c ∈ {0, 1}N .

The set of queries is [N − 1], represented by binary strings of length
n = ⌈log N⌉.

A pair (x , cx ⊕ cx+q)∈ ZN × {0, 1} is a valid answer to query

q ∈ [N − 1] w.r.t. c ∈ C.

We will demonstrate that C is unspeakable – in particular, it is not
learnable classically.

On the other hand, C is efficiently learnable in PQ.

◮ This construction has been inspired by a communication problem
defined in [KW03] and [BJK04].
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The state becomes either |a〉 + |a + q0〉 or |a〉 − |a + q0〉,
corresponding to ca ⊕ ca+q0 = 0 or ca ⊕ ca+q0 = 1, respectively.

◮ The student responds with (a, ca ⊕ ca+q0), as required.
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We do not know whether efficient quantum predictive learning of
quasi-unspeakable functional concept classes is possible.

An explicit example would probably require (non-uniform) hardness
assumptions, but might be viewed as a stronger separation between
quantum and classical learning.

◮ Assuming BQP * P/poly , the answer is trivial (let C
def
= {fL}, for any

L ∈ BQP \ P/poly) – the goal is to weaken the assumptions.
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