Superconducting Resonators and Their Applications in Quantum Engineering

Nov. 2009

Lin Tian University of California, Merced & KITP

Collaborators:

Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder) Hailin Wang (U Oregon)

Support: NSF, UCM-GRC

Group:

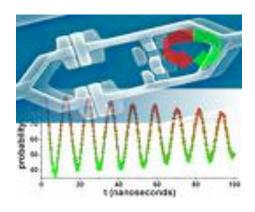
Yong Hu (postdoc)
Dan Hu (student)
Xiuhao Deng (student)

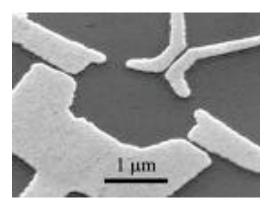
Jon Inouye (student)

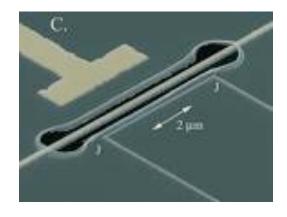
Solid-state devices, quantum information, and quantum effects

- Superconducting devices: flux qubit, charge qubit, phase qubit, stripeline resonator, lumped element LC
- Semiconductor systems: gated quantum dots, Si-based, NV centers, self-assembled dots, nanocavities
- Nanomechanical resonators: beam, cantilever, nanotube, microdisk
- Many other systems: exotic systems such as electrons on liquid helium ...

Artificial/Macroscopic atoms and oscillators can now be achieved Better quantum engineering, control, and probing wanted







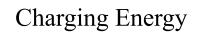
Beyond quantum computing and quantum information

- Quantum effect as a probe for microscopic effects in various solid-state devices
- Engineering to approach the quantum limit
- Novel many-body physics

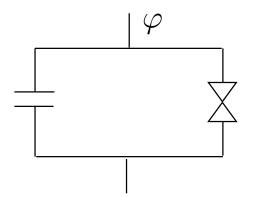
Superconducting devices

Superconducting Qubits

Josephson junction



$$\frac{m_{\varphi}}{2}\dot{\varphi}^2$$



Josephson Energy

$$-I_c \frac{\hbar}{2e} \cos \varphi$$

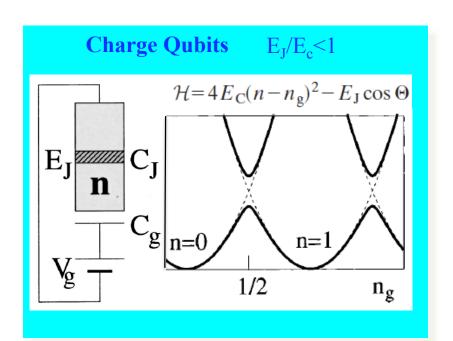
Quantum Hamiltonian

$$E_c = rac{e^2}{2C}$$
 $E_J = I_c rac{\hbar}{2e}$

$$H = \frac{\hat{P}_{\varphi}^2}{2m_{\varphi}} - I_c \, \frac{\hbar}{2e} \cos \varphi$$

$$\hat{P}_{\varphi} = -i\hbar \frac{\partial}{\partial \varphi} \qquad m_{\varphi} = C \left(\frac{\hbar}{2e}\right)^2$$

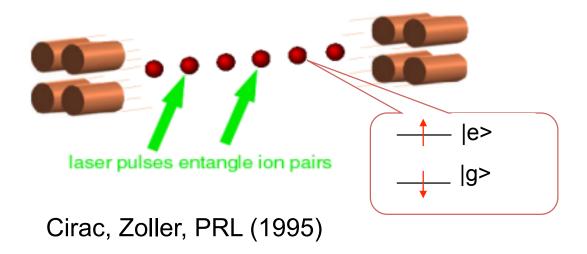
Various qubits have been tested with coherence time > μ s Josephson junction resonator has been tested Q~10³⁻⁴.

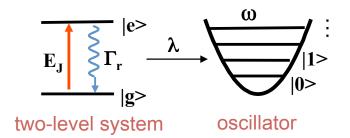


Flux qubit – Mooij, Orlando ...
Charge qubit – Nakamura ...
Phase qubit – Martinis ...
Transmon – Schoelkopf, Girvin ...
Other variation ...

