ALGORITHMS FOR RAY CLASS GROUPS AND HILBERT CLASS FIELDS SEAN HALLGREN

JOINT WITH KIRSTEN EISENTRAEGER PENN STATE

QUANTUM ÅLGORITHMS

Quantum algorithms for number theoretic problems:
Factoring
Pell's equation

- Number fields
 - # Unit group
 - Class group
 - Principal ideal problem

Goal: compute extensions of number fields

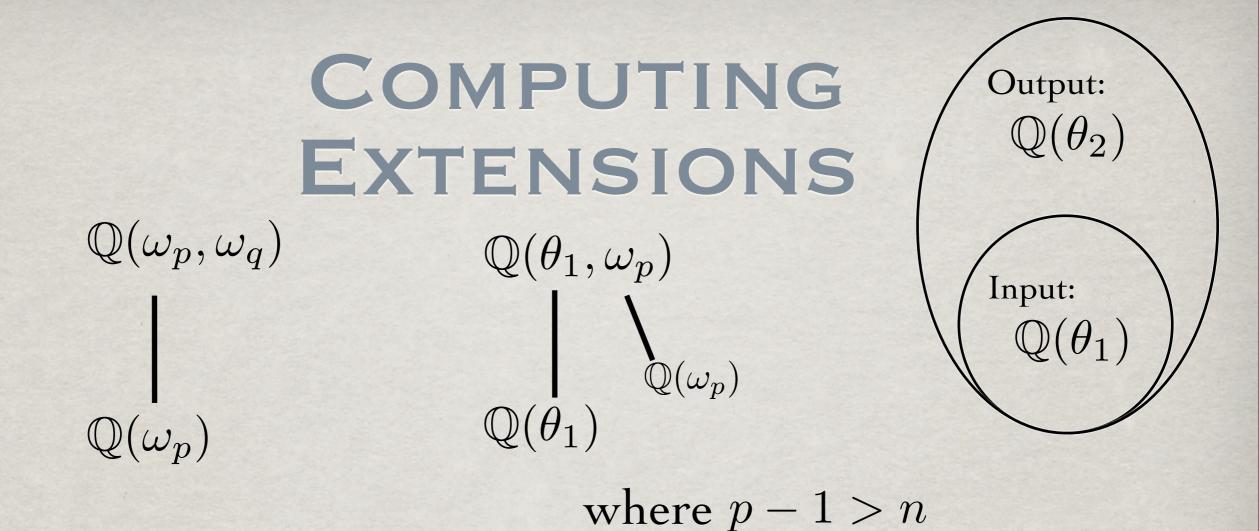
NUMBER FIELD Applications

- # Number fields: $\mathbb{Q}(\theta)$
 - Number field sieve
 - Buchmann-Williams key-exchange
- * Towers of number fields: $\mathbb{Q}(\theta_1) \subseteq \mathbb{Q}(\theta_2) \subseteq \mathbb{Q}(\theta_3) \subseteq \cdots$ * Lattice-based crypto
 - # Error correcting codes

NUMBER FIELD EXAMPLES

n-10) $\mathbb{Q}(\theta) = \{\sum a_i \theta^i : a_i \in \mathbb{Q}\}$ θ algebraic i=01) Q 2) $\mathbb{Q}(\omega_p)$ $\omega_p = e^{2\pi i/p}$ $x^p - 1 = 0$ $a_{p-2}\omega_p^{p-2} + \dots + a_1\omega_p + a_0 \qquad a_i \in \mathbb{Q}$ degree p-1 $\sum \omega_p^i = 0$ i=03) $\mathbb{Q}(\sqrt{d})$ $d \in \mathbb{Z}_{>0}$ $\alpha = a + b\sqrt{d}$ $\alpha \overline{\alpha} = (a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - b^2 d$

4



Hilbert class field of $\mathbb{Q}(\theta_1)$

Maximal abelian unramified extension

 $\mathbb{Q}(\theta_2)$ Abelian: Galios group of $\mathbb{Q}(\theta_2)/\mathbb{Q}(\theta_1)$ Unramified: $\mathfrak{p} \cdot \mathcal{O} = \prod_{\mathfrak{q}} \mathfrak{q}^{e_{\mathfrak{q}}}$ $e_{\mathfrak{q}} = 0, 1 \quad \forall \mathfrak{q}$ $\mathbb{Q}(\theta_1)$ \mathfrak{p} plus real embeddings...

