(Quantum)
 ALGORITHMS FOR RAY

 CLASS GROUPS AND HILBERT CLASS FIELDS SEAN HALLGRENJOINT WITH
KIRSTEN EISENTRAE GER PENN STATE

QUANTUM ALGORITHMS

彞 Quantum algorithms for number theoretic problems：
粼 Factoring
数 Pell＇s equation
筫 Number fields
糕 Unit group
龄 Class group
暽 Principal ideal problem
滕 Goal：compute extensions of number fields

NUMBER FIELD APPLICATIONS

彞 Number fields： $\mathbb{Q}(\theta)$
錄 Number field sieve
＊Buchmann－Williams key－exchange

蛙 Towers of number fields： $\mathbb{Q}\left(\theta_{1}\right) \subseteq \mathbb{Q}\left(\theta_{2}\right) \subseteq \mathbb{Q}\left(\theta_{3}\right) \subseteq \cdots$
䅉 Lattice－based crypto
暏 Error correcting codes

NUMBER FIELD EXAMPLES

0) $\mathbb{Q}(\theta)=\left\{\sum_{i=0}^{n-1} a_{i} \theta^{i}: a_{i} \in \mathbb{Q}\right\} \quad \theta$ algebraic
1) \mathbb{Q}
2) $\mathbb{Q}\left(\omega_{p}\right)$

$$
\omega_{p}=e^{2 \pi i / p} \quad x^{p}-1=0
$$

$$
\begin{aligned}
& a_{p-2} \omega_{p}^{p-2}+\cdots+a_{1} \omega_{p}+a_{0} \quad a_{i} \in \mathbb{Q} \\
& \text { degree } p-1 \quad \sum_{i=0}^{p-1} \omega_{p}^{i}=0
\end{aligned}
$$

3) $\mathbb{Q}(\sqrt{d}) \quad d \in \mathbb{Z}_{>0}$

$$
\begin{aligned}
& \alpha=a+b \sqrt{d} \\
& \alpha \bar{\alpha}=(a+b \sqrt{d})(a-b \sqrt{d})=a^{2}-b^{2} d
\end{aligned}
$$

COMPUTING EXTENSIONS
 $\mathbb{Q}\left(\omega_{p}, \omega_{q}\right)$
 $\left.\right|_{\mathbb{Q}\left(\omega_{p}\right)}$

Input:
$\mathbb{Q}\left(\theta_{1}\right)$
where $p-1>n$

Hilbert class field of $\mathbb{Q}\left(\theta_{1}\right)$
$\mathbb{Q}\left(\theta_{2}\right)$
Abelian: Galios group of $\mathbb{Q}\left(\theta_{2}\right) / \mathbb{Q}\left(\theta_{1}\right)$
Unramified: $\mathfrak{p} \cdot \mathcal{O}=\Pi_{\mathfrak{q}} \mathfrak{q}^{e_{\mathfrak{q}}}$
$e_{\mathfrak{q}}=0,1 \quad \forall \mathfrak{q}$
$\mathfrak{p} \quad$ plus real embeddings...

ALGORITHMS

Theorem 1:
Computing the Hilbert class field
(a degree 2 subextension)

Theorem 2:
computing the ray class group

Computing:

1) unit group
2) class group
3) factoring ideals
4) computing discrete logs in finite fields

Computing:

1) unit group
2) class group
3) principal ideal problem
4) factoring \mathfrak{m}
5) computing discrete logs in finite fields

MOTIVATION: SOME BACKGROUND ON LATTICE AND CRYPTO

QUANTUM AND CRYPTO

氆 Quantum can break：
粦 RSA
彞 Diffie－Hellman
龉 Elliptic curve crypto
敖 Buchmann－Williams key－exchange
蝮 Some algebraically homomorphic encr
敖 Secure against quantum（so far）：
Lattice－based crypto
蚛 McEliece
䗲 MRV proposal based on Hidden Subgroup