Makhlin, Schoen, Shnirman, 2002 Devoret, Wallraff, Martinis, 2004

Ion trap quantum computing

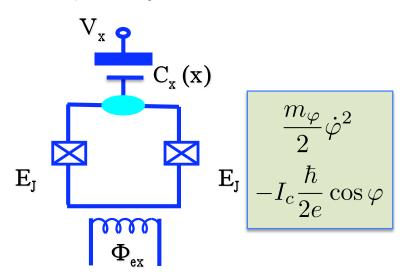




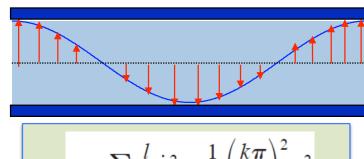
Harmonic motion as data bus mediating Controlled quantum logic gates

Superconducting Resonators

Josephson junction resonator



Transmission line resonator



$$\mathcal{L} = \sum_{k} \frac{l}{2} \dot{\phi}_{k}^{2} - \frac{1}{2c} \left(\frac{k\pi}{L}\right)^{2} \phi_{k}^{2}$$

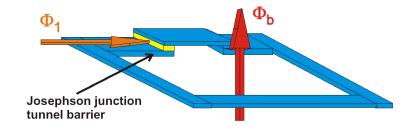
$$\hat{\phi}_{k}(t) = \sqrt{\frac{\hbar \omega_{k} c}{2}} \frac{L}{k\pi} [a_{k}(t) + a_{k}^{\dagger}(t)]$$

- Q-factor ~10³⁻⁷, can have long coherence time, Q controllable
- frequency GHz tunable by external flux, external circuit (e.g. SQUID)
- strong coupling with qubits has been tested experimentally Stark shift, Rabi splitting, Lamb shift,

Quantum Oscillators

Quantum resonator modes in nanoscale

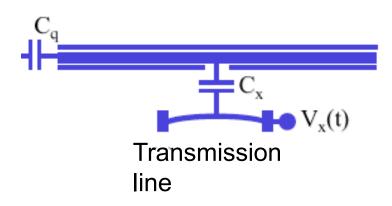
- motional states in ion traps
- Josephson junction resonators
- superconducting transmission line
- nanomechanical modes



Smaller & more coherent (macroscopic) systems in their quantum limit!

Quantum applications – Quantum information,

Metrology, foundations of quantum physics



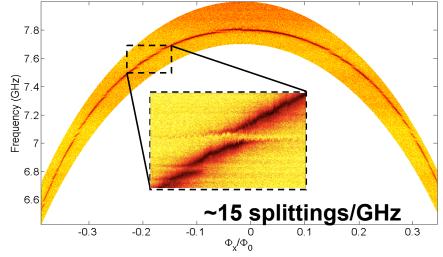
Nanomechanical systems

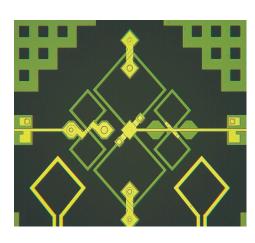
Superconducting Resonators

- Progress coherence & coupling
- Quantum engineering on TLS's JJ resonator
- Novel many-body effects

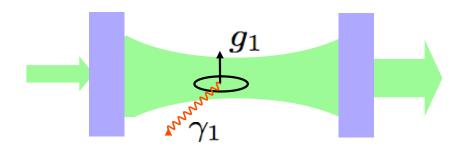
Resonators vs TLS Flctuators

- Previous phase qubit measurements show spectroscopic splittings due to amorphous two-level system (TLS) fluctuators inside Josephson junctions (a strong source of decoherence). (Simmonds et al. 2004, Martinis et al. 2005, Neeley et al 2008, Y. Yu et al, 2008)
- Can we find a way to distinguish the coupling mechanism between the two-level systems (TLS) and the junction?, e.g. coupling to critical current or coupling to dielectric field.

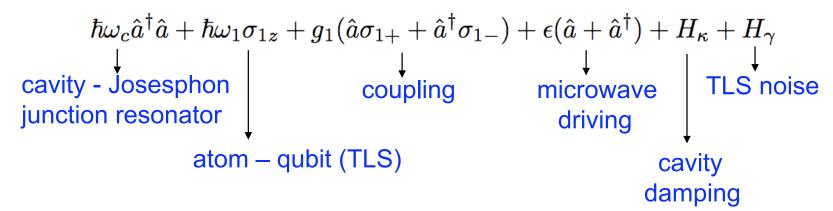




Cavity QED



- atoms, ions in cavity
- quantum dot photonic devices
- superconducting quantum circuit



