ALGORITHMS FOR RAY
CLASS GROUPS AND
HILBERT CLASS FIELDS
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A

¢ Quantum algorithms for number theoretic

problems:

2

5 Factoring

A

¢ Pell’s equation

5% Number fields

Al

¢ Umit group

Al

2 Class group

Al

¢ Principal 1deal problem

A

5 Goal: compute extensions of number fields




NUMBER FIELD
APPLICATIONS

s¢ Number fields: Q(0)

5 Number field sieve

¢ Buchmann-Williams key-exchange

¢ Towers of number fields: Q(6;) C Q(62) C Q(A3) C - -
¢ Lattice-based crypto

¢ Error correcting codes




NUMBER FIELD

EXAMPLES
0) Q) = {Z a;0" : a; € Q} 0 algebraic
1) @ 1=0
2y Olw,) ek rhasdi—1)
ap—ZWZ};_Q i R a1Wp -+ Qg e @
degree p — 1 piw; =0
=
3) Q(Wd)  deZsg
o= a -+ bVd

o = (a4 bVd)(a — bVd) = a® — b2d

4




@(wpaw(J) Q(@l,wp)

Q(wy) Q(601)

where p — 1 > n
Hﬂber t ClELSS ﬁeld Of Q(H 1) Maximal abelian unramified extension

Abelian: Galios group of Q(62)/Q(61)

Q(62) Unramified: ]3 O =1l4q™
S O 1 Vq

@ (0 1 ) p plus real embeddings...




Theorem 1:

Computing:
Computing the 1) unit group
Hilbert class field reduces to 2) class group
(a degree 2 3) tactoring 1deals
subextension) 4) computing discrete logs
in finite fields
Theorem 2: Computing:
computing the 1) unit group

reduces to

ray class group 2) class group

3) principal 1deal problem
4) factoring m

Reductions are efthcient: 5) computing discrete logs

poly(log(A)) in finite fields




MOTIVATION:
SOME BACKGROUND ON
LATTICE AND CRYPTO




A

¢ Quantum can break:
% RSA
s¢ Dithie-Hellman

A

¢ Elhptic curve crypto

A

¢ Buchmann-Williams key-exchange

Al

¢ Some algebraically homomorphic encr

\\/
7IN

Al
Zh\;

Secure against quantum (so far):

8




Al

¢ RSA has average-case assumption

¢ breaking RSA =< factoring

2

2« Lattices can provide stronger security:

Al

2t worst case lattice problem
< breaking cryptosystem

A

2¢ Three directions 1n lattice-based crypto:

A

¢ Improve worst-case assumption

Al

st Make more efficient

Al

¢ Build more primitives

NA

¢ Use speaial lattices




LATTICES

% Given by,...,b, € R"

0] o (0]
o o o (0] (0]
> o o o 0
L:{E aibi:aiEZ}o ° o o o o
G o o 0 o
(0] (0] o
o (0]

2

2¢ Infinite number of bases for a lattice
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SHORTEST VECTOR
PROBLEM (SVP)

% Given bp,....b, € R"
L = {Zazbz S0 Z}

¢ Compute the shortest vector

o o o

11




-~ — APPROXIMATE-SVP
COMPLEXITY

\ o (o)
(o) (o) ()
: \ "0
(0] (0 (0] () (0] (0]
(0] (0]
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* Hash tunction: rnd A € Z;*™  f(y) = Ay mod ¢

Ny

¢ Simple, but inefficient 1in practice

A

¢ One-way function: circulant matrix A € Zg’xm

a; ao as 2t o e
= as a3 Qaq R e |
as ai; as Sl

¢ Worst-case assumption approx-SVP for cyclic
lattices, and only for one-way

¢ Hash function: 1deal lattices from Z[z]|/(f(x))

* Worst-case assumption 1s for ideal lattices.
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25 GO&ISI

A

¢ Improve efficiency
¢ Want to compete with RSA
Reduce approximation factor ¥y

VA

S Something between constant and 2°

\/
7IN

Al
ZI\\y

Az

A

¢ Change the worst-case assumption
Use speaial lattices:

unique shortest vector ‘\ £
s¢ 1deal lattices /

14
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2 Ajtai/Dwork97 \ .
s

¢ Assume unique-SVP hard .
¢ Regev(05: based on SVP o
but the reduction 1s quantum e T s

¢ Assume no quantum alg for SVP

Peikert08: based on SVP

Ideal lattices:
¢ Micciancio02: more ethicient hash function

¢ Peikert/Rosen(07: improve connection factor

\\/
7IN

Al
ZI\\

\V/
7IN

Al
Z\;

from poly(n) to log(n)
¢ Assume SVP hard 1n 1deal lattices
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SPECIAL LATTICES:
IDEAL LATTICES

Number field @(\/E) a+bvd

Ring of

Integers L [\/E |

Ideals 1I; Is I

16

Ideals map to
sublattices




IDEAL LATTICES AND
NUMBER FIELDS

Q(641) Sl o o
deg = dim
worst-case to average-case reduction
(Peikert/Rosen)
Q(ws) Sl = {Z a;b; : a; € 7}
Embeddings:
1, (w5)", ()2, (w5 =, 1L 1, 1)
1, (), Wf)?, (wd)® = (w5, w5, “’5 » “’?f )
(w§7w57w5vw§)

b4 (wgaw%7w§7w§)
Eoailig oz Take all sublattices of L1
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BACK TO COMPUTING
TOWERS




