Towards Quantum Computation with Trapped Ca\(^+\) Ions

- Ion traps for quantum computation
- Ion motion in linear traps
- Nonclassical states of motion, decoherence times
- Addressing individual ions
- Sideband cooling of the common motion
- Heating and cooling of an ion string
- Entanglement with trapped ions
- Cavity QED with a single ion

R. Blatt, Universität Innsbruck, Institut für Experimentalphysik
What do you need for a quantum computer?

- systems with longlived quantum states
- single quantum systems which can be initialized, measured and manipulated
- controllable interaction between quantum systems
Quantum Computer: Implementation with Trapped Ions

<table>
<thead>
<tr>
<th>HARDWARE/OPERATION</th>
<th>REQUIREMENTS</th>
<th>TRAPPED IONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-bits</td>
<td>long coherence times</td>
<td>isolated in free space (frequency standards)</td>
</tr>
<tr>
<td>Q-register</td>
<td>row of Q-bits</td>
<td>linear ion traps, ion strings</td>
</tr>
<tr>
<td>Q-gate</td>
<td>interaction between Q-bits, operations on individual Q-bits</td>
<td>Coulomb repulsion spatial separation allows one to address individual ions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>state preparation</th>
<th>Optical cooling, state preparation with laser pulses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation</td>
<td>coherent state manipulation</td>
<td>internal, external excitations, entanglement</td>
</tr>
<tr>
<td>Output</td>
<td>state measurement (100% efficiency)</td>
<td>Quantum jump technique</td>
</tr>
</tbody>
</table>
Ion storage generics

Ion confinement requires a focusing force in 3 dimensions:

\[\vec{F} \sim -\vec{r} \Rightarrow \vec{F} = e\vec{E} = -e\nabla \Phi \Rightarrow \Phi \sim \vec{r}^2 \]

quadrupole potential

\[\Phi = \frac{\Phi_0}{r_0^2}(x^2 + y^2 - 2z^2) \]

Paul trap: \(\Phi_0 = U_0 + V_0 \cos \Omega t \)

Penning trap: \(\Phi_0 = U_0 + \text{axial magn. field} \)

equation of motion in a Paul trap:

\[a \sim U_0, q \sim V_0 \]

\[\ddot{x} + (a - 2q \cos \Omega t) \frac{\Omega^2}{4} x = 0 \]

MATHIEU EQUATION

frequencies of secular motion: \(\omega_x, \omega_y, \omega_z \)

superimposed is micromotion with: \(\Omega \)

\[\omega \approx (a + \frac{1}{2} q^2) \Omega \]
Paul trap

endcap electrode

ring electrode

lens

fluorescence detection

cooling beam

z

y

x
Quantum Computer with Trapped Ions

- ions in linear trap
 - quantum bits, quantum register
 - narrow optical transitions
 - groundstate Zeeman coherences
 - 2-qubit quantum gate
 - state vector of quantum computer
 \[\Psi = \sum_x c_x |x_{L-1} \ldots x_0 \rangle \otimes |0\rangle_{CM} \]

- state measurement with 100% efficiency, quantum jump technique
- decoherence small (!?), heating small (!?)
- quantum computation as a series of quantum gate operations (series of laser pulses)
Linear Ion Traps

Paul mass filter

Innsbruck
Los Alamos

Boulder, Mainz, Aarhus

München

Boulder
Innsbruck linear ion trap

\[\omega_z \approx 700 \text{ kHz} \quad \omega_{x,y} \approx 1.2 - 2 \text{ MHz} \]
Innsbruck linear ion trap (2000)

$\omega_z \approx 0.7 - 2 \text{ MHz} \quad \omega_{x,y} \approx 1.5 - 4 \text{ MHz}$
String of Ca\(^+\) ions in a linear Paul trap
qubit on narrow S - D quadrupole transition
\[\tau \approx 1 \text{s} \]
Three required steps

- Absorption spectrum: Resolve secular motion

- Additional cooling stage: Sideband cooling

- Addressing individual ions

200 kHz

"red" "blue" sideband

S\textsubscript{1/2} D\textsubscript{5/2}

729 nm
electrooptic deflector
Spectroscopy with quantized fluorescence (quantum jumps)

- P: Monitor absorption and emission cause fluorescence steps (digital quantum jump signal).
- D: Laser detuning.
- S: Histogram of absorption events.
State detection by quantized fluorescence

D state occupied
S state occupied

detection efficiency:

99.85%
Excitation spectrum of a single ion
Narrow Carrier Resonance

Laser Detuning at 729 nm (Hz)

D-state excitation probability

Spectral resolution: $6.6 \cdot 10^{-13}$

270 (90) Hz
Ramsey spectroscopy on quadrupole transition

Vary T: measure phase coherence on superposition states

\[|S_{1/2}\rangle + |D_{5/2}\rangle \]