ÅLGORITHMS

Theorem 1:

Computing the Hilbert class field (a degree 2 subextension)

Theorem 2: computing the ray class group

reduces to

reduces to

Reductions are efficient: $poly(\log(\Delta))$

Computing:

unit group
class group
factoring ideals

computing discrete logs in finite fields

Computing:
1) unit group
2) class group
3) principal ideal problem
4) factoring m
5) computing discrete logs in finite fields

MOTIVATION: SOME BACKGROUND ON LATTICE AND CRYPTO

QUANTUM AND CRYPTO

Quantum can break:
RSA
Diffie-Hellman
Elliptic curve crypto
Buchmann-Williams key-exchange

Some algebraically homomorphic encr

Secure against quantum (so far):

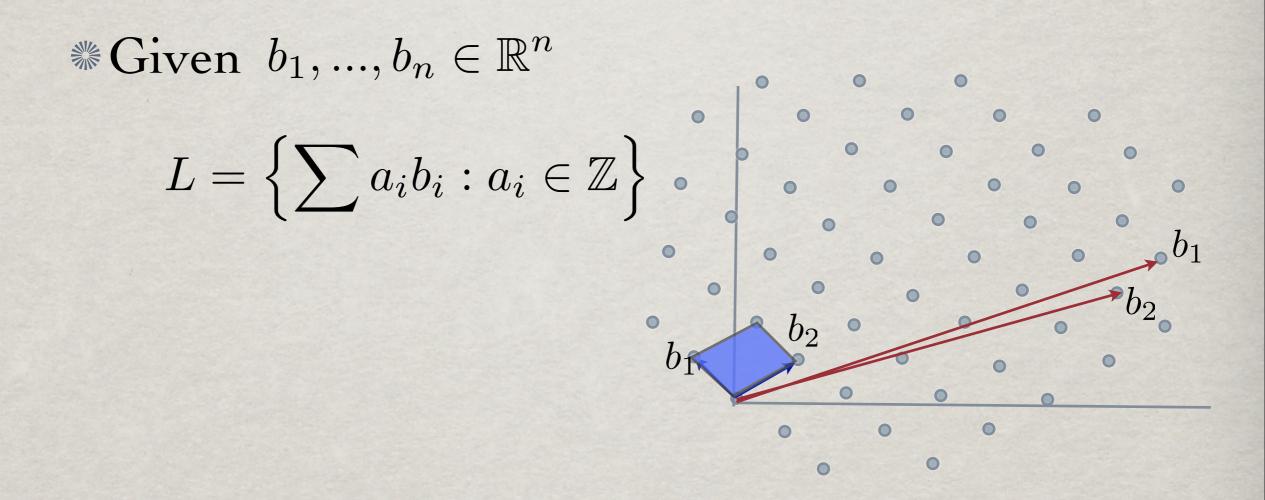
- Lattice-based crypto
 - McEliece
 - MRV proposal based on Hidden Subgroup

LATTICE BASED CRYPTO

* Lattices can provide stronger security:
* worst case lattice problem
< breaking cryptosystem</p>

Three directions in lattice-based crypto:
Improve worst-case assumption
Make more efficient
Build more primitives
Use special lattices

LATTICES



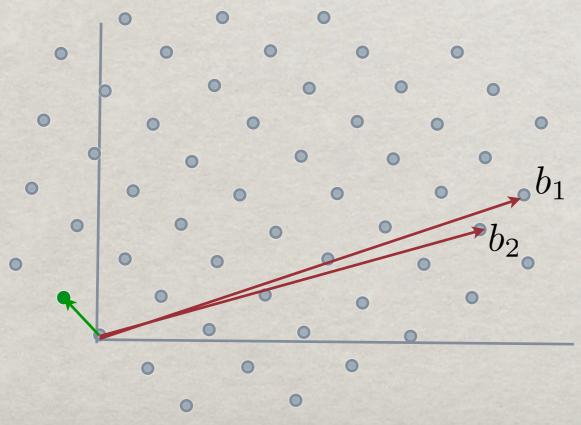
Infinite number of bases for a lattice

SHORTEST VECTOR PROBLEM (SVP)