LATTICE BASED CRYPTO

糘 RSA has average－case assumption櫡 breaking RSA \leq factoring

业Lattices can provide stronger security：
worst case lattice problem
\leq breaking cryptosystem
䩚 Three directions in lattice－based crypto：
粼 Improve worst－case assumption
傫 Make more efficient
镂 Build more primitives
镂 Use special lattices

LATTICES

潾 Given $b_{1}, \ldots, b_{n} \in \mathbb{R}^{n}$

$$
L=\left\{\sum a_{i} b_{i}: a_{i} \in \mathbb{Z}\right\}
$$

旛 Infinite number of bases for a lattice

SHORTEST VECTOR PROBLEM (SVP)

綦Given $b_{1}, \ldots, b_{n} \in \mathbb{R}^{n}$

$$
L=\left\{\sum a_{i} b_{i}: a_{i} \in \mathbb{Z}\right\}
$$

Compute the shortest vector

ONE－WAY FUNCTIONS FROM CYCLIC LATTICES

Hash function：rnd $A \in \mathbb{Z}_{q}^{n \times m} \quad f(y)=A y \bmod q$諩Simple，but inefficient in practice
数 One－way function：circulant matrix $A \in \mathbb{Z}_{q}^{n \times m}$
$A=\left[\begin{array}{lll}\left.\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{2} & a_{3} & a_{1} \\ a_{3} & a_{1} & a_{2}\end{array} \right\rvert\, \quad \ldots & \left.\left\lvert\, \begin{array}{ccc}z_{1} & z_{2} & z_{3} \\ z_{2} & z_{3} & z_{1} \\ z_{3} & z_{1} & z_{2}\end{array}\right.\right]\end{array}\right]$
䗒 Worst－case assumption approx－SVP for cyclic lattices，and only for one－way
並 Hash function：ideal lattices from $\mathbb{Z}[x] /\langle f(x)\rangle$
漛 Worst－case assumption is for ideal lattices．

VARIATIONS

Goals：
粼 Improve efficiency諩 Want to compete with RSA
䗒 Reduce approximation factor γ
録 Something between constant and $2^{\text {n }}$
Change the worst－case assumption Use special lattices：
鳖 unique shortest vector
蚿 ideal lattices

RECENT LATTICE WORK

期 Ajtai／Dwork97
桃 Assume unique－SVP hard
教 Regev05：based on SVP but the reduction is quantum
教 Assume no quantum alg for SVP
㵲 Peikert08：based on SVP
對 Ideal lattices：
諩 Micciancio02：more efficient hash function
铔 Peikert／Rosen07：improve connection factor from poly（n）to $\log (n)$
粰Assume SVP hard in ideal lattices

SPECIAL LATTICES: IDEAL LATTICES

Number field $\mathbb{Q}(\sqrt{d}) \quad a+b \sqrt{d}$

Ring of integers

Ideals $\quad I_{1} \quad I_{2} \quad I_{3}$

$$
\mathbb{Z}[\sqrt{d}]
$$

. . -•

Ideals map to sublattices

IDEAL LATTICES AND NUMBER FIELDS

$$
\begin{aligned}
\mathbb{Q}\left(\theta_{1}\right) \longrightarrow & L_{1}, L_{2}, L_{3}, \ldots \\
\operatorname{deg}= & \operatorname{dim} \\
& \text { worst-case to average-case reduction } \\
& (\text { Peikert/Rosen) }
\end{aligned}
$$

$$
\mathbb{Q}\left(\omega_{5}\right) \longrightarrow L_{1}=\left\{\sum a_{i} b_{i}: a_{i} \in \mathbb{Z}\right\}
$$