 Δ_c - detuning of microwave mode

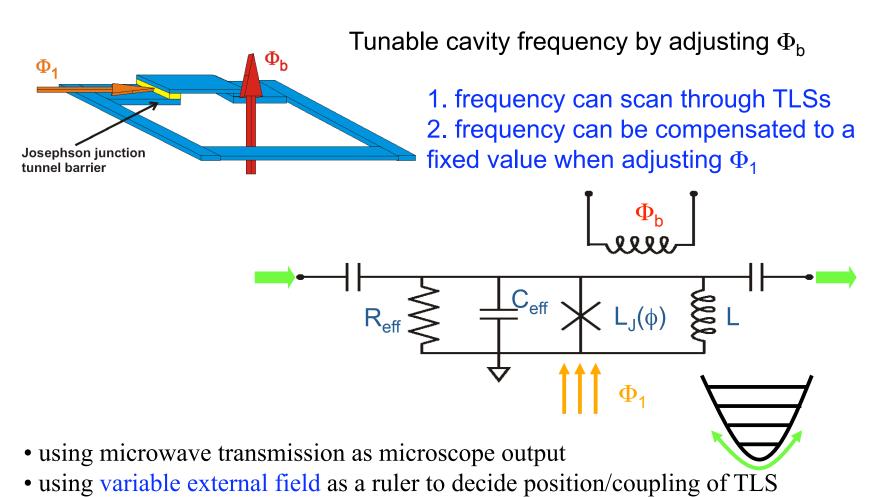
 Δ_a - detuning of qubit (TLS)

 g_1 - coupling, $g_1 = g_c$, g_d

Cavity QED in solid-state devices

- qubit
- TLS
- many-body Hamiltonian

Junction as Microscope for TLS



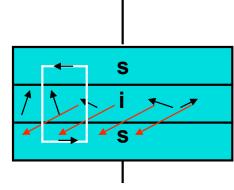
• interpret coupling mechanism by varying external field

Apply a Magnetic Field through the Junction Barrier

This creates a spatial modulation of the Josephson energy and the coupling with TLSs

• Phase variable:
$$\varphi(r) = \varphi(0) + \frac{2e}{\hbar}B.A$$

• Josephson energy:
$$-\frac{E_J}{L} \int_0^L dr \cos(\varphi + \lambda r)$$



magnetic field B

Only critical current coupling should change with field

Critical Current Coupling

$$-E_{J1} \int_0^L dx \cos(\varphi + \varphi_1 \frac{x}{L}) \vec{j}_d \cdot \vec{\sigma} f(x - r_d)$$

$$g_d = E_{J1} j_x \sqrt{\frac{2e^2}{C_J \hbar \omega_c}} \sin \varphi_1 (\frac{r_d}{L} - \frac{1}{2})$$

$$arphi_1 = \Phi_1/\Phi_0$$
 $arphi_1$: total flux in junction

Dielectric coupling

$$-\frac{2e^2d_0}{C_Jh_0}\frac{\hat{p}_\varphi}{\hbar}$$

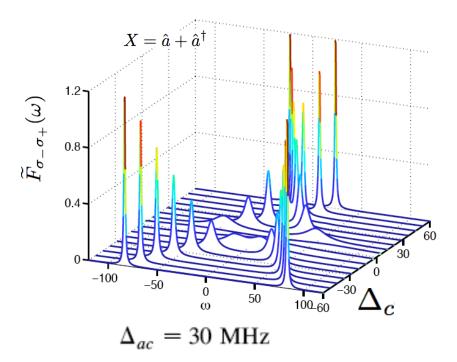
$$g_c = \frac{d_0}{h_0} \sqrt{\frac{e^2 \hbar \omega_c}{2C}}$$

 d_0 : dipole, h_0 : barrier thickness

Fluctuation of the Junction Transmission

Fluctuation of the junction transmission is directly related to fluctuation of TLS under the effective Bloch equation, and provides useful information about spectrum, decay, spatial information of the TLS

$$\widetilde{F}_{\sigma_-\sigma_+}(\omega) = F_{XX}(\omega)(\kappa^2 + (\omega - \Delta_c)^2)/g_1^2$$



Tian, Simmonds, PRL (2007)

• $\widetilde{F}_{\sigma_{-}\sigma_{+}}(\omega)$ dominated by Lorentzian terms of TLS with peaks at $\omega_{p}^{(1,2)} \approx \pm \Delta$