1/e coherence time: 2ms
Laser linewidth: 75(10)Hz
Laser Cooling of Trapped Atoms

\[g_n,1 - e_n,1 - e_n,2 + g_n,1 + g_n,2 \]

\[\Gamma < \nu \] weak confinement, Doppler cooling
\[E_D = \hbar \Gamma / 2, \langle n \rangle \gg 1 \]

\[\nu > \Gamma \] strong confinement, sideband cooling
\[E_S = \hbar \nu \left(\Gamma^2 / 4 \nu^2 + 1/2 \right), \langle n \rangle \ll 1 \]

Regimes:
Absorption on quadrupole transition

(with motional sidebands)

\[P_0 \approx \frac{A_B - A_R}{A_B} \]

Absorption events

Laser detuning (MHz)
Sideband cooling on $S_{1/2} - D_{5/2}$ transition

Cooling cascade:

Effective two-level system:

\[
\Gamma_{\text{eff}} \approx \frac{\Omega_{PD}^2}{\Gamma_{SP}^2 + 4\Delta_{PD}^2} \Gamma_{SP}
\]
Sideband absorption spectrum

99.9 % ground state population

after sideband cooling

after Doppler cooling $\langle n_z \rangle = 1.7$

Generation and manipulation of Fock states

- |d,0>
- |d,1>
- |d,2>
- |s,0>
- |s,1>
- |s,2>
- |d,0>
- |d,1>
- |p,1>
- |d,2>
- |d,3>
- |s,0>
- |s,1>
- |s,2>
- |s,3>

π-pulse
Preparation of Fock states

Population of D state

Time (µs)

nr=0, nz=0

nr=0, nz=1
Cooling and heating

cooling: $0.2 \text{ ms} \text{ phonon}$

heating:
- radial: $70 \text{ ms} \text{ phonon}$
- axial: $190 \text{ ms} \text{ phonon}$
Addressing of individual ions in a linear Paul trap

Experimental setup:
- Laser beam steering with an electrooptic deflector
- Fiber output at 729nm
- Paul trap viewport
- Fiber output at 729nm
- Telescope
- Dichroic beamsplitter
- Detection at 397nm
- CCD

Intensity of addressing beam at ion position

waist:

3.7 (0.3) µm

Intensity determined by measuring the light shift of the addressing beam.
Addressing of ions in linear trap

Measurement of light shift by addressing beam

Beam diameter: $2w_0 = 2.7 \, \mu m$
Excitation spectrum of two ions

Vibrational Modes:
- A: Axial
- R: Radial
- B: Breathing

\[\omega_R = \sqrt{3} \omega_A \]
\[\omega_W = \sqrt{\omega_A^2 - \omega_R^2} \]
Sideband cooling of two ions

Detuning at 729 nm (MHz)

RED sidebands

- v_z
- $\sqrt{3}v_y$
- v_y

BLUE sidebands

$P_0 > 98\%$
$P_0 > 96\%$
$P_0 > 95\%$
Two ion cooling and heating

cooling of the rocking mode

\[\omega_R = \sqrt{\omega_{axial}^2 - \omega_{radial}^2} \]

\[\tau_{cool} = 1 \text{ ms} \]

\[\tau_{heat} = \frac{120 \text{ ms}}{\text{phonon}} \]
Rabi oscillations of two ions, one illuminated

[Diagram showing Rabi oscillations with ground state probability over time and energy levels |e,0⟩ and |g,1⟩ indicated.]
Rabi oscillations of two ions, one illuminated

![Graph showing Rabi oscillations](qt0354, 30.5.2000)

- **Ground State Probability** vs. **Time (µs)**

- **States**: $|e,0\rangle$, $|e,1\rangle$, $|g,0\rangle$, $|g,1\rangle$

- **Note**: blue sideband of CM motion
Off-resonant carrier excitation

Problem:
- AC Stark shifts
- off-resonant (carrier) excitation (spectator modes)

Solution:
cooling of all spectator modes

\[\omega_z = 2\pi \cdot 1.8 \text{MHz} \]
\[\Omega_{\text{carrier}} = 2\pi \cdot 1.09 \text{MHz} \]
Ground state cooling with quantum interference

\[|n\rangle \rightarrow |n-1\rangle \] transitions are enhanced by bright resonance

\[|n\rangle \rightarrow |n\rangle \] transitions are suppressed by quantum interference
Levels and transitions in $^{40}\text{Ca}^+$

