A quantum algorithm for solving $A\vec{x} = \vec{b}$

Aram Harrow¹ Avinatan Hassidim² Seth Lloyd²

¹University of Bristol

²MIT

Perimeter Institute seminar 4 May, 2009

Aram	Ha	rrow
0811.	317	'1v2

Outline

- The problem.
- Classical solutions.
- Our quantum solution.
- How it works.
- Why it's (not so far from) optimal.
- Related work / extensions / applications.

Goal: solving linear systems of equations

- We are given A, a Hermitian $N \times N$ matrix.
- $\vec{b} \in \mathbb{C}^N$ is also given as input.
- We want to (approximately) find $\vec{x} \in \mathbb{C}^N$ such that $A\vec{x} = \vec{b}$.
- ► If *A* is not Hermitian or square, we can use $\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix}$. Why? Because

$$\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \vec{x} \end{pmatrix} = \begin{pmatrix} \vec{b} \\ 0 \end{pmatrix}.$$

- Some weaker goals are to estimate $\vec{x}^{\dagger}M\vec{x}$ (for some matrix *M*) or sample from the probability distribution $\Pr[i] \propto |x_i|^2$.
- This problem was introduced in middle school, and has applications throughout high school, college, grad school and even work.

Classical algorithms

- The LU decomposition finds \vec{x} in time $O(N^{2.376} \operatorname{poly}(\log(\kappa/\epsilon)))$.
 - Here "2.376" is the matrix-multiplication exponent. (By contrast, Gaussian elimination takes time O(N³).)
 - ϵ is a bound on error in \vec{x} .
 - κ is the condition number.

$$\kappa = \|\boldsymbol{A}\| \cdot \|\boldsymbol{A}^{-1}\| = \frac{\sigma_1(\boldsymbol{A})}{\sigma_N(\boldsymbol{A})}$$

Here $\sigma_i(A)$ is the *i*th singular value and $||A|| = \sigma_1(A)$. κ measures how hard A is to invert, or equivalently, how sensitively A^{-1} depends on changes in A.

- ► Iterative methods (e.g. conjugate gradient) require $O(\sqrt{\kappa}\log(1/\epsilon))$ matrix-vector multiplications.
 - If A is s-sparse (i.e. has ≤ s nonzero entries per row) then the total time is O(Ns√k log(1/ε)).
 - ► $|\text{support}(\vec{b})| \cdot (s/\epsilon)^{O(\sqrt{\kappa})} \cdot \text{poly}(\log(N))$ is also possible.

Our results

Quantum Algorithm. Suppose that

- $|b\rangle = \sum_{i=1}^{N} b_i |i\rangle$ is a unit vector that can be prepared in time T_B ;
- ▶ *A* is *s*-sparse, efficiently row-computable and $\kappa^{-1}I \le |A| \le I$

•
$$|x'\rangle = A^{-1} |b\rangle$$
 and $|x\rangle = \frac{|x'\rangle}{\sqrt{\langle x'|x'\rangle}}$

Then our (quantum) algorithm produces $|x\rangle$ and $\langle x'|x'\rangle$, both up to error ϵ , in time

$$\tilde{O}(\kappa T_B + \log(N)s^2\kappa^2/\epsilon).$$

Reminder: classical algorithms output the entire vector \vec{x} in time $\tilde{O}(\min(N^{2.376}, Ns\sqrt{\kappa}, (s/\epsilon)^{O(\sqrt{\kappa})}))$. This is exponentially slower when s = O(1) and $\kappa = \text{poly} \log(N)$.

Optimality. Given plausible complexity-theoretic assumptions, these run-times (both quantum and classical) cannot be improved by much. Argument is based on BQP-hardness of the matrix inversion problem.

Algorithm idea

- Based on two key primitives:
 - Hamiltonian simulation. Trotter techniques¹ can be used to simulate e^{iAt} in time Õ(ts² log(N)).
 - ▶ Phase estimation. Applying $e^{i\lambda t}$ for a carefully chosen superposition² of times from 0 to t_0 can be used to produce $\tilde{\lambda} \approx \lambda \pm O(1/t_0)$.
- Phase estimation on e^{iAt} automatically resolves |b⟩ into the eigenbasis of A by (approximately) measuring λ.
- Doing this coherently can (approximately) map $|b\rangle$ to

$$\ket{0}\otimes \sqrt{\textit{I}-\textit{c}^{2}\textit{A}^{-2}}\ket{\textit{b}}+\ket{1}\otimes\textit{c}\textit{A}^{-1}\ket{\textit{b}},$$

where *c* is chosen so that $||cA^{-1}|| \leq 1$.

