
The detectability lemma: making sense of the notion of quantum
constraint violation.
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Local Hamiltonians

Fundamental Question:

What is the ground state of a local Hamiltonian?

State space: B⊗n.

Local Hamiltonians Hi.

H =
P

i Hi.

Interested in the structure and eigenvalue (energy) associated with the lowest
eigenvector
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Classical analogue to local Hamiltonians?
Classical analogue:
Restrict to the case where Hi commute. So there exists a basis where all the Hi are
diagonal.

Quantum Classical

Local Hamiltonians K−SAT

K-SAT:
Boolean variables: x1, x2, . . . , xn

Constraints c1, c2, . . . , cM

(e.g x1 ∨ ¬x2 ∨ x3. )
Questions:
What is the minimum number of constraints that must be violated?

Decision problem: Is there an assignment such that all constraints are satisfied?D. Aharonov, I. Arad, Z. Landau, U. Vazirani () The detectability lemma 3 / 18



Complete Problems

is QMA−complete

3−SAT is
NP−complete

Quantum Classical

Local Hamiltonians K−SAT

Min. Energy
Decision problem

K−SAT

Min. Energy
Decision problem
is QMA−complete

3−SAT is
NP−complete

Quantum Classical

Local Hamiltonians

QMA complete problem (Kitaev):
Is the energy of H = 0 or above 1

poly(n)
?
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PCP

K−SAT

Min. Energy
Decision problem
is QMA−complete

QPCP ?? PCP

3−SAT is
NP−complete

Quantum Classical

Local Hamiltonians K−SAT

Min. Energy
Decision problem
is QMA−complete

QPCP ?? PCP

3−SAT is
NP−complete

Quantum Classical

Local Hamiltonians

QPCP Question:
Is deciding whether

Normalized energy: lowest eigenvalue of
1
M
H is = 0 or ≥ c

QMA-hard (quantum NP)?

PCP Theorem: Deciding whether

Average # of constraints is 0 or greater
than or equal to c is

is NP-hard.
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Constraints and Energy

Ene
rg

y

Min. Energy
Decision problem
is QMA−complete

QPCP ?? PCP

3−SAT is
NP−complete

Quantum Classical

Local Hamiltonians K−SAT

Constraint Violation

Question:
What is the relationship between violation of constraints and energy?
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Constraints and Energy

If the local Hamiltonians commute, we are in good shape:

H1 =

0@ 1 0 0
0 1 0
0 0 0

1A , H2 =

0@ 0 0 0
0 1 0
0 0 0

1A , H = H1 +H2 =

0@ 1 0 0
0 2 0
0 0 0

1A

So

0@ 1
0
0

1A violates H1 and satisfies H2,

0@ 0
1
0

1A violates both and

0@ 0
0
1

1A
satisfies both.

Thus any vector can be thought of as a probabilistic mixture of three states, each
of which completely satisfy or completely violate each of the constraints H1 + H2.

Then the energy is the expected number of constraints violated if you measured in
the diagonal basis.

But when the Hi don’t commute, there is no "good" basis and the question of constraint
violation of any state doesn’t really make sense.
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Detectability Lemma

6

x x x x x x x x x x

H H H1 3 5

H H H
2 4

. . .

*Extra conditions: Hi projections from a fixed finite set.
Let Pi = 1−Hi the projection onto the null space.

πodd = P1P3P5 · · ·
πeven = P2P4P6 · · ·

Detectability Lemma [Aharonov, Arad, Landau, Vazirani]
Sequential measurement has constant probability of detection:

||πevenπoddψ||2 < 1− cε

At least one layer has constant probability of detection:

||πoddψ||2 < 1− c′ε or ||πevenψ||2 < 1− c′ε
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How could this not be true?

Each layer provides a snapshot of the state according to those constraints. What if all
those snapshots look like this:

number of violated constraints 

weight

0 n

1

0

1− 1/n

1/n

We need a picture that incorporates the non-commuting aspect of things.
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Pyramids

8
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The XY Decomposition: a snapshot across layers
Tensor product of local spaces.
Each local space = commuting ⊕ non-commuting

Allows for the simultaneous analysis of all red constraints.

e.g. (X1 ⊗X2)⊕ (X1 ⊗ Y2)⊕ (Y1 ⊗X2)⊕ (Y1 ⊗ Y2)

diagonalizes the actions of P2, P3, P4, P6, P7, P8.