EIT cooling
Zeeman splitting with $B = 4$ G

$|P, -\rangle$ $|P, +\rangle$

$|S, -\rangle$ $|S, +\rangle$

Doppler

75 MHz

σ_+

π
Simultaneous ground state cooling

Simultaneous ground state cooling of axial and radial motion

axial: P(0)=73%
radial: P(0)=58%

S_{1/2} to D_{1/2} excitation probability

<table>
<thead>
<tr>
<th>Sidebands</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial lower</td>
<td>-3.2 MHz</td>
</tr>
<tr>
<td>Radial lower</td>
<td>-1.6 MHz</td>
</tr>
<tr>
<td>Radial upper</td>
<td>+1.6 MHz</td>
</tr>
<tr>
<td>Axial upper</td>
<td>+3.2 MHz</td>
</tr>
</tbody>
</table>

lower sidebands upper sidebands
Ground state cooling with quantum interference

measured cooling limit vs. light shift

Best radial (1.6 MHz) cooling:

\[P(0) = 80\% \]

Best axial (3.2 MHz) cooling:

\[P(0) = 90\% \]

from Doppler limit:

\[\langle n \rangle = 17 \text{ (radial)}, \]
\[\langle n \rangle = 8 \text{ (axial)} \]

EIT cooling: Ideal scheme for ion strings

Calculated EIT cooling for a string of 10 ions

\[z/2 = 0.7 \text{MHz} \]
Cirac-Zoller: Steps of controlled-NOT operation

Atom #1

\[|e\rangle_1 |0\rangle \quad \rightarrow \quad |g\rangle_1 |1\rangle \quad \xrightarrow{\pi} \quad |e\rangle_1 |0\rangle \]

Atom #2

\[|e^{\prime}\rangle_2 |0\rangle \quad \rightarrow \quad |g\rangle_2 |1\rangle \quad \xrightarrow{2\pi} \quad |e^{\prime}\rangle_2 |0\rangle \]

Atom #1

\[|e\rangle_1 |0\rangle \quad \rightarrow \quad |g\rangle_1 |1\rangle \quad \xrightarrow{\pi} \quad |e\rangle_1 |0\rangle \]

Qubits

<table>
<thead>
<tr>
<th>State</th>
<th>00 \rangle</th>
<th>10 \rangle</th>
<th>01 \rangle</th>
<th>11 \rangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>\langle gg</td>
<td>\langle eg</td>
<td>\langle ge</td>
<td>\langle ee</td>
</tr>
<tr>
<td>10</td>
<td>\langle gg</td>
<td>\langle eg</td>
<td>\langle ge</td>
<td>\langle ee</td>
</tr>
<tr>
<td>01</td>
<td>\langle eg</td>
<td>\langle gg</td>
<td>\langle ge</td>
<td>\langle ee</td>
</tr>
<tr>
<td>11</td>
<td>\langle ge</td>
<td>\langle ee</td>
<td>\langle ee</td>
<td>\langle ee</td>
</tr>
</tbody>
</table>

Initialize after 1st \(\pi \)-pulse lower sideband

After 1st \(\pi \)-pulse lower sideband

After 2\(\pi \)-pulse to auxiliary state

After 2nd \(\pi \)-pulse lower sideband
Cirac-Zoller gate with experimental imperfections

π, 2π pulses: 2% imperfection, addressing error: 10% error in Rabi frequency,
5 % error in state preparation

π pulse 1st ion

2π rotation 2nd ion

$-\pi$ pulse 1st ion

Calculations by H. Häffner, 2001
heating is NOT the dominant problem in the near future

decoherence will allow for 10 - 50 CNOT equivalent operations with fidelity above 0.5
Towards Quantum Computation with Trapped Ca+ Ions

- Ion strings as qubits and quantum registers in linear traps
- Innsbruck Ca+ experiments
 - Spherical trap \((v_z = 4.5 \text{ MHz}, v_{x,y} = 2 \text{ MHz})\)
 - Linear trap \((v_z = 0.7 \text{ MHz}, v_{x,y} = 2 \text{ MHz}, v_z = 1.2 \text{ MHz}, v_{x,y} = 4 \text{ MHz})\)
- Spectroscopy of the S – D transition: resolution \(7 \times 10^{-13}\)
- Sideband cooling
 - Using coupled transitions, Raman cooling, EIT cooling, sympathetic cooling
- Relevant time scales
 - Coherence time: several ms
 - Heating times: > 100 ms
- Addressing of individual ions

Next:
- Preparation of Bell states, Bell measurements
- Realization of the Cirac-Zoller gate
 \(10 – 50\) CNOT gate operations currently possible
- CQED with trapped ions, interface to photonic qubits
Institut für Experimentalphysik

F. Schmidt-Kaler
J. Eschner
D. Leibfried
C. Becher
C. Roos
P. Barton
H. Rohde
M. Riebe

S. Gulde
G. Lancaster
A. Mundt
A. Kreuter
H. Häffner
P. Spitzer
D. Rotter
R. B.

FWF SFB F015:
„Control and Measurement of Coherent Quantum Systems“

TMR-networks: „Quantum Structures“, „Quantum Information“
IHP-network: „QUEST“
IST-network: „QUBITS“

Austrian Industry:
Institute for Quantum Information Ges.m.b.H.

€