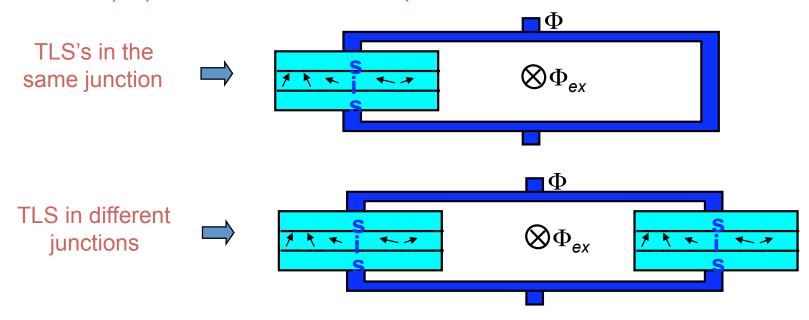
$$\longrightarrow \Delta_a - \frac{g^2 \Delta_c}{\kappa^2 + \Delta_c^2}$$

• can be used to study coupling dependence, coherence of TLS, energy, and spatial distribution of TLS

Junction as Coupler for TLS Qubits

Possible long coherence time:

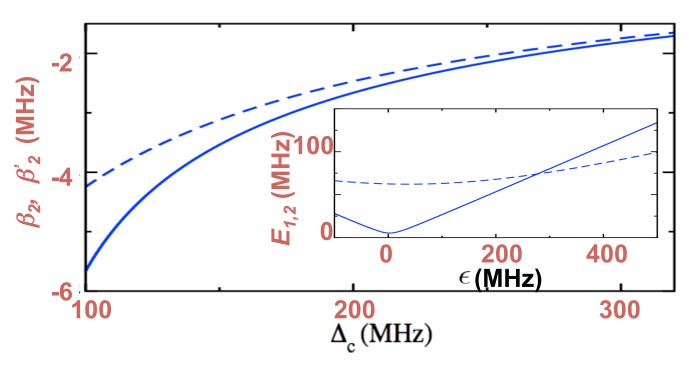
• (de)coherece time > than qubit



- Resonator as cavity to manipulate TLS's with large energy separation
- Universal quantum logic gates can be achieved via cavity
- Gates can reach high fidelity

$$\widetilde{H}_{1} = \sum \frac{\overline{\Delta}_{n}}{2} \sigma_{nz} + \Omega_{n} \sigma_{+} + \Omega_{n}^{\star} \sigma_{-} + \sum_{\langle n, m \rangle} \lambda_{nm} \sigma_{n+} \sigma_{m-} + \lambda_{nm}^{\star} \sigma_{m+} \sigma_{n-}$$

Two-Qubit Gate



- TLS's are usually off-resonance; coupling can't implement gates
- Adjusting resonator to tune to resonance so that $E_1=E_2$ (inset)
- β_2 is effective coupling parameter including residuce coupling
- Two-bit gates can be performed in 150 ns.

Tian, Jacobs, PRB (2009)

CQED for **Qubit** Arrays

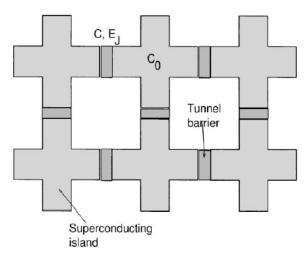
Josephson junction arrays have been studied for many-body physics

- classical JJA two-dimensional XY, observe BKT transition
- quantum JJA superconductor-Mott insulator transition
- quantum phase model
- dissipative quantum phase transition

2D array of JJ

E_J >> E_c superconducting

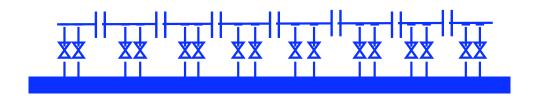
E_J << E_c Mott insulator



Recent progress in superconducting qubits brings more

- high-Q cavity mode
- strong coupling between qubits and cavity
- using cavity to measure qubits

CQED for **Qubit** Arrays



Qubit chain – define qubits at even/odd sites in opposite directions – NNN term

Quantum Ising model
$$H_0 = -J_x \sum_i \sigma_{xi} - \sum_i \sigma_{zi} \sigma_{zi+1}$$

Resonator cavity – lumped element capacitance with loop inductance, driving detuning Δ_c