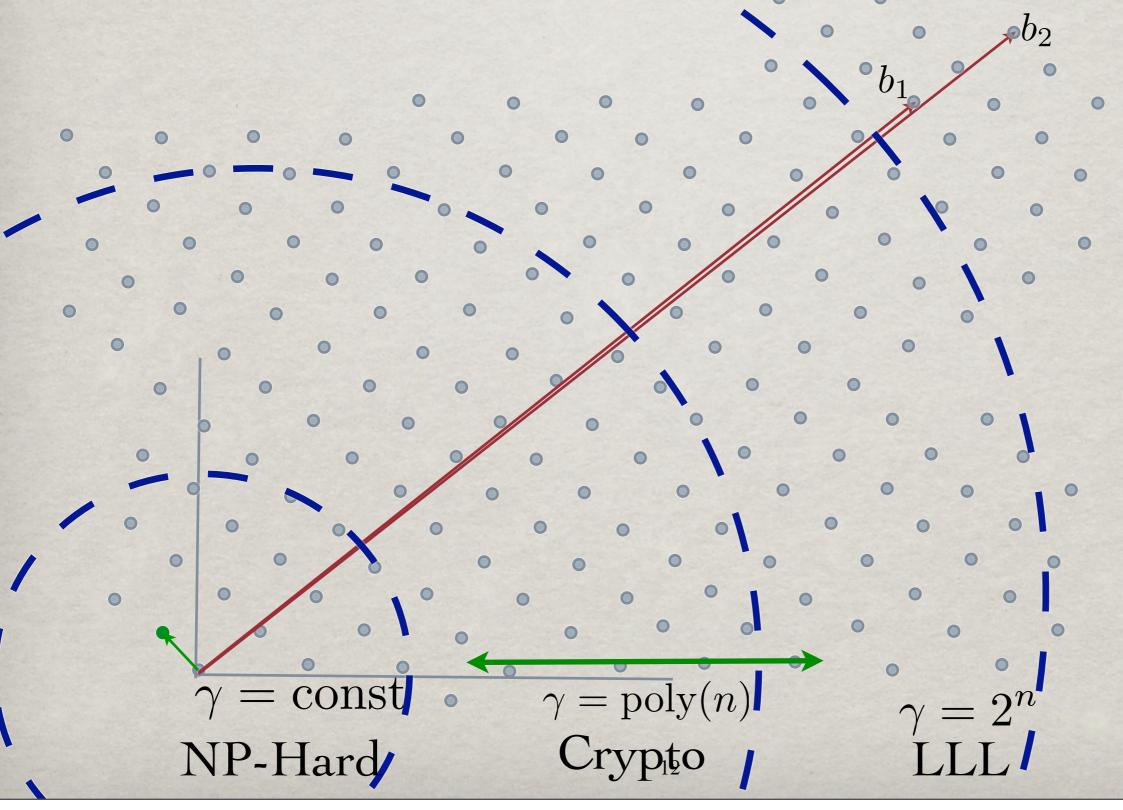
Given $b_1, ..., b_n \in \mathbb{R}^n$

$$L = \left\{ \sum a_i b_i : a_i \in \mathbb{Z} \right\}$$

Compute the shortest vector

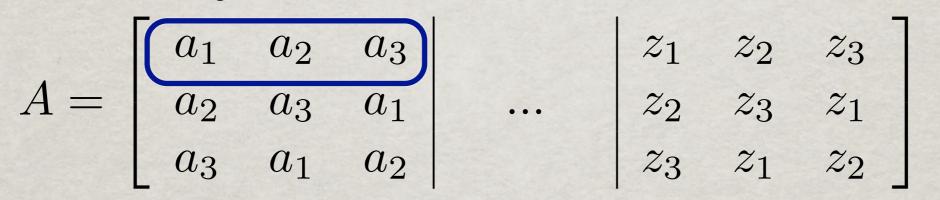


- APPROXIMATE-SVP COMPLEXITY



ONE-WAY FUNCTIONS FROM CYCLIC LATTICES

We Hash function: rnd A ∈ Z_q^{n×m} f(y) = Ay mod q
Simple, but inefficient in practice
We One-way function: circulant matrix A ∈ Z_q^{n×m}



 Worst-case assumption approx-SVP for cyclic lattices, and only for one-way
[™] Hash function: ideal lattices from Z[x]/⟨f(x)⟩
[™] Worst-case assumption is for ideal lattices.

