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Quantum Algorithms

Quantum algorithms for number theoretic 
problems:

 Factoring
 Pell’s equation
 Number fields

 Unit group
 Class group
 Principal ideal problem

 Goal: compute extensions of number fields
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Number Field 
Applications

 Number fields:

 Number field sieve

 Buchmann-Williams key-exchange

 Towers of number fields:

 Lattice-based crypto

 Error correcting codes

Q(θ)

Q(θ1) ⊆ Q(θ2) ⊆ Q(θ3) ⊆ · · ·
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Number Field 
Examples
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Computing 
Extensions

Q(θ1)

Q(θ2)

Q(θ1)Q(ωp)

Q(ωp,ωq)

where p− 1 > n

Q(ωp)

Hilbert class field of Q(θ1)

Q(θ1)

Q(θ2)

Maximal abelian unramified extension

Input:

Output:

Abelian: Galios group of Q(θ2)/Q(θ1)
Unramified: 

p

= Πqq
eq

eq = 0, 1 ∀q

plus real embeddings...

Q(θ1,ωp)

p · O
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Algorithms
Theorem 1: 

Computing the 
   Hilbert class field reduces to

Computing:
1) unit group
2) class group
3) factoring ideals
4) computing discrete logs
    in finite fields

(a degree 2 
subextension)

Theorem 2: 
computing the
ray class group

Computing:
1) unit group
2) class group
3) principal ideal problem
4) factoring 
5) computing discrete logs
        in finite fields

m

reduces to

Reductions are efficient:
poly(log(∆))
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Motivation:
Some background on 
lattice and crypto
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Quantum and Crypto

 Quantum can break:
 RSA
 Diffie-Hellman
 Elliptic curve crypto
 Buchmann-Williams key-exchange
 Some algebraically homomorphic encr

 Secure against quantum (so far):
 Lattice-based crypto
 McEliece
 MRV proposal based on Hidden Subgroup
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Lattice Based Crypto

 RSA has average-case assumption
 breaking RSA  ≤   factoring

9

 Three directions in lattice-based crypto:
 Improve worst-case assumption
 Make more efficient
 Build more primitives

 Use special lattices

Lattices can provide stronger security:
 worst case lattice problem
                               ≤  breaking cryptosystem
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Lattices

Given 

Infinite number of bases for a lattice

b1, ..., bn ∈ Rn

L =
{∑

aibi : ai ∈ Z
}

b1

b2

b1
b2
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Shortest Vector 
Problem (SVP)

Given 

Compute the shortest vector

b1, ..., bn ∈ Rn

L =
{∑

aibi : ai ∈ Z
}

b1

b2
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b1

b2

NP-Hard
γ = const

Crypto
γ = 2n

LLL
γ = poly(n)

Approximate-SVP 
Complexity
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One-Way Functions 
from Cyclic Lattices

Hash function: rnd
Simple, but inefficient in practice
  A ∈ Zn×m

q

f(y) = Ay mod qA ∈ Zn×m
q

Z[x]/〈f(x)〉
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Worst-case assumption approx-SVP for cyclic 
lattices, and only for one-way

Hash function: ideal lattices from
Worst-case assumption is for ideal lattices. 

A =




a1 a2 a3 z1 z2 z3

a2 a3 a1 ... z2 z3 z1

a3 a1 a2 z3 z1 z2





One-way function: circulant matrix
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Variations

 Goals:
 Improve efficiency

 Want to compete with RSA
 Reduce approximation factor γ

 Something between constant and 2n

Change the worst-case assumption
Use special lattices:

 unique shortest vector
 ideal lattices
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Recent Lattice Work

 Ajtai/Dwork97 
Assume unique-SVP hard

 Regev05: based on SVP
      but the reduction is quantum

 Assume no quantum alg for SVP
 Peikert08: based on SVP
 Ideal lattices:

 Micciancio02: more efficient hash function
 Peikert/Rosen07: improve connection factor 
from poly(n) to log(n)

Assume SVP hard in ideal lattices
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Special Lattices: 
Ideal Lattices

I1 I2
· · ·I3

Ring of
   integers

Ideals

Number field

Ideals map to
   sublattices
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Ideal Lattices and 
Number Fields

Q(θ1) L1, L2, L3, ...

worst-case to average-case reduction
(Peikert/Rosen)

deg       =        dim

Q(ω5)

b3 = (ω2
5 ,ω4

5 ,ω1
5 ,ω3

5)
b4 = (ω3

5 ,ω1
5 ,ω4

5 ,ω2
5)

b2 = (ω1
5 ,ω2

5 ,ω3
5 ,ω4

5)

L2, L3, ... Take all sublattices of L1

b1 = (1, 1, 1, 1)

L1 = {
∑

aibi : ai ∈ Z}
Embeddings:

1, (ω5)1, (ω5)2, (ω5)3

1, (ω2
5)1, (ω2

5)2, (ω2
5)3
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Back to computing 
towers
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Computing Number 
Field Towers

 Input: degree n
 Output: number field with bounded root 
               discriminant ∆1/n

19

Q(θ1) ⊆ Q(θ2) ⊆ Q(θ3) ⊆ · · ·

degree n

Q(θ1)

Q(θ2)

Q(θ3)

≈ ∆1.5/n
√

log n
 Lattice-based crypto - Peikert/Rosen07
   Connection factor
 Error correcting codes - Guruswami, Lenstra
 Rate: R(C) = · · ·−∆1/n

 Existence using Hilbert class fields

 Goal: compute the number fields in the tower
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Computing Number 
Fields from Towers

Strategy:
Start with a number field of small degree
Iterate until degree is n: 

Compute the Hilbert class field

Two good base fields:

The extension depends on the class group.
Degree is a problem in the running time.

