Control of electron and nuclear spins in GaAs quantum dots

KITP workshop on Quantum Information Science Santa Barbara, CA 1 Dec 2009

Lieven Vandersypen

Delft University of Technology Faculty Of Applied Sciences

Controlling *single* spins

A well-controlled and fully tunable quantum dot system

Electrical control and detection

- Tunable # of electrons
- Tunable tunnel barriers
- Electrical contacts

Confinement

- Discrete # charges
- Quantized orbitals

Single-spin qubits in GaAs dots

See also Hanson et al, Rev. Mod. Phys. 2007

Electron spin decoherence due to random nuclear spin dynamics

B_N fluctuates due to(1) dipole-dipole(2) hyperfine-mediated

 B_N evolves slowly on the timescale of the electron spin dynamics $\Rightarrow T_{2,echo} \sim 1-100 \ \mu s$ Coish & Loss PRB 2004, Witzel & Das Sarma PRB 2006, PRL 2007,

Yao, Liu, Sham, PRB 2006, ...

Koppens, Klauser, Coish, Nowack, Kouwenhoven, Loss, LMKV, PRL 2007

Can we reduce dephasing by nuclear spins?

Dynamic nuclear spin polarization from electron-nuclear feedback

Single-electron spin resonance

A surprising observation

Difference with earlier data:

Larger interdot tunnel coupling Stronger tunnel coupling to leads Negative alignment of dot potentials Vink, Nowack, Koppens, Danon, Nazarov, LMKV, Nature Phys. 2009

Feedback in B_N locks electron spin on resonance

Microscopic pumping mechanism

Suppression of nuclear spin fluctuations

Still richer physics for strong driving: multiple stable points

- 1) Equal \uparrow and \downarrow populations, hence no net nuclear spin pumping
- 2) Resonantly enhanced nuclear spin relaxation (nuclear spins flipped both ways)

Switching between stable points

Switching between stable points

Danon, Vink, Koppens, Nowack, LMKV, Nazarov, PRL 2009

Other work on suppression of nuclear field randomness

C. Latta et al (Imamoglu group) Nature Phys. 2009

single self-assembled dot CW resonant trion excitation

X. Xu et al (Steel/Gammon group) Nature 2009

single self-assembled dot coherent dark state spectroscopy (Raman resonance)

A. Greilich et al. (Bayer group), Science 2007, PRL 2008

ensemble of self-assembled dots laser pulse train resonant with trion transition

D. Reilly et al (Marcus group), Science 2008

gate voltage pulse protocol suppression of *difference* in B_N between two dots

Single-spin qubits in GaAs dots

See also Hanson et al, Rev. Mod. Phys. 2007

Photon-assisted tunneling (spin-conserving)

just the well-known photon-assisted tunneling sidebands?

Two-electron spin transitions

Two-electron spin transitions

Two-electron spin transitions

spin-PAT simulation

Spin-flip-PAT Spectroscopy

Spin-orbit mechanism

Spin-orbit Hamiltonian

Dresselhaus (bulk property)

Rashba (heterostructure property)

$$\mathcal{H}_D^{2D,(001)} = \beta [-p_x \sigma_x + p_y \sigma_y]$$
$$\mathcal{H}_R = \alpha (-p_y \sigma_x + p_x \sigma_y)$$

For bound states (quantum numbers n,l)

$$\langle p_x \rangle = \langle p_y \rangle = 0 \langle nl \downarrow | H_{SO} | nl \uparrow \rangle \propto \langle nl | p_{x,y} | nl \rangle \langle \downarrow | \sigma_{x,y} | \uparrow \rangle = 0$$

Spin-orbit Hamiltonian directly couples states with different spin & orbital

$$\langle n'l' \uparrow |H_{SO}|nl \downarrow \rangle \neq 0$$

direct SO matrix element between S_{02} and T_{11}

Matrix element S_{02} to $T^{+,-}_{11} \sim t_c I_{ddot} / I_{SO} \sim 0.01 t_c$

Hyperfine mechanism

Resonant transition from S_{02} to T^+_{11} via two-step process involving virtual transition to S_{11} :

(1) t_c couples S_{02} to S_{11} (2) nuclei couple S_{11} to $T_{11}^{+,-}$ (suppressed with *B*)

Matrix element S_{02} to $T^{+,-}_{11}$ ~ $t_c B_{nuc} / B_{ext} \sim 0.001 t_c$

Excitation by microwave bursts

microwave burst + 7 μ s free relaxation (no initialization):

Raw data

Signal increases with burst time and power Transition to T^{+}_{11} and T^{-}_{11} show same behavior Transition to S^{-}_{11}/T^{0}_{11} gives stronger signal

Excitation by microwave bursts

microwave burst + 7 μ s free relaxation (no initialization):

Dependence on interdot tunnel coupling

 $S_{02} \rightarrow S_{11}$

Preliminary data – datapoints represent peak area Signal is sensitive to both relaxation and excitation rates

Dependence on magnetic field

Summary part II

- Electrically-induced spin-flip tunneling transitions
- Implications for electron spin shuttling
- Likely mediated by spin-orbit interaction
- Permits double-dot spectroscopy all transitions identified
- Incoherent process (spins entangled with orbitals)

People and collaborations

GaAs spin qubits

Jeroen Elzerman (ETH) Ronald Hanson (UCSB/Delft) Laurens Willems v Beveren (UNSW) Josh Folk (UBC) Frank Koppens (Harvard) Tristan Meunier (CNRS) Ivo Vink Leo Kouwenhoven

> Present team: Katja Nowack Lars Schreiber Floris Braakman Martin Laforest

Collaborations

Loss group (Basel) Danon & Nazarov (Delft) Rudner & Levitov (MIT) Wegscheider (Regensburg) Tarucha group (Tokyo) Oostinga & Morpurgo (Geneva)

Graphene

Hubert Heersche Pablo Jarillo-Herrero (MIT)

> Present team: Xinglan Liu Stijn Goossens Victor Calado