VARIATIONS

Goals:

Improve efficiency
 Want to compete with RSA
 Reduce approximation factor γ
 Something between constant and 2ⁿ

14

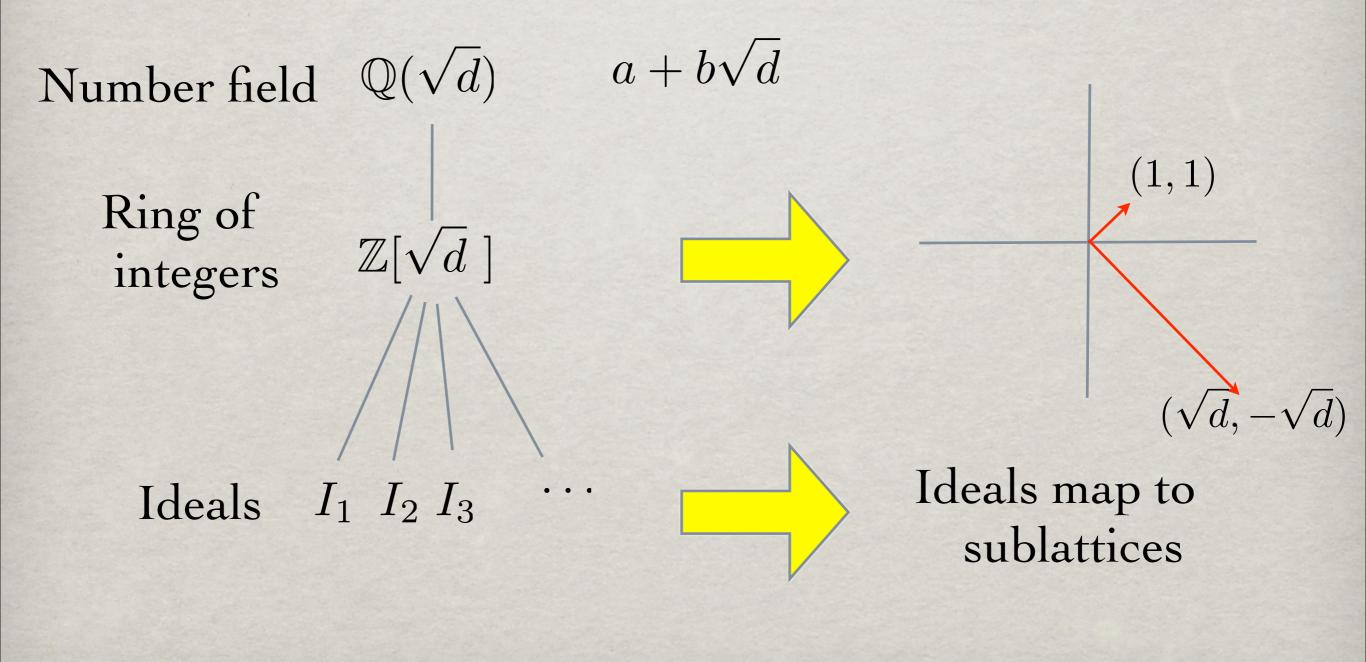
Change the worst-case assumption Use special lattices: unique shortest vector ideal lattices

RECENT LATTICE WORK

* Ajtai/Dwork97
* Assume unique-SVP hard
* Regev05: based on SVP but the reduction is quantum
* Assume no quantum alg for SVP
* Peikert08: based on SVP
* Ideal lattices:

Micciancio02: more efficient hash function
Peikert/Rosen07: improve connection factor from poly(n) to log(n)
Assume SVP hard in ideal lattices

SPECIAL LATTICES: IDEAL LATTICES



IDEAL LATTICES AND NUMBER FIELDS

$$\mathbb{Q}(\theta_1) \longrightarrow L_1, L_2, L_3, \dots$$

deg = dim

worst-case to average-case reduction (Peikert/Rosen)

$$\mathbb{Q}(\omega_5) \longrightarrow L_1 = \{\sum a_i b_i : a_i \in \mathbb{Z}\}$$

Embeddings:

 $1, (\omega_5)^1, (\omega_5)^2, (\omega_5)^3$ $1, (\omega_5^2)^1, (\omega_5^2)^2, (\omega_5^2)^3$

$$b_{1} = (1, 1, 1, 1)$$

$$b_{2} = (\omega_{5}^{1}, \omega_{5}^{2}, \omega_{5}^{3}, \omega_{5}^{4})$$

$$b_{3} = (\omega_{5}^{2}, \omega_{5}^{4}, \omega_{5}^{1}, \omega_{5}^{3})$$

$$b_{4} = (\omega_{5}^{3}, \omega_{5}^{1}, \omega_{5}^{4}, \omega_{5}^{2})$$

Fake all sublattices of L_{1}

 $L_2, L_3, ...$

BACK TO COMPUTING TOWERS

COMPUTING NUMBER FIELD TOWERS

- Input: degree n
 Output: number field with bounded root
 discriminant $\Delta^{1/n}$ degree n
- [∞] Lattice-based crypto Peikert/Rosen07 Connection factor ≈ Δ^{1.5/n}√log n
 [∞] Error correcting codes - Guruswami, Lenstra Rate: R(C) = ··· − Δ^{1/n}
- ^{**} Existence using Hilbert class fields
 Q(θ₁) ⊆ Q(θ₂) ⊆ Q(θ₃) ⊆ ···
 ^{**} Goal: compute the number fields in the tower

 $\mathbb{Q}(\theta_3)$

 $\mathbb{Q}(\theta_2)$

COMPUTING NUMBER FIELDS FROM TOWERS

Strategy:

Start with a number field of small degree Iterate until degree is n: Compute the Hilbert class field

Two good base fields:

 $\mathbb{Q}(\sqrt{9699690}) \qquad \mathbb{Q}(\sqrt{-30030})$

The extension depends on the class group. Degree is a problem in the running time.

NUMBER FIELD PROBLEMS

Given number field:

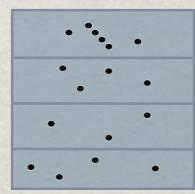
Ring of integers

Ideals $I_1 I_2 I_3$.

Compute: 1) Unit group $\mathcal{O}^*=$ Invertible elements of \mathcal{O}

 $\mathbb{Q}(\theta)$

2) Class group = Ideals mod Principal ideals



3) Principal ideal problem $\alpha \mathcal{O} \mapsto \alpha$

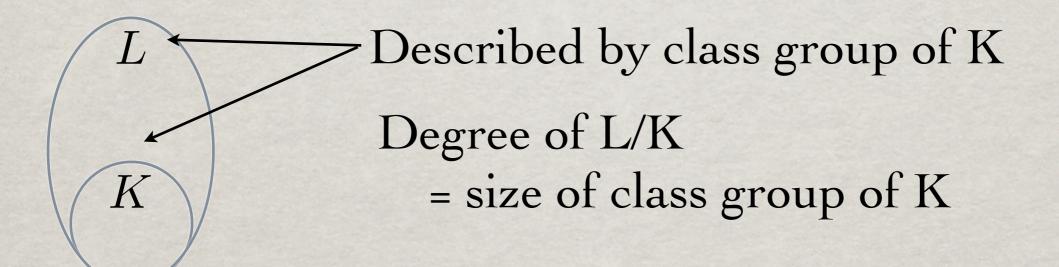
Quantum algorithms for constant degree cases

HILBERT CLASS FIELD L OF K

Hilbert class field

- maximal unramified abelian extension

Constant root discriminant $\Delta^{1/n}$



Could be trivial: no extension, L=K
 Could be exponential size: can't write down

COMPUTING HILBERT CLASS FIELDS

Theorem 1:

Hilbert class field

Efficient quantum algorithm for degree two extensions in the Hilbert class field

Size of class group

(Still has constant root discriminant)

COMPUTING HILBERT CLASS FIELDS

Ingredients:

Change to compact representations
Virtual units
The group (O/m)*
Ideal factorization
We show these efficiently reduce to unit group, class group, etc.

IDEAL FACTORIZATION

Given $I \subseteq \mathcal{O}$ compute $I = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_k^{e_k}$

Algorithm:

1. Factor the norm $N(I) = p_1^{e_1} \cdots p_k^{e_k}$

2. Compute the set of prime ideals p above each prime integer p $p_1 \dots p_\ell$

3. Compute valuations of each prime

We show steps 2 and 3 are efficient.