Q(
√

9699690) Q(
√
−30030)
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Number Field 
Problems

O

I1 I2 · · ·

Q(θ)

I3

Ring of
   integers

Ideals

1) Unit group      =
    Invertible elements of 

O∗

2) Class group =
   Ideals mod Principal ideals

O

3) Principal ideal problem

Quantum algorithms
 for constant degree cases
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Given number field:

Compute:
αO !→ α
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Hilbert Class Field 
L of K

 Hilbert class field 
   - maximal unramified abelian extension

 Constant root discriminant
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∆1/n

K

L

Degree of L/K
    = size of class group of K

Described by class group of K

1) Could be trivial: no extension, L=K
2) Could be exponential size: can’t write down
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Computing Hilbert 
Class Fields

Theorem 1: 
Efficient quantum algorithm for degree two extensions 
in the Hilbert class field

(Still has constant root discriminant)

Size of class group

Hilbert class field

23
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Computing Hilbert 
Class Fields

Ingredients:
Change to compact representations
Virtual units
The group (O/m)*
Ideal factorization

We show these efficiently reduce to unit 
group, class group, etc.
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Ideal Factorization

Given            compute  

Algorithm:

1. Factor the norm

2. Compute the set of prime ideals    above 
each prime integer 

3. Compute valuations of each prime

I ⊆ O

N(I) = pe1
1 · · · pek

k

I = pe1
1 · · · pek

k

p

p

We show steps 2 and 3 are efficient.

p

p1 p!· · ·
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Computing Primes 
Above p: Easy Case

K = Q(θ)

Easy case: p ! | [OK : Z[θ]]

f(x) = Πifi(x)ei FpFactor over

pi = pOK + fi(θ)OK

The primes above: p

  = minimal polynomial of f θ
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Computing Primes 
Above p: Hard Case

Ip = {x ∈ OK : xm ∈ pOK for some m ∈ Z+}p-Radical:

Ip = ΠipiClaim: product over primes    abovep p

1) Compute Ip

2) Given                              distinct primes over pI = p1 · p2 · · · pk

Compute p1, p2, . . . , pk

OK/Ip
∼= OK/p1 × · · ·×OK/pk

Finites fields

(CRT)
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Computing Primes 
Above p: Hard Case

1) Computing

Ip/pOKCompute      basis ofFp

ker(x !→ xq)
the radical of 

Compute = Ip/pOK

OK/pOK

IpCompute
Use generators of               and    Ip/pOK pOK

Ip = Πipi
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Computing Primes 
Above p: Hard Case

2) Given                              distinct primes overI = p1 · p2 · · · pk

Compute p1, p2, . . . , pk

Compute an idempotent e ∈ OK/I

H1 = I + eOK

H2 = I + (1− e)OK

I = H1H2

Compute

is a nontrivial factorization

e(1− e) = e− e2 = 0 ∈ OK/I

eα + (1− e)α = α ∈ I

(1, 0)2 = (1, 0)

I ⊆ eI + (1− e)I :
I2 + eI + (1− e)I + e(1− e)OK ⊆ I

e != 0, 1
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Summary

 Two basic objects in class field theory that 
also appear in apps in computer science.
 
We gave efficient quantum algorithms for:
1. Degree two extensions in the Hilbert class 

field
2. The ray class group

30



Compute Towers?

 Goal: compute towers
 

 Compute larger subfields of Hilbert class 
fields

 Compute multiple steps in a tower

 Compute ray class field towers
Theorem: Q. alg for 
the ray class group

U
ρ→ (OK/m)∗ ψ→ Clm

φ→ Cl→ 1
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Open Problem: 
Arbitrary Degree

Hilbert class field iterations require class 
group computations (at least)

SVP in ideal lattices must be solved

Use superpositions to bypass this?

Rework definitions so SVP not necessary?

Ideals

32
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Open Problem

 Quantum algorithm for SVP in ideal lattices?
 Two extra features:

 For constant root discriminant, the 
length of the shortest vector can be 
efficiently approximated.
 The lattice is also an ideal: closed under 
multiplication.

b1

b2

NP
γ = const

C
γ = 2n

L
γ = poly(n) 33

33



Main Problems

b1

b2

Unit group Principal ideal problem

Ray Class groupShortest lattice
vector

Hilbert/Ray Class Field
Tower

O

I1 I2
· · ·I3

Q(
√

d)

Input:
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