
A quantum algorithm for solving A~x = ~b

Aram Harrow1 Avinatan Hassidim2 Seth Lloyd2

1University of Bristol

2MIT

Perimeter Institute seminar
4 May, 2009

Aram Harrow
0811.3171v2 Slide 1/15

Outline

I The problem.

I Classical solutions.

I Our quantum solution.

I How it works.

I Why it’s (not so far from) optimal.

I Related work / extensions / applications.

Aram Harrow
0811.3171v2 Slide 2/15

Goal: solving linear systems of equations
I We are given A, a Hermitian N × N matrix.

I ~b ∈ CN is also given as input.

I We want to (approximately) find ~x ∈ CN such that A~x = ~b.

I If A is not Hermitian or square, we can use
(

0 A
A† 0

)
. Why?

Because (
0 A
A† 0

) (
0
~x

)
=

(
~b
0

)
.

I Some weaker goals are to estimate ~x†M~x (for some matrix M)
or sample from the probability distribution Pr[i] ∝ |xi |2.

I This problem was introduced in middle school, and has
applications throughout high school, college, grad school and
even work.

Aram Harrow
0811.3171v2 Slide 3/15

Classical algorithms
I The LU decomposition finds ~x in time O(N2.376 poly(log(κ/ε))).

I Here “2.376” is the matrix-multiplication exponent.
(By contrast, Gaussian elimination takes time O(N3).)

I ε is a bound on error in ~x .
I κ is the condition number.

κ = ‖A‖ · ‖A−1‖ =
σ1(A)

σN(A)

Here σi(A) is the i th singular value and ‖A‖ = σ1(A).
κ measures how hard A is to invert, or equivalently, how
sensitively A−1 depends on changes in A.

I Iterative methods (e.g. conjugate gradient) require
O(
√
κ log(1/ε)) matrix-vector multiplications.

I If A is s-sparse (i.e. has ≤ s nonzero entries per row) then the
total time is O(Ns

√
κ log(1/ε)).

I |support(~b)| · (s/ε)O(
√

κ) · poly(log(N)) is also possible.

Aram Harrow
0811.3171v2 Slide 4/15

Our results
I Quantum Algorithm. Suppose that

I |b〉 =
∑N

i=1 bi |i〉 is a unit vector that can be prepared in time TB;
I A is s-sparse, efficiently row-computable and κ−1I ≤ |A| ≤ I
I |x ′〉 = A−1 |b〉 and |x〉 =

|x ′〉√
〈x ′|x ′〉

.

Then our (quantum) algorithm produces |x〉 and 〈x ′|x ′〉, both up
to error ε, in time

Õ(κTB + log(N)s2κ2/ε).

Reminder: classical algorithms output the entire vector ~x in
time Õ(min(N2.376,Ns

√
κ, (s/ε)O(

√
κ))). This is exponentially

slower when s = O(1) and κ = poly log(N).
I Optimality. Given plausible complexity-theoretic assumptions,

these run-times (both quantum and classical) cannot be
improved by much. Argument is based on BQP-hardness of the
matrix inversion problem.

Aram Harrow
0811.3171v2 Slide 5/15

Algorithm idea
I Based on two key primitives:

I Hamiltonian simulation. Trotter techniques1 can be used to
simulate eiAt in time Õ(ts2 log(N)).

I Phase estimation. Applying eiλt for a carefully chosen
superposition2 of times from 0 to t0 can be used to produce
λ̃ ≈ λ±O(1/t0).

I Phase estimation on eiAt automatically resolves |b〉 into the
eigenbasis of A by (approximately) measuring λ.

I Doing this coherently can (approximately) map |b〉 to

|0〉 ⊗
√

I − c2A−2 |b〉+ |1〉 ⊗ cA−1 |b〉 ,

where c is chosen so that ‖cA−1‖ ≤ 1.
I Measure the first qubit. Upon outcome “1” we are left with |x〉.
1D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum

algorithms for sparse Hamiltonians. CMP 2007, quant-ph/0508139.
2V. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999,

quant-ph/9808042.
Aram Harrow
0811.3171v2 Slide 6/15

Algorithm details
Let |b〉 =

∑
λ bλ |uλ〉.

1. Prepare control register in superposition of |t〉 over 0 ≤ t ≤ t0.
2. Use Hamiltonian simulation to apply

∑
t |t〉〈t | ⊗ eiAt .

3. Fourier transform first register, yielding∑
λ,λ̃

αλ,λ̃

∣∣∣λ̃〉
⊗ bλ |uλ〉 ,

with |αλ,λ̃| small unless λ̃ ≈ λ.

4. Conditioned on λ̃, adjoin state√
1− C2λ̃−2 |0〉+ Cλ̃−1 |1〉 .

5. Undo steps 1-3
6. Measure ancilla qubit and start over if outcome isn’t 1.

(Technically, use amplitude amplication.)

Aram Harrow
0811.3171v2 Slide 7/15

Analysis of the algorithm
I The Hamiltonian simulation produces negligible error. (Error ε

incurs overhead of exp(O(
√

log(1/ε))) = ε−o(1).) Recall that it
takes time Õ((log N)s2t0).

I Phase estimation produces error of O(1/t0) with tail probability
dying off fast enough to not bother us.

I An additive error of 1/t0 in λ translates into an error in λ−1 of
λ−2/t0 ≤ κ2/t0. Thus, we can take t0 ∼ κ2/ε.

I We can take C = 1/2κ to guarantee that ‖CA−1‖ ≤ 1/2.
(C = 1/κ should work, but the analysis is more painful.)