COMPUTING PRIMES ABOVE P: EASY CASE

 $K = \mathbb{Q}(\theta)$ Easy case: $p \not\mid [\mathcal{O}_K : \mathbb{Z}[\theta]]$ $f = \text{minimal polynomial of } \theta$ Factor $f(x) = \prod_i f_i(x)^{e_i}$ over \mathbb{F}_p The primes above: p $\mathfrak{p}_i = p\mathcal{O}_K + f_i(\theta)\mathcal{O}_K$

COMPUTING PRIMES ABOVE P: HARD CASE

p-Radical: $I_p = \{x \in \mathcal{O}_K : x^m \in p\mathcal{O}_K \text{ for some } m \in \mathbb{Z}^+\}$

Claim: $I_p = \prod_i \mathfrak{p}_i$ product over primes \mathfrak{p} above p

$$\mathcal{O}_K/I_p \cong \mathcal{O}_K/\mathfrak{p}_1 \times \cdots \times \mathcal{O}_K/\mathfrak{p}_k$$
 (CRT)

Finites fields

 Compute I_p
 Given I = p₁ · p₂ · · · p_k distinct primes over p Compute p₁, p₂, ..., p_k

COMPUTING PRIMES ABOVE P: HARD CASE

1) Computing $I_p = \prod_i \mathfrak{p}_i$

Compute \mathbb{F}_p basis of $I_p/p\mathcal{O}_K$ Compute $\ker(x \mapsto x^q) = I_p/p\mathcal{O}_K$ the radical of $\mathcal{O}_K/p\mathcal{O}_K$

Compute I_p Use generators of $I_p/p\mathcal{O}_K$ and $p\mathcal{O}_K$

COMPUTING PRIMES ABOVE P: HARD CASE

2) Given $I = \mathfrak{p}_1 \cdot \mathfrak{p}_2 \cdots \mathfrak{p}_k$ distinct primes over Compute $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_k$

Compute an idempotent $e \in \mathcal{O}_K/I$ $e \neq 0, 1$ $e(1-e) = e - e^2 = 0 \in \mathcal{O}_K/I$ $(1,0)^2 = (1,0)$

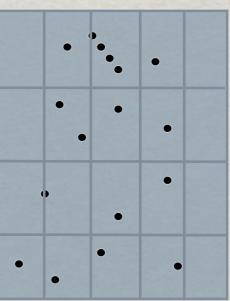
Compute

$$\begin{split} H_1 &= I + e\mathcal{O}_K \\ H_2 &= I + (1-e)\mathcal{O}_K \\ I &= H_1H_2 \text{ is a nontrivial factorization} \\ I^2 + eI + (1-e)I + e(1-e)\mathcal{O}_K \subseteq I \\ I &\subseteq eI + (1-e)I \colon e\alpha + (1-e)\alpha = \alpha \in I \end{split}$$

Two basic objects in class field theory that also appear in apps in computer science.

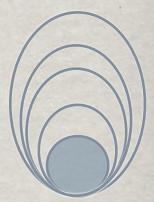
We gave efficient quantum algorithms for:
 1. Degree two extensions in the Hilbert class field

2. The ray class group



COMPUTE TOWERS?

Goal: compute towers



- Compute larger subfields of Hilbert class fields
- Compute multiple steps in a tower
- Compute ray class field towers [™] Theorem: Q. alg for the ray class group $U \xrightarrow{\rho} (\mathcal{O}_K/\mathfrak{m})^* \xrightarrow{\psi} \operatorname{Cl}_\mathfrak{m} \xrightarrow{\phi} \operatorname{Cl} \to 1$

OPEN PROBLEM: ARBITRARY DEGREE

Hilbert class field iterations require class group computations (at least)

SVP in ideal lattices must be solved

Use superpositions to bypass this?

Rework definitions so SVP not necessary?

32

Ideals

OPEN PROBLEM

Quantum algorithm for SVP in ideal lattices?
Two extra features:

For constant root discriminant, the length of the shortest vector can be efficiently approximated.
The lattice is also an ideal: closed under multiplication.

cons

MAIN PROBLEMS

