The detectability lemma: making sense of the notion of quantum constraint violation.

D. Aharonov, I. Arad, Z. Landau, U. Vazirani

Local Hamiltonians

Fundamental Question:

What is the ground state of a local Hamiltonian?

- State space: $B^{\otimes n}$.
- Local Hamiltonians *H_i*.
- $H = \sum_i H_i$.

Interested in the structure and eigenvalue (energy) associated with the lowest eigenvector

Classical analogue to local Hamiltonians?

Classical analogue:

Restrict to the case where H_i commute. So there exists a basis where all the H_i are diagonal.

K-SAT:

- Boolean variables: x_1, x_2, \ldots, x_n
- Constraints c_1, c_2, \ldots, c_M

(e.g
$$x_1 \vee \neg x_2 \vee x_3$$
.)

Questions:

What is the minimum number of constraints that must be violated?

Complete Problems

QMA complete problem (Kitaev): Is the energy of H = 0 or above $\frac{1}{poly(n)}$?

QPCP Question:

Is deciding whether

Normalized energy: lowest eigenvalue of $\frac{1}{M}H$ is = 0 or $\geq c$

QMA-hard (quantum NP)?

PCP Theorem: Deciding whether

Average # of constraints is 0 or greater than or equal to c is

is NP-hard.

Constraints and Energy

Question:

What is the relationship between violation of constraints and energy?

Constraints and Energy

If the local Hamiltonians commute, we are in good shape:

$$H_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad H_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad H = H_1 + H_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- So $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ violates H_1 and satisfies H_2 , $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ violates both and $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ satisfies both.
- Thus any vector can be thought of as a probabilistic mixture of three states, each of which completely satisfy or completely violate each of the constraints *H*₁ + *H*₂.
- Then the energy is the expected number of constraints violated if you measured in the diagonal basis.

But when the H_i don't commute, there is no "good" basis and the question of constraint violation of any state doesn't really make sense.

Detectability Lemma

*Extra conditions: H_i projections from a fixed finite set. Let $P_i = 1 - H_i$ the projection onto the null space. $\pi_{\text{odd}} = P_1 P_3 P_5 \cdots$ $\pi_{\text{even}} = P_2 P_4 P_6 \cdots$

Detectability Lemma [Aharonov, Arad, Landau, Vazirani]

• Sequential measurement has constant probability of detection:

 $||\pi_{\text{even}}\pi_{\text{odd}}\psi||^2 < 1 - c\epsilon$

• At least one layer has constant probability of detection:

 $||\pi_{\mathrm{odd}}\psi||^2 < 1-c'\epsilon \qquad \mathrm{Or} \qquad ||\pi_{\mathrm{even}}\psi||^2 < 1-c'\epsilon$

How could this not be true?

Each layer provides a snapshot of the state according to those constraints. What if all those snapshots look like this:

We need a picture that incorporates the non-commuting aspect of things.

Pyramids

The XY Decomposition: a snapshot across layers

- Tensor product of local spaces.
- Each local space = $commuting \oplus non-commuting$

Allows for the simultaneous analysis of all red constraints.

e.g. $(X_1 \otimes X_2) \oplus (X_1 \otimes Y_2) \oplus (Y_1 \otimes X_2) \oplus (Y_1 \otimes Y_2)$

diagonalizes the actions of P_2 , P_3 , P_4 , P_6 , P_7 , P_8 .

Exponential Decay: the important structural feature

- e.g. in Y_1 , $||P_2P_3P_4|| \le \theta < 1$.
- Norm of $(P_3P_7...)(P_2P_4P...)$ has exponential decay in # of Y components.

The XY decomposition along with exponential decay allows for the proper analysis.

Back to the Detectability Lemma

Detectability Lemma [Aharonov, Arad, Landau, Vazirani]

• Sequential measurement has constant probability of detection:

 $||\pi_{\rm even}\pi_{\rm odd}\psi||^2 < 1 - c\epsilon$

Set $\Omega = \pi_{\text{even}} \pi_{\text{odd}} \psi$, so our goal is to show

Detectability Lemma Proof

Write

$$\phi = \phi_0 + \phi_\perp, \quad \Omega = \Omega_0 + \Omega_\perp$$

where ϕ_0, Ω_0 are the projections onto the all *X*'s subspace: $X_1 \oplus X_2 \oplus \ldots$

• Moving from ϕ to ψ is diagonal relative to this decomposition.

Exponential decay Lemma says:

- going from ϕ to Ω shrinks norm by at least a constant times $||\phi_{\perp}||$,
- portion of energy of Ω_⊥ from H₃ + H₇ + ... can only be as big as c||φ_⊥||² because it has incurred exponential decay; but this energy is at least c' ε so:

$$||\phi_{\perp}||^2 > C\epsilon.$$

Thus the square of the norm is shrunk by at least $C'\epsilon$ which is the desired conclusion.

A picture in the case of more than 2 layers

Implications of the Detectability Lemma

Transfers intuition about constraint violation to Local Hamiltonian Complexity.

• A generalization of the lemma leads to quantum gap amplification. . .

The detectability lemma

Quantum Gap Amplification

A recent new proof of PCP (Dinur) requires Gap Amplification as an important step:

Gap Amplification

Classical

From a given constraint problem, form a new constraint problem (larger constraints) with linear scaling in average number of violations:

avg. # of violations of C' = c (avg # of violations of C).

Quantum [Aharonov, Arad, Landau, Vazirani]

From a given local Hamiltonian H, form a new local Hamiltonian (larger local parameter) with linear scaling in *normalized energy*:

```
Energy of \frac{1}{M'}H' = c(\text{Energy of } \frac{1}{M}H).
```

Quantum Gap Amplification: Ingredients

- Detectability Lemma for violation of a constant number of constraints.
 - ▶ Requires refinement of *XY* decomposition that further breaks up the *Y* component.
 - Gets mildly more complicated.
- Classical Gap Amplification Proof
 - Detectability Lemma finds a layer upon which there is positive probability of detecting at least a constant number of constraints violations.
 - Now proceed as in the classical case for this layer of commuting constraints.

Where things stand

- QPCP? : still would require degree and alphabet reduction steps . . .
- The *XY* decomposition, exponential decay lemma, and detectability lemma as analysis tools within Hamiltonian complexity.