Embeddings:

$$
\begin{array}{ll}
1,\left(\omega_{5}\right)^{1},\left(\omega_{5}\right)^{2},\left(\omega_{5}\right)^{3} & b_{1}=(1,1,1,1) \\
1,\left(\omega_{5}^{2}\right)^{1},\left(\omega_{5}^{2}\right)^{2},\left(\omega_{5}^{2}\right)^{3} & b_{2}=\left(\omega_{5}^{1}, \omega_{5}^{2}, \omega_{5}^{3}, \omega_{5}^{4}\right) \\
& b_{3}=\left(\omega_{5}^{2}, \omega_{5}^{4}, \omega_{5}^{1}, \omega_{5}^{3}\right) \\
& b_{4}=\left(\omega_{5}^{3}, \omega_{5}^{1}, \omega_{5}^{4}, \omega_{5}^{2}\right)
\end{array}
$$

$L_{2}, L_{3}, \ldots \quad$ Take all sublattices of L_{1}

BACK TO COMPUTING TOWERS

COMPUTING NUMBER FIELD TOWERS

靿 Input：degree n
Output：number field with bounded root discriminant $\Delta^{1 / n}$

彞 Lattice－based crypto－Peikert／Rosen07
Connection factor $\approx \Delta^{1.5 / n} \sqrt{\log n}$
緮 Error correcting codes－Guruswami，Lenstra Rate：$R(C)=\cdots-\Delta^{1 / n}$

櫡 Existence using Hilbert class fields

$$
\mathbb{Q}\left(\theta_{1}\right) \subseteq \mathbb{Q}\left(\theta_{2}\right) \subseteq \mathbb{Q}\left(\theta_{3}\right) \subseteq \cdots
$$

敖 Goal：compute the number fields in the tower

COMPUTING NUMBER FIELDS FROM TOWERS

Strategy:

: Start with a number field of small degree Iterate until degree is n :
Compute the Hilbert class field
Two good base fields:

$$
\mathbb{Q}(\sqrt{9699690}) \quad \mathbb{Q}(\sqrt{-30030})
$$

The extension depends on the class group. Degree is a problem in the running time.

NUMBER FIELD PROBLEMS

Given number field:
$\mathbb{Q}(\theta)$
Ring of integers
\mathcal{O}

Compute:

1) Unit group $\mathcal{O}^{*}=$

Invertible elements of \mathcal{O}

2) Class group = Ideals mod Principal ideals

3) Principal ideal problem $\alpha \mathcal{O} \mapsto \alpha$

Quantum algorithms for constant degree cases

Hilbert CLAss FiELD L OF K

兟 Hilbert class field

- maximal unramified abelian extension綦 Constant root discriminant $\Delta^{1 / n}$
$L \longrightarrow$ Described by class group of K Degree of L/K
= size of class group of K

1) Could be trivial: no extension, $\mathrm{L}=\mathrm{K}$
2) Could be exponential size: can't write down

COMPUTING HILBERT CLASS FIELDS

Hilbert class field
Size of class group

Theorem 1:

Efficient quantum algorithm for degree two extensions in the Hilbert class field
(Still has constant root discriminant)

COMPUTING HILBERT CLASS FIELDS

䩮 Ingredients：
諩 Change to compact representations
靿 Virtual units
霓The group（ O / m ）＊
数 Ideal factorization
＊We show these efficiently reduce to unit group，class group，etc．

IDEAL FACTORIZATION

Given $I \subseteq \mathcal{O}$ compute $I=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{k}^{e_{k}}$
Algorithm:

1. Factor the norm $N(I)=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$
2. Compute the set of prime ideals \mathfrak{p} above each prime integer p
3. Compute valuations of each prime

We show steps 2 and 3 are efficient.