¢ Input: degree n Ve .
Output: number field with bounded root / 5
discriminant Al/" degree n Q(03)
¢ Lattice-based crypto - Peikert/Rosen07 Q(62)

Connection factor ~ AM/",/logn
¢ Error correcting codes - Guruswami, Lenstra

Rate: R(C) =@ Al/"

Q(01)

A

¢ Existence using Hilbert class fields

Q1) € Q(F2) € Q(f3) C ---

¢ Goal: compute the number fields in the tower

19
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COMPUTING NUMBER
FIELDS FROM TOWERS

Strategy:
Start with a number field of small degree

I[terate until degree 1s n:

Compute the Hilbert class field

/ﬂ\ Two good base fields:

Q(V9699690)  Q(v/—30030)

m ' The extension depends on the class group.
\ / Degree 1s a problem 1n the running time.
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Given number field:
Q(0) 2) Class group =

Ring of 5 Ideals mod Principal ideals

Integers

Ideals 11 Is I3

3) Principal 1deal problem
Compute:

1) Unit group O*

Invertible elements of O

o — «

Quantum algorithms
for constant degree cases

/ 21
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¢ Hilbert class field

- maximal unramified abelian extension

A

2« Constant root discriminant Al/™

L/ Described by class group of K
Degree of /K
K = size of class group of K

1) Could be trivial: no extension, L=K
2) Could be exponential size: can’t write down

22
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COMPUTING HILBERT
CLASS FIELDS

Hilbert class field A

Size of class group

—

Theorem 1:
Efficient quantum algorithm for degree two extensions

in the Hilbert class field

(Still has constant root discriminant)
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COMPUTING HILBERT
CLASS FIELDS

S Ingredientsz

Al

¢ Change to compact representations

Al

s¢ Virtual units

¢ The group (O/m)*

K2

¢ Ideal factorization

A

¢ We show these efficiently reduce to unit
group, class group, etc.
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Given I C O compute [ = p§t - - p$*
Algorithm:
1. Factor the norm N (1) = p{* - - - p7*

2. Compute the set of prime 1deals p above

each prime integer p P1 ...

3. Compute valuations of each prime

We show steps 2 and 3 are efthcient.

Pe
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COMPUTING PRIMES
ABOVE P: EASY CASE

K =Q(0)

Easy case: p [ |Ok : Z|0]]
B ol omaTof
Factor f(x) =1L, f;(x)® over F,

The primes above: p
pi = POk + fi(0)Ok




COMPUTING PRIMES
ABOVE P: HARD CASE

p-Radical: I, = {z € Ok : 2™ € pO for some m € Z™}

Claim: I, =1II;p; product over primes p above p

O b= O /b o xOp/pr = (ERB)

e L

Finites fields

1) Compute I,
2) Given I = Py - po - - -pi distinct primes over p
Compute p1,p2, ..., Pk




COMPUTING PRIMES
ABOVE P: HARD CASE

1) Computing [, = IL;p;
Compute [, basis of I,,/pOx

Compute ker(x — z?) = I,/pOxk
the radical of Ok /pOk

Compute 1,
Use generators of I,,/pOk and pOg




COMPUTING PRIMES
ABOVE P: HARD CASE

2) Given [ =p; - py-- - Pp distinct primes over
Compute py,po, ..., Pk

Compute an idempotent e € O /1 e+ 0,1
6(1—6):6—62:OEOK/I 1,0)2 = (1,0)
Compute
Hi=1+e0g

H2:[—|_(]._€)OK
I = H, H, 1s a nontrivial factorization
el il e s =
ICel+(1—-¢e)l: ea+(l—ea=acl
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Al
K\

Two basic objects 1n class field theory that
also appear 1n apps 1n computer science.

!

¢ We gave efficient quantum algorithms for:

o

Al

o\

1. Degree two extensions in the Hilbert class
feld
2. The ray class group
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¢ Goal: compute towers

Al

¢ Compute larger subfields of Hilbert class
felds

Al

¢ Compute multiple steps in a tower

Al

¢ Compute ray class field towers

¢ Theorem: Q. alg for

the ray class group o\ 2t

(
e (O Sot b orai s N\
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OPEN PROBLEM:
ARBITRARY DEGREE

¢ Hilbert class field iterations require class
group computations (at least)

Ideals

% SVP 1n 1deal lattices must be solved

¢ Use superpositions to bypass this?

¢ Rework definitions so SVP not necessary?

32
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¢ Quantum algorithm for SVP in 1deal lattices?

Al

2¢ For constant root discriminant, the
length of the shortest vector can be
efﬁciently approximated.

5¢ The lattice 1s also an 1deal: closed under
~ multiplication.

¥ = const = poly(n, N = 21 33
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MAIN PROBLEMS

Q(Vd)
Input: I

I I I3

Shortest lattice
vector

/N

Unit group

Ol.

34

Principal 1deal proble




