The detectability lemma: making sense of the notion of quantum
constraint violation.
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Local Hamiltonians

Fundamental Question:

What is the ground state of a local Hamiltonian?

@ State space: B®".

@ Local Hamiltonians H;.
@ H= ZZ H;.

Interested in the structure and eigenvalue (energy) associated with the lowest
eigenvector
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Classical analogue to local Hamiltonians?
Classical analogue:

Restrict to the case where H; commute. So there exists a basis where all the H; are
diagonal.

Quantum Classical
Local Hamiltonians ——
K-SAT:
@ Boolean variables: z1,z2, ...,y
@ Constraints c1,c¢2,...,cum
(e.g 1V 1z V x3. )
Questions:

What is the minimum number of constraints that must be violated?
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Complete Problems

Quantum Classical Quantu
Local Hamiltonians ——— Local Hamil
3-SAT is Min. Energy

Decision problem
is QMA-complets

NP-complet

QMA complete problem (Kitaev):
Is the energy of H = 0 or above

_1 9
poly(n) *
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PCP

Quantum Classical Quantu
Local Hamiltonians ——— Local Hamilf
Min. Energy - - Min. Energy
Decision problem EPS—ﬁZr: let Decision problem
is QMA-completg P is QMA-complets
' PCP QPCI

QPCP Question:

PCP Theorem: Decidi heth
Is deciding whether eciding whether

Average # of constraints is 0 or greater
than or equal to c is

is NP-hard.

Normalized energy: lowest eigenvalue of
GHis=00or>c

QMA-hard (quantum NP)?
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Constraints and Energy

Quantum Classical
Local Hamiltonians ———=
Min. Energy 3-SAT s

Decision problem

is QMA-complete NP-complet
Oof)
QPCP 73 . PCP
& S ’7/&/
O/Q )
%

Question:
What is the relationship between violation of constraints and energy?
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Constraints and Energy

If the local Hamiltonians commute, we are in good shape:

1 0 O 0 0 O 1 0 O
H, = 0 1 0 , Hy= 0 1 0 , H=H,+ Hx = 0 2 0
0 0 O 0 0 O 0 0 O
1 0 0
@ So 0 violates H; and satisfies Ho, 1 violates both and 0
0 0 1

satisfies both.
@ Thus any vector can be thought of as a probabilistic mixture of three states, each
of which completely satisfy or completely violate each of the constraints Hy + Ha.

@ Then the energy is the expected number of constraints violated if you measured in
the diagonal basis.

But when the H; don’t commute, there is no "good" basis and the question of constraint
violation of any state doesn’t really make sense.
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Detectability Lemma

*Extra conditions: H; projections from a fixed finite set.
Let P, = 1 — H; the projection onto the null space.
Todd = P1P3Ps - -
Teven = Po Py Ps - - -

Detectability Lemma [Aharonov, Arad, Landau, Vazirani]
@ Sequential measurement has constant probability of detection:
||71'even7rodd'¢)||2 <1-—ce
@ At least one layer has constant probability of detection:

[|Toda®||> <1 —ce¢ or ||mevent)||> <1 — (e
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How could this not be true?

Each layer provides a snapshot of the state according to those constraints. What if all
those snapshots look like this:

1. _ 1-1n
weight

1/n —
0 | B
0 n

number of violated constraints

We need a picture that incorporates the non-commuting aspect of things.
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Pyramids

P R B .
L X £ I =
> BR'R R
(X, 2Y,) @(XBY,)x(

The XY Decomposition: a shapshot across layers
@ Tensor product of local spaces.
@ Each local space = commuting & non-commuting

Allows for the simultaneous analysis of all red constraints.

0. (X1®X2)®(X19Y2)® (Y1 ® X2) @ (Y1 ®Ya)
diagonalizes the actions of P, Ps, Py, Ps, Pz, Ps.
Exponential Decay: the important structural feature

@ e.g. in Y1, ||P2P3P4|| <0<l
@ Norm of (PsP;...)(P2P4P...) has exponential decay in # of Y components.

The XY decomposition along with exponential decay allows for the proper analysis.
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Back to the Detectability Lemma
Detectability Lemma [Aharonov, Arad, Landau, Vazirani]
@ Sequential measurement has constant probability of detection:

||71'even7f'odd'¢)||2 <1—ce

Set Q = TevenTodd?, SO OUr goal is to show
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Detectability Lemma Proof

Write
dp=¢o+0L, Q=Qo+QL

where ¢, Qo are the projections onto the all X’s subspace: X1 ® Xo @ ....
@ Moving from ¢ to ¢ is diagonal relative to this decomposition.
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R R
OO O
1) ' R .« B

@ @ .

‘B RIR R
) ®,
\11 \llé Exponential decay happens here
Q Q,

0

Exponential decay Lemma says:
@ going from ¢ to 2 shrinks norm by at least a constant times ||¢. ||,

@ portion of energy of Q. from H; + H; -+ ... can only be as big as ¢||¢ 1 ||
because it has incurred exponential decay; but this energy is at least ¢’¢ so:

loL]]* > Ce.

Thus the square of the norm is shrunk by at least C’e which is the desired conclusion.
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A picture in the case of more than 2 layers
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Implications of the Detectability Lemma

Quantum Classical Quantu
Local Hamiltonians —— Local Hamilf
Min. Energy 3-SATis Min. Energy

Decision problem
is QMA-complets

Decision problem

NP-complet) ;o QMA-complete

QPCP 73 %, PCP QPC
Q}\ ~ . o T O[L/é
%,

@ Transfers intuition about constraint violation to Local Hamiltonian Complexity.
@ A generalization of the lemma leads to quantum gap amplification. . .
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Quantum Gap Amplification

A recent new proof of PCP (Dinur) requires Gap Amplification as an important step:

Gap Amplification
Classical

From a given constraint problem, form a new constraint problem (larger constraints)
with linear scaling in average number of violations:

avg. # of violations of C’ = ¢ (avg # of violations of C).

Ce=CiNCoANC3NCy A Cs

Quantum [Aharonov, Arad, Landau, Vazirani]
From a given local Hamiltonian H, form a new local Hamiltonian (larger local
parameter) with with linear scaling in normalized energy:

Energy of = H' = c(Energy of - H).
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Quantum Gap Amplification: Ingredients

@ Detectability Lemma for violation of a constant number of constraints.
» Requires refinement of XY decomposition that further breaks up the Y component.
> Gets mildly more complicated.
@ Classical Gap Amplification Proof
» Detectability Lemma finds a layer upon which there is positive probability of detecting at

least a constant number of constraints violations.
» Now proceed as in the classical case for this layer of commuting constraints.
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Where things stand

Quantum Classical

Local Hamiltonians ——
Min. Energy 3-SATis
Decision problem NP—complet
is QMA-complets P

@)
j 1)
QPCP 73 . PCP
Q/\ ‘t“~‘< /,_—"’ O(L
Detectability 2
Lemma %‘é
Za}

@ QPCP? : still would require degree and alphabet reduction steps . . .

@ The XY decomposition, exponential decay lemma, and detectability lemma as
analysis tools within Hamiltonian complexity.
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