• Measure the first qubit. Upon outcome "1" we are left with $|x\rangle$.

¹D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum algorithms for sparse Hamiltonians. *CMP 2007*, quant-ph/0508139.

²V. Buzek, R. Derka and S. Massar. Optimal quantum clocks. *PRL 1999*, quant-ph/9808042.

Algorithm details

Let $|b\rangle = \sum_{\lambda} b_{\lambda} |u_{\lambda}\rangle$.

- 1. Prepare control register in superposition of $|t\rangle$ over $0 \le t \le t_0$.
- 2. Use Hamiltonian simulation to apply $\sum_{t} |t\rangle \langle t| \otimes e^{iAt}$.
- 3. Fourier transform first register, yielding

$$\sum_{\lambda,\tilde{\lambda}} \alpha_{\lambda,\tilde{\lambda}} \left| \tilde{\lambda} \right\rangle \otimes \boldsymbol{b}_{\lambda} \left| \boldsymbol{u}_{\lambda} \right\rangle,$$

with $|\alpha_{\lambda,\tilde{\lambda}}|$ small unless $\tilde{\lambda} \approx \lambda$.

4. Conditioned on $\tilde{\lambda}$, adjoin state

$$\sqrt{1-\mathcal{C}^2 ilde{\lambda}^{-2}} \ket{0} + \mathcal{C} ilde{\lambda}^{-1} \ket{1}.$$

- 5. Undo steps 1-3
- 6. Measure ancilla qubit and start over if outcome isn't 1. (Technically, use amplitude amplication.)

Analysis of the algorithm

- The Hamiltonian simulation produces negligible error. (Error *ϵ* incurs overhead of exp(O(√log(1/ϵ))) = ϵ^{-o(1)}.) Recall that it takes time Õ((log N)s²t₀).
- Phase estimation produces error of O(1/t₀) with tail probability dying off fast enough to not bother us.
- ▶ An additive error of $1/t_0$ in λ translates into an error in λ^{-1} of $\lambda^{-2}/t_0 \le \kappa^2/t_0$. Thus, we can take $t_0 \sim \kappa^2/\epsilon$.
- We can take $C = 1/2\kappa$ to guarantee that $||CA^{-1}|| \le 1/2$. ($C = 1/\kappa$ should work, but the analysis is more painful.)
- ► Thus post-selection succeeds with probability at least $O(1/\kappa^2)$ and blows up error by at most $O(\kappa)$. With enough algebra, the run-time magically stays at $O(\kappa^2/\epsilon)$.
- ► We couldn't figure out how to make variable-length run-time à la 0811.4428 work. Our best lower bound is √κ.

Q-sampling $|x\rangle$ vs. computing \vec{x}

Types of solutions: roughly from strongest to weakest

1. Output
$$\vec{x} = (x_1, ..., x_N)$$
.

2. Produce
$$|x\rangle = \sum_{i=1}^{N} x_i |i\rangle$$
.

Classical algorithms Our algorithm

- 3. Sample *i* according to $p_i \sim |\langle i | x \rangle|^2$.
- 4. Estimate $\langle x | M | x \rangle$ for some (perhaps diagonal) matrix *M*.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.

- They work with a sample drawn from $\vec{p} = (p_1, \dots, p_N)$.
- If A is stochastic and sparse then $\vec{p} \mapsto A\vec{p}$ is efficient.
- If −1 ≤ m₁,..., m_N ≤ 1, then ∑^N_{i=1} m_ip_i can be estimated to error ε using O(1/ε²) samples.

Is matrix inversion easier if we only need to estimate $\vec{x}^{\dagger}M\vec{x}$?

BQP-hardness of matrix inversion

Consider a quantum circuit on *n* qubits that starts in the state $|0\rangle^{\otimes n}$, applies two-qubit gates U_1, \ldots, U_T and then measures the first qubit.

Theorem

Estimating the acceptance probability of this circuit reduces to estimating $\langle x | M | x \rangle$ where *M* is diagonal, $A\vec{x} = \vec{b}, \vec{b} = |0\rangle$, *A* has dimension $N = O(T2^n)$ and $\kappa = O(T^2)$.