 $H_c = \hbar \omega_c a^{\dagger} a + \epsilon(t)(a + a^{\dagger})$

Coupling – magnetic field modulating effective inductance of cavity

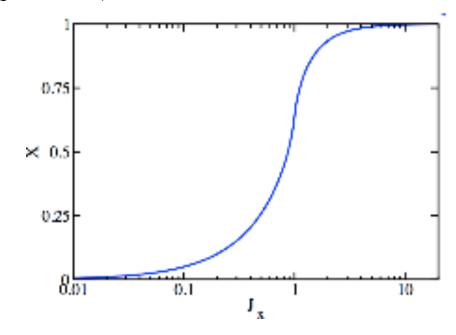
Coupling
$$H_{int} = ga^{\dagger}a\sum(\sigma_{xi})$$

Quantum Ising model

$$H_0 = -J_x \sum_{i} \sigma_{xi} - \sum_{i} \sigma_{zi} \sigma_{zi+1}$$

Small J_x , ferromagnetic states $|\uparrow \cdots \uparrow\rangle$ and $|\downarrow \cdots \downarrow\rangle$ Large J_x , paramagnetic states $|+ \cdots +\rangle$

Ground state average $X=\langle g|\sum \sigma_{xi}|g\rangle=\{\begin{array}{ll}N,&J_x\gg 1\\0,&J_x\ll 1\end{array}$ (not standard order parameter)



Nonlinear effect in cavity

Cavity photon number and many-body state; Transversal field on photon number

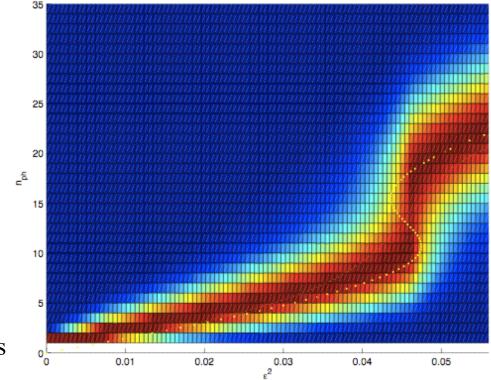
$$n_{ss} = \frac{i\epsilon}{\kappa} \langle a - a^{\dagger} \rangle_{ss} = \frac{\epsilon^2}{\kappa^2 / 4 + (\Delta_c - gX)^2}$$
 $\widetilde{J}_x = J_x - gn_{ss}$

Fixed parameter $J_x > J_c=1$, $\Delta_c=0$

Driving increases – jump from lower branch to higher branch

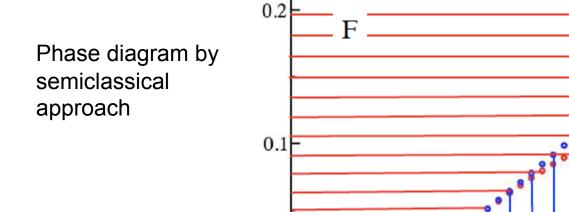
- Weak driving: detection of many-body states
- Strong driving: bistable regime due to cavity nonlinear effect

Can be studied with just two qubits



L. Tian, in preparation (2009)

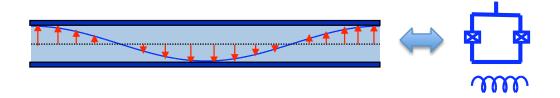
Bistable regime and quantum fluctuations

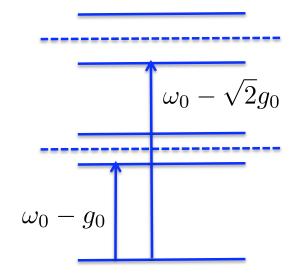


Semiclassical: nonlinear effect induces bistable regime for Ising model Property of many-body state – affected strongly by quantum fluctuation Entanglement reaches maximal near transition point

On-Demand Entangled Photon Pair

Effective Kerr-like interaction for resonator mode





$$g_0(a^{\dagger}\sigma_- + \sigma_+ a)$$

$$\frac{1}{2}u^{\dagger}a^{\dagger}aa$$

Coupled resonators

$$H_{eff} = -t \sum a_i^{\dagger} a_{i+1} + \frac{U}{2} \sum a_i^{\dagger} a_i^{\dagger} a_i a_i \qquad U \gg t$$

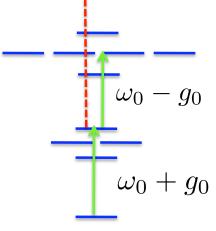
$$\omega_0 + U - g_0$$

Strong interaction prohibits transitions to double occupancy, generate interesting state

$$(a_1^{\dagger}a_3^{\dagger} - a_2^{\dagger}a_4^{\dagger})|g\rangle$$

State stable against varying U to U << t

$$(c_{k1}^{\dagger}c_{k3}^{\dagger} - c_{k2}^{\dagger}c_{k4}^{\dagger})|g\rangle$$