COMPUTING PRIMES ABOVE P: EASY CASE

$K=\mathbb{Q}(\theta)$
Easy case: $p \nmid\left[\mathcal{O}_{K}: \mathbb{Z}[\theta]\right]$
$f=$ minimal polynomial of θ
Factor $f(x)=\Pi_{i} f_{i}(x)^{e_{i}}$ over \mathbb{F}_{p}
The primes above: p

$$
\mathfrak{p}_{i}=p \mathcal{O}_{K}+f_{i}(\theta) \mathcal{O}_{K}
$$

COMPUTING PRIMES ABOVE P: HARD CASE

p-Radical: $I_{p}=\left\{x \in \mathcal{O}_{K}: x^{m} \in p \mathcal{O}_{K}\right.$ for some $\left.m \in \mathbb{Z}^{+}\right\}$
Claim: $\quad I_{p}=\Pi_{i} \mathfrak{p}_{i} \quad$ product over primes \mathfrak{p} above p

$$
\mathcal{O}_{K} / I_{p} \cong \mathcal{O}_{K} / \mathfrak{p}_{1} \times \cdots \times \mathcal{O}_{K} / \mathfrak{p}_{k} \quad(\mathrm{CRT})
$$

1) Compute I_{p}
2) Given $I=\mathfrak{p}_{1} \cdot \mathfrak{p}_{2} \cdots \mathfrak{p}_{k}$ distinct primes over p

Compute $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{k}$

COMPUTING PRIMES ABOVE P: HARD CASE

1) Computing $I_{p}=\Pi_{i} \mathfrak{p}_{i}$

Compute \mathbb{F}_{p} basis of $I_{p} / p \mathcal{O}_{K}$
Compute $\operatorname{ker}\left(x \mapsto x^{q}\right)=I_{p} / p \mathcal{O}_{K}$ the radical of $\mathcal{O}_{K} / p \mathcal{O}_{K}$

Compute I_{p}
Use generators of $I_{p} / p \mathcal{O}_{K}$ and $p \mathcal{O}_{K}$

COMPUTING PRIMES ABOVE P: HARD CASE

2) Given $I=\mathfrak{p}_{1} \cdot \mathfrak{p}_{2} \cdots \mathfrak{p}_{k}$ distinct primes over

Compute $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{k}$
Compute an idempotent $e \in \mathcal{O}_{K} / I \quad e \neq 0,1$

$$
e(1-e)=e-e^{2}=0 \in \mathcal{O}_{K} / I \quad(1,0)^{2}=(1,0)
$$

Compute

$$
\begin{aligned}
& H_{1}=I+e \mathcal{O}_{K} \\
& H_{2}=I+(1-e) \mathcal{O}_{K}
\end{aligned}
$$

$I=H_{1} H_{2}$ is a nontrivial factorization

$$
\begin{aligned}
& I^{2}+e I+(1-e) I+e(1-e) \mathcal{O}_{K} \subseteq I \\
& I \subseteq e I+(1-e) I: \quad e \alpha+(1-e) \alpha=\alpha \in I
\end{aligned}
$$

SUMMARY

鱕 Two basic objects in class field theory that also appear in apps in computer science.

数We gave efficient quantum algorithms for: 1. Degree two extensions in the Hilbert class field
2. The ray class group

COMPUTE TOWERS？

政 Goal：compute towers
螦 Compute larger subfields of Hilbert class fields

粼 Compute multiple steps in a tower
粼 Compute ray class field towers数 Theorem：Q．alg for the ray class group

$$
U \xrightarrow{\rho}\left(\mathcal{O}_{K} / \mathfrak{m}\right)^{*} \xrightarrow{\psi} \mathrm{Cl}_{\mathfrak{m}} \xrightarrow{\phi} \mathrm{Cl} \rightarrow 1
$$

OPEN PROBLEM： ARBITRARY DEGREE

彞 Hilbert class field iterations require class group computations（at least）

釈SVP in ideal lattices must be solved
蝶Use superpositions to bypass this？

Ideals

龉 Rework definitions so SVP not necessary？

OPEN PROBLEM

粼 Quantum algorithm for SVP in ideal lattices？
絭 Two extra features：
㽭 For constant root discriminant，the length of the shortest vector can be efficiently approximated．
榗 The lattice is also an ideal：closed under multiplication．

MAIN PROBLEMS

Shortest lattice vector

Principal ideal problem

Hilbert/Ray Class Field Tower