Exponential Decay: the important structural feature
e.g. in Y1, ||P2P3P4|| ≤ θ < 1.
Norm of (P3P7 . . . )(P2P4P . . . ) has exponential decay in # of Y components.

The XY decomposition along with exponential decay allows for the proper analysis.
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Back to the Detectability Lemma
Detectability Lemma [Aharonov, Arad, Landau, Vazirani]

Sequential measurement has constant probability of detection:

||πevenπoddψ||2 < 1− cε

P

Ψ

. . .
Π odd

Π evenP P P P2 4 6 8

3 7P P
Ω

1 5P

Set Ω = πevenπoddψ, so our goal is to show

||Ω||2 < 1− cε.
WLOG Suppose that the energy contribution of H3 +H7 +H11 + . . . on Ω is greater
than a constant fraction of ε. . .
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Detectability Lemma Proof

Φ
. . .1 5PP

Ω

P P P P2 4 6 8

3 7P P

Ψ

. . .

Write
φ = φ0 + φ⊥, Ω = Ω0 + Ω⊥

where φ0,Ω0 are the projections onto the all X ’s subspace: X1 ⊕X2 ⊕ . . . .
Moving from φ to ψ is diagonal relative to this decomposition.
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Φ
. . .1 5PP

Ω

P P P P2 4 6 8

3 7P P

Ψ

. . .

Exponential decay happens here

0

0
Ω

Φ

Ω

Φ

Exponential decay Lemma says:
going from φ to Ω shrinks norm by at least a constant times ||φ⊥||,
portion of energy of Ω⊥ from H3 +H7 + . . . can only be as big as c||φ⊥||2
because it has incurred exponential decay; but this energy is at least c′ε so:

||φ⊥||2 > Cε.

Thus the square of the norm is shrunk by at least C′ε which is the desired conclusion.
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A picture in the case of more than 2 layers
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Implications of the Detectability Lemma
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Min. Energy
Decision problem
is QMA−complete

QPCP ?? PCP

3−SAT is
NP−complete

Quantum Classical

Local Hamiltonians K−SAT

Constraint Violation
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Min. Energy
Decision problem
is QMA−complete

QPCP ?? PCP

3−SAT is
NP−complete

Detectability
Lemma

Quantum Classical

Local Hamiltonians K−SAT

Constraint Violation

Transfers intuition about constraint violation to Local Hamiltonian Complexity.
A generalization of the lemma leads to quantum gap amplification. . .
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Quantum Gap Amplification

A recent new proof of PCP (Dinur) requires Gap Amplification as an important step:

Gap Amplification
Classical
From a given constraint problem, form a new constraint problem (larger constraints)
with linear scaling in average number of violations:

avg. # of violations of C′ = c (avg # of violations of C).

C1

C2 C3 C4
C5

Ce = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5

Quantum [Aharonov, Arad, Landau, Vazirani]
From a given local Hamiltonian H, form a new local Hamiltonian (larger local
parameter) with with linear scaling in normalized energy:

Energy of 1
M′H

′ = c(Energy of 1
M
H).
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Quantum Gap Amplification: Ingredients

Detectability Lemma for violation of a constant number of constraints.
I Requires refinement of XY decomposition that further breaks up the Y component.
I Gets mildly more complicated.

Classical Gap Amplification Proof
I Detectability Lemma finds a layer upon which there is positive probability of detecting at

least a constant number of constraints violations.
I Now proceed as in the classical case for this layer of commuting constraints.
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Where things stand
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Min. Energy
Decision problem
is QMA−complete

QPCP ?? PCP

3−SAT is
NP−complete

Detectability
Lemma

Quantum Classical

Local Hamiltonians K−SAT

Constraint Violation

QPCP? : still would require degree and alphabet reduction steps . . .

The XY decomposition, exponential decay lemma, and detectability lemma as
analysis tools within Hamiltonian complexity.
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