Y. Hu, L Tian, in preparation (2009)

Superconducting Resonators

- Linear coupling to nanomechanical systems
- Quantum engineering and cooling of nanomechanical systems

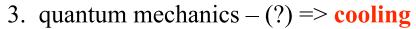
Nanomechanical Resonator

- 1. Sometime ago
- Vibration of strings
- Dynamics Euler-Bernoulli Eq.
- 2. Now, the decrease of size provides: high frequency -- GHz high $Q 10^{3-5}$ & $\Gamma = \omega_0/Q$

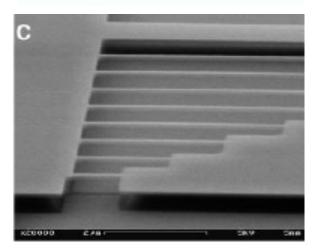
$$f_0 = \frac{(4.730)^2}{2\pi} \frac{1}{l^2} \sqrt{\frac{EI}{\rho A}}$$

E: Young Modulus
I: moment of inertia

 ρ_a : linear density



$$H_v = \sum \frac{p_q^2}{2m} + \frac{m\omega_q^2 u_q^2}{2}$$



a doubly clamped beam, flexural modes

u(z,t)

Can It Be Quantum Mechanical?

High quality factor over 10,000,000 (f=20 MHz) – Schwab, Harris ... very coherent once it becomes coherent (calculation of Q-factor?)

Macroscopic quantum effects? superconducting quantum tunneling nanomechanical system - cat state, entanglement - test QM (?)

Barrier, thermal fluctuations T=24 mK=500 MHz $n_{a0} = \frac{1}{e^{\hbar\omega/k_BT} - 1}$ resonator frequency 10's kHz – GHz

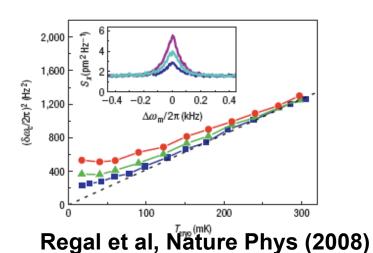
Why interesting?

- fundamental physics: quantum/classical boundary, using e.g. Schroedinger cat state
- metrology/calibration with resonators
- quantum data bus ion trap
- continuous variable quantum information

Side Band Cooling Regime

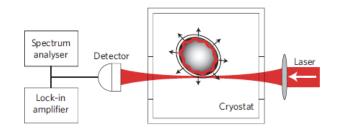
Side band limit provides promise for ground state cooling Recent experiments reach side band limit for NEMS - optical cavity and NEMS - superconducting resonator using optomechanical effects and NEMS - superconducting qubit (Lehnert, Kippenberg, Wang, Schwab, Cleland/Martinis, Bouwmeester, Mavalvala, Chen),

Quantum regime is in visible future!



10 µm 1 µm

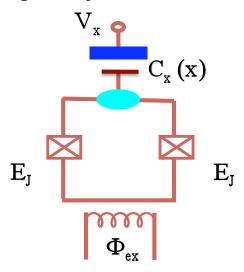
Schliesser et al, Nature Phys (2008)



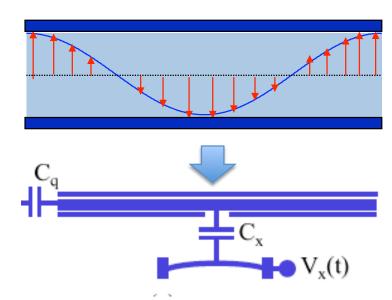
Park & Wang, Nature Phys (2009)

Nanomechanical System vs Solid-State Resonator

Josephson junction resonator



Transmission line resonator



Capacitive coupling with solid-state resonators

- generate linear coupling $H_{int} = i\lambda(\hat{a} \hat{a}^{\dagger})(\hat{b} + \hat{b}^{\dagger})\cos\omega_d t$
- frequency modulation by driving
- entanglement generated (two-mode squeezed vacuum state) $\exp(ra^2 ra^{\dagger 2})|00\rangle$

Tian et al, NJP (2008)

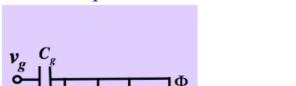
Two Circuits for Mechanical Coupling

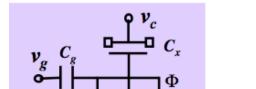
- Resonator capacitively coupling with mode Φ LC oscillator
- capacitance