Corollary

- A classical poly(log(N), κ) algorithm for estimating (x | M | x) to constant accuracy would imply BPP=BQP.
- Improving our quantum run-time to $\kappa^{\frac{1-\delta}{2}}$ · poly log(*N*) would imply that BQP=PSPACE.

Further consequences of BQP-completeness

Relative to oracles

- No quantum algorithm can run in time $\kappa^{\frac{1-\delta}{2}}$ · poly log(*N*).
- ▶ No classical algorithm can run in time $N^{o(1)}2^{o(\sqrt{\kappa})}$.
- No iterative method can use o(√κ) matrix-vector multiplies.
 (Although we already knew this by taking A to be the adjacency matrix of a random cycle of length √κ.).

Error scaling

- Improving our quantum run-time to poly(κ, log(N), log(1/ε)) would imply BQP=PP.
- ► And even improving it to N^{o(1)}/e^{o(1)} is impossible relative to an oracle.

Proof of BQP-hardness

An idea that almost works

- Our quantum circuit is $U_T \cdots U_1$.
- On the space $\mathbb{C}^T \otimes \mathbb{C}^{2^n}$ define

$$V = \sum_{t=1}^{T} |t+1 \pmod{T}\rangle \langle t| \otimes U_t.$$
 is unitary
$$A = I - e^{-\frac{1}{T}}V$$
 has $\kappa \leq T$

$$A^{-1} = \sum_{k=0}^{\infty} e^{-\frac{k}{T}} V^k$$

So that $\kappa^{-1}A^{-1} |1\rangle |\psi\rangle$ has $\Omega(1/T)$ overlap with $V^T |1\rangle |\psi\rangle = |1\rangle U_T \cdots U_1 |\psi\rangle$.

But undesirable terms contribute too.

Proof of BQP-hardness

The correct version

Define

$$U_{T+1} = \dots = U_{2T} = I^{\otimes n}$$
$$U_{2T+1} = U_T^{\dagger}, \dots, U_{3T} = U_1^{\dagger}$$
so that $U_{3T} \dots U_1 = I^{\otimes n}$ and $U_t \dots U_1 = U_T \dots U_1$ whenever $T \leq t < 2T$.
Now define (on the space $\mathbb{C}^{3T} \otimes \mathbb{C}^{2^n}$) the operators

$$V = \sum_{t=1}^{3T} |t+1 \pmod{3T}\rangle \langle t| \otimes U_t$$
$$A = I - e^{-\frac{1}{T}}V$$

This time κ⁻¹A⁻¹ |1⟩ |ψ⟩ has Ω(1) overlap with successful computations (i.e. |t⟩ ⊗ U_T... U₁ |ψ⟩ for T ≤ t < 2T) and there is no extra error from wrap-around.</p>

Related work

- ► [L. Sheridan, D. Maslov and M. Mosca. Approximating Fractional Time Quantum Evolution. 0810.3843] show how access to U can be used to simulate U^t for non-integer t.
- [S.K. Leyton and T.J. Osborne. A quantum algorithm to solve nonlinear differential equations. 0812.4423] requires time polylogarithmic in the number of variables, but exponential in the integration time.
- ► [S. P. Jordan and P. Wocjan. Efficient quantum circuits for arbitrary sparse unitaries. arXiv:0904.2211] is also based on Hamiltonian simulation.
- [D. Janzing and P. Wocjan. Estimating diagonal entries of powers of sparse symmetric matrices is BQP-complete. arXiv:quant-ph/0606229] is similar to our BQP-hardness result.

Extensions/applications

Mostly things we don't know how to solve!

If A is ill-conditioned, we can choose κ arbitrarily, invert the part with eigenvalues ≫ 1/κ and flag the bad part with eigenvalues ≪ 1/κ.

However, we cannot determine exactly which eigenvalues are $>1/\kappa$ and which are $<1/\kappa.$

- If ||A|| ≫ 1, then we should be able to rescale A and disregard large eigenvalues of A that contribute very little to A⁻¹. This appears to require more careful analysis of errors in Hamiltonian simulation protocols.
- B is a preconditioner if κ(AB) ≪ κ(A). If B is sparse, then BA is as well, and we can apply (BA)⁻¹ to B |b⟩. Preconditioners are crucial to practical (classical) iterative methods and we would like to make use of them with our algorithm.
- Future work. Find applications! Candidates are deconvolution, solving elliptical PDE's and speeding up linear programming.