I Thus post-selection succeeds with probability at least O(1/κ2)
and blows up error by at most O(κ). With enough algebra, the
run-time magically stays at O(κ2/ε).

I We couldn’t figure out how to make variable-length run-time à la
0811.4428 work. Our best lower bound is

√
κ.

Aram Harrow
0811.3171v2 Slide 8/15

Q-sampling |x〉 vs. computing ~x
Types of solutions: roughly from strongest to weakest

1. Output ~x = (x1, . . . , xN). Classical algorithms
2. Produce |x〉 =

∑N
i=1 xi |i〉. Our algorithm

3. Sample i according to pi ∼ | 〈i |x〉 |2.
4. Estimate 〈x |M |x〉 for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.
I They work with a sample drawn from ~p = (p1, . . . ,pN).
I If A is stochastic and sparse then ~p 7→ A~p is efficient.
I If −1 ≤ m1, . . . ,mN ≤ 1, then

∑N
i=1 mipi can be estimated to

error ε using O(1/ε2) samples.

Is matrix inversion easier if we only need to estimate ~x†M~x?
Aram Harrow
0811.3171v2 Slide 9/15

BQP-hardness of matrix inversion
Consider a quantum circuit on n qubits that starts in the state |0〉⊗n,
applies two-qubit gates U1, . . . ,UT and then measures the first qubit.

Theorem
Estimating the acceptance probability of this circuit reduces to
estimating 〈x |M |x〉 where M is diagonal, A~x = ~b, ~b = |0〉, A has
dimension N = O(T2n) and κ = O(T 2).

Corollary

I A classical poly(log(N), κ) algorithm for estimating 〈x |M |x〉 to
constant accuracy would imply BPP=BQP.

I Improving our quantum run-time to κ
1−δ

2 · poly log(N) would
imply that BQP=PSPACE.

Aram Harrow
0811.3171v2 Slide 10/15

Further consequences of BQP-completeness
Relative to oracles

I No quantum algorithm can run in time κ
1−δ

2 · poly log(N).
I No classical algorithm can run in time No(1)2o(

√
κ).

I No iterative method can use o(
√
κ) matrix-vector multiplies.

(Although we already knew this by taking A to be the adjacency
matrix of a random cycle of length

√
κ.).

Error scaling

I Improving our quantum run-time to poly(κ, log(N), log(1/ε))
would imply BQP=PP.

I And even improving it to No(1)/εo(1) is impossible relative to an
oracle.

Aram Harrow
0811.3171v2 Slide 11/15

Proof of BQP-hardness
An idea that almost works

I Our quantum circuit is UT · · ·U1.
I On the space CT ⊗ C2n

define

V =
T∑

t=1

|t + 1 (mod T)〉 〈t | ⊗ Ut . is unitary

A = I − e−
1
T V has κ ≤ T

I Expand

A−1 =
∞∑

k=0

e−
k
T V k

So that κ−1A−1 |1〉 |ψ〉 has Ω(1/T) overlap with

V T |1〉 |ψ〉 = |1〉UT · · ·U1 |ψ〉 .

But undesirable terms contribute too.
Aram Harrow
0811.3171v2 Slide 12/15

Proof of BQP-hardness
The correct version

I Define

UT+1 = . . . = U2T = I⊗n

U2T+1 = U†
T , . . . ,U3T = U†

1

so that U3T . . .U1 = I⊗n and Ut . . .U1 = UT . . .U1 whenever
T ≤ t < 2T .

I Now define (on the space C3T ⊗ C2n
) the operators

V =
3T∑
t=1

|t + 1 (mod 3T)〉 〈t | ⊗ Ut

A = I − e−
1
T V

I This time κ−1A−1 |1〉 |ψ〉 has Ω(1) overlap with successful
computations (i.e. |t〉 ⊗ UT . . .U1 |ψ〉 for T ≤ t < 2T) and there
is no extra error from wrap-around.

Aram Harrow
0811.3171v2 Slide 13/15

Related work

I [L. Sheridan, D. Maslov and M. Mosca. Approximating
Fractional Time Quantum Evolution. 0810.3843] show how
access to U can be used to simulate U t for non-integer t .

I [S.K. Leyton and T.J. Osborne. A quantum algorithm to solve
nonlinear differential equations. 0812.4423] requires time
polylogarithmic in the number of variables, but exponential in
the integration time.

I [S. P. Jordan and P. Wocjan. Efficient quantum circuits for
arbitrary sparse unitaries. arXiv:0904.2211] is also based on
Hamiltonian simulation.

I [D. Janzing and P. Wocjan. Estimating diagonal entries of
powers of sparse symmetric matrices is BQP-complete.
arXiv:quant-ph/0606229] is similar to our BQP-hardness result.

Aram Harrow
0811.3171v2 Slide 14/15

Extensions/applications
Mostly things we don’t know how to solve!

I If A is ill-conditioned, we can choose κ arbitrarily, invert the part
with eigenvalues � 1/κ and flag the bad part with eigenvalues
� 1/κ.
However, we cannot determine exactly which eigenvalues are
> 1/κ and which are < 1/κ.

I If ‖A‖ � 1, then we should be able to rescale A and disregard
large eigenvalues of A that contribute very little to A−1.
This appears to require more careful analysis of errors in
Hamiltonian simulation protocols.

I B is a preconditioner if κ(AB) � κ(A). If B is sparse, then BA is
as well, and we can apply (BA)−1 to B |b〉. Preconditioners are
crucial to practical (classical) iterative methods and we would
like to make use of them with our algorithm.

I Future work. Find applications! Candidates are deconvolution,
solving elliptical PDE’s and speeding up linear programming.

Aram Harrow
0811.3171v2 Slide 15/15