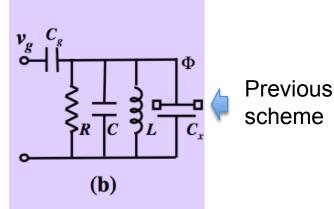
Cooling from dynamic backaction

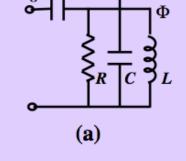
$$C_x = C_{x0} + C_x'x$$

radiation pressure-like









parametrically modulated linear coupling

$$H_c = \hbar \omega_b b^{\dagger} b \ -g_r (a + a^{\dagger}) b^{\dagger} b$$

At typical parameters:
$$g_l \gg g_r$$

Cooling: $v_c(t) = 2v_c \sin \omega_d t$

$$H_c = \hbar \omega_b b^{\dagger} b - g_r (a + a^{\dagger}) b^{\dagger} b - i g_l (a + a^{\dagger}) (b - b^{\dagger})$$

$$g_r = (\hbar \omega_b / 2) (C_x' \delta x_0 / C_{\Sigma 0})$$

$$g_l = v_c \sqrt{\hbar \omega_b / 2 C_{\Sigma 0}} (C_x' \delta x_0)$$

Parametric Driving

- parametric driving provides "up-conversion" of low-energy mechanical quanta to high energy microwave photons, which then dissipate in circuit
- in rotating frame, effective energy for LC oscillator is -∆

$$H_t^{rot} = \hbar \omega_a a^{\dagger} a - \hbar \Delta b^{\dagger} b + g_l (a + a^{\dagger}) (b + b^{\dagger})$$

thermal bath has temp. T₀ with

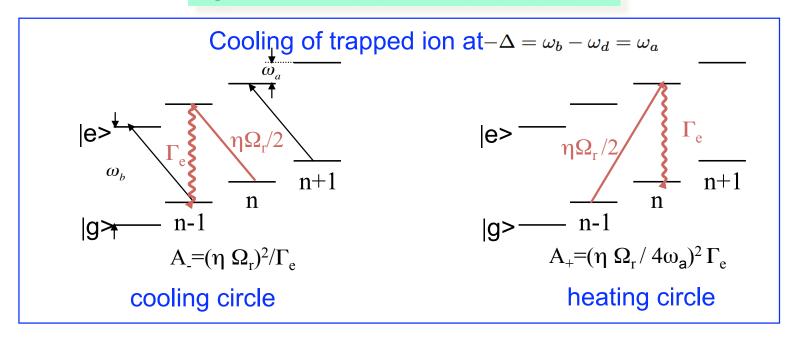
$$n_{b0} = \frac{1}{e^{h\omega_b/k_B T_0} - 1}$$

• effective temp. in rotating frame:

$$T_{eff} = T_0 \frac{|\Delta|}{\omega_b} \ll T_0$$

• "equilibrium" between thermal bath of mechanical mode and LC mode

Quantum Backaction Noise



Our scheme is related to laser cooling scheme cooling transition $(a^{\dagger}b + b^{\dagger}a)$ cooling rate $A_{-} = 4g_{l}^{2}/(\hbar^{2}\kappa_{0})$

heating transition
$$(a^{\dagger}b^{\dagger} + ba)$$

heating rate $A_{+} \approx g_{l}^{2}\kappa_{0}/(4\hbar^{2}\omega_{a}^{2})$

$$g_l(a+a^{\dagger})(b+b^{\dagger})$$

 $v_c(t)=2v_c\sin\omega_d t$

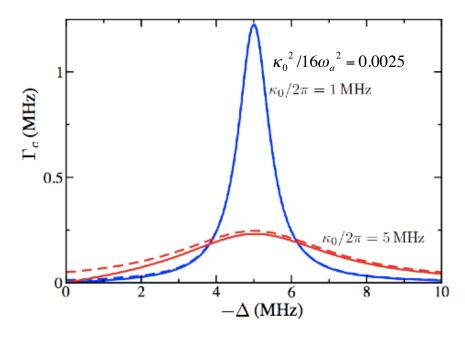
- comparison
- also applies to n_0 $n_0 = A_+/A_-$

Backaction noise comes from counter rotating terms in the coupling

Cooling by Quantum Theory

Quantum explanation - input-output theory operator equations can be solved in Heisenberg picture cooling rate can be derived including self-energy equation similar to linearized equations for radiation pressure

$$\Gamma_{c} = \frac{4(g_{l}/\hbar)^{2}\kappa_{0}|\Delta|\omega_{a}}{(\Delta^{2} - \omega_{a}^{2} + \frac{\kappa_{0}^{2}}{4})^{2} + \omega_{a}^{2}\kappa_{0}^{2}} = \begin{vmatrix} 4g_{l}^{2} \\ \frac{4g_{l}^{2}}{h^{2}\kappa_{0}(1 + \kappa_{0}^{2}/16\omega_{a}^{2})} \end{vmatrix} \frac{\text{red sideband}}{-\Delta = \omega_{b} - \omega_{d} = \omega_{a}}$$



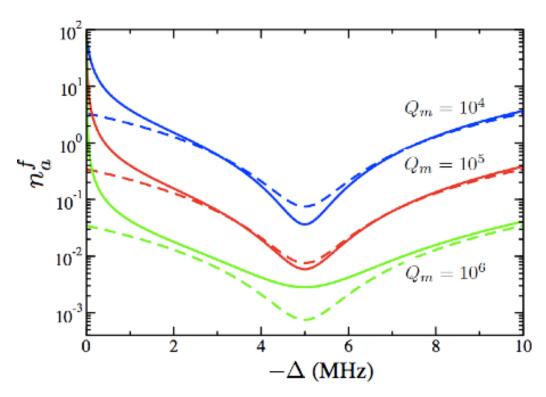
- solid quantum theory
- dashed semiclassical theory maximal cooling at (nearly) red sideband

Occupation Number

We calculated the n_a^f with no counter rotating terms: - P-representation

solid-lines: full quantum theory dashed-lines: no counter rotating terms $n_a^f=rac{\Gamma_c n_0+\gamma_0 n_{a0}}{\Gamma_c+\gamma_0}pprox n_0+rac{\gamma_0}{\Gamma_c}n_{a0}$ $Q_m = \omega_a / \gamma_0$: quality factor of resonator

$$n_a^f = \frac{\Gamma_c n_0 + \gamma_0 n_{a0}}{\Gamma_c + \gamma_0} \approx n_0 + \frac{\gamma_0}{\Gamma_c} n_{a0}$$



- low Q_m : 2nd term dominates
- high Q_m : backaction noise dominates, dashed curve can reach 0, solid curve reach n_0
- $Q_m = 10^5$, $n_a^f = 0.01 << 1$

Tian, PRB (2009)

Parameters in Superconducting Circuits

Comparing with parameters in a few experiments, we choose the following:

]
	Ref [4, 5]	Ref [13]	Ref [14]	Our scheme	note
$\omega_b (2\pi \mathrm{GHz})$	5.2	_	_	7.5	LC oscillator frequency
$\kappa_0 \left(2\pi \mathrm{MHz} \right)$.2	_	_	1	damping
\overline{Q}	26,000	-	_	7,500	quality factor
$C_x\left(fF\right)$.2	.13	.026	.2	coupling capacitance
$\partial C_x/\partial x \left(fF/\mu m\right)$.2	2	.26	1	C_x'
$C_{\Sigma}\left(fF ight)$	_	1.3	.45	1.5	total capacitance
$\omega_a (2\pi \mathrm{MHz})$	1.5	117	19.7	5	mechanical frequency
n_{a0}	278	3.2	21	83.2	thermal occupation
$T_0 (\mathrm{mK})$	20	20	20	20	possible temperature
$\gamma_m \left(2\pi \mathrm{kHz} \right)$.005	69	.56	.5	mechanical damping
Q_m	> 300,000	1,700	35,000	10 ⁴ - 10 ⁶	mechanical quality factor
$mass (10^{-15} kg)$	6.2	2.84	.63	1.86	mass of resonator
$\delta x_0 \left(fm \right)$	30	5	26	30	quantum displacement
$d_0 (\mathrm{nm})$	~ 1000	~ 65	~ 100	200	distance between capaciance plate
$v_c (\mathrm{mV})$	_	2500	_	< 300	gate voltage
$P(\mu W)$	< 1	_	_	.85	reactive power

Advantage – no need to pump the LC oscillator to high occupation

Conclusions

Solid-state devices provide a fruitful platform for quantum application

We discussed a few applications with superconductng resonators

- probling/copling TLS's microscopic mechanism, TLS qubits
- coupling to qubit arrays bistable behavior interesting many-body state
- quantum engineering of entangled state ...
- cooling to quantum limit of nanomechanical systems

More interesting questions to come

UC Merced – Campus

