Entanglement and universality in quantum computation

Michael A. Nielsen
University of Queensland

Problem: What resources are universal for quantum computation?

Michael Bremner
Andrew Childs
Ike Chuang
Chris Dawson

Jennifer Dodd
Debbie Leung
Tobias Osborne
Rob Thew

Problem: What resources are universal for quantum computation?

Church-Turing-Deutsch Conjecture:
All physical systems can be efficiently simulated on a quantum computer.
Universal set I

Control qubit \(|c\rangle \quad |c\rangle \)

Target qubit \(|t\rangle \quad |t \oplus c\rangle \)

\[\mathcal{U} \]

interaction with the environment measurements

Universal set II

Quantum memory
2-qubit projective measurements

Can we build a programmable quantum computer?

\[|\psi\rangle \rightarrow U|\psi\rangle \]

Fixed array

\[U \rightarrow |U\rangle \rightarrow |P_{U,\psi}\rangle \]

No-programming theorem: (MAN, Chuang, PRL ’97)
Distinct unitary operators \(U_1, \ldots, U_n \) require orthogonal programs \(|U_1\rangle, \ldots, |U_n\rangle \).

A stochastic programmable quantum computer

\[|\psi\rangle \rightarrow \text{Bell Measurement} \]

\[|U\rangle \rightarrow \bigg\{ \bigg(I \otimes U \bigg) \frac{|00\rangle + |11\rangle}{\sqrt{2}} \bigg\} \rightarrow \bigg(U \sigma_j \bigg) |\psi\rangle \]

\[|U\rangle \equiv (I \otimes U) \frac{|00\rangle + |11\rangle}{\sqrt{2}} \]

(Nielsen, Chuang, PRL 97)
Why it works

\[|\psi\rangle \]

\[\{ \frac{|00\rangle + |11\rangle}{\sqrt{2}} \} \]

\[U \]

\[U \sigma_j |\psi\rangle \]

\[\sigma_j |\psi\rangle \]

(Nielsen, Chuang, PRL 97)

How to do single-qubit gates

\[|\psi\rangle \]

\[\{ \frac{|00\rangle + |11\rangle}{\sqrt{2}} \} \]

\[U \sigma_k \]

\[U \sigma_k U \sigma_k \sigma_j |\psi\rangle \]

\[|U_k\rangle = (I \otimes U \sigma_k) \frac{|00\rangle + |11\rangle}{\sqrt{2}} \]

With probability \(\frac{1}{4}, j = k \), and the gate succeeds.

(Nielsen, quant-ph 2001)
Coping with failure

Action was $U\sigma_k\sigma_j, j \neq k$ - a known unitary error.

Now attempt the gate $U(U\sigma_k\sigma_j)^\dagger$.

Successful with probability $\frac{1}{4}$, otherwise repeat.

Failure probability ε can be achieved with $O(\log\frac{1}{\varepsilon})$ repetitions.

(Nielsen, quant-ph 2001)

How to do the controlled-not

\[|\psi\rangle \]

\[\xrightarrow{\text{Bell}^\otimes 2} \]

\[\xrightarrow{\text{Measurement}} j, k = 0,1,2,3 \]

\[|U_{hm}\rangle \]

\[\xrightarrow{U(\sigma_i \otimes \sigma_m)(\sigma_j \otimes \sigma_k)} |\psi\rangle \]

\[|U_{lm}\rangle = (I \otimes U\sigma_i \otimes \sigma_m)|\text{Bell}^\otimes 2 \]

With probability $\frac{1}{16}, j = l, k = m$, and the gate succeeds.

(Nielsen, quant-ph 2001)
Summary

An arbitrary quantum computation can be efficiently performed using just quantum memory and four-qubit projective measurements.

Problem: Is there a practical variant of this scheme?

Problem: What sets of measurement are sufficient to do universal quantum computation?

Universal set III

Suppose H is any two-body entangling Hamiltonian, on n qubits.

By alternating periods of evolution due to H with single qubit gates, we may efficiently simulate an arbitrary quantum computation.

$$H = \sum_{j=1}^{n} \sum_{k=1}^{3} \alpha_k^j \sigma_k^j + \sum_{j,j'=-1}^{n} \sum_{k,k'=1}^{3} \beta_{jj'}^{kk'} \sigma_k^j \otimes \sigma_{k'}^{j'}$$

(Bristol, IBM, Innsbruck, Karlsruhe, LANL, MIT, UQ, mostly 2001)
Three observations

A. If we can simulate evolution due to J, and perform unitaries U and U^*, then we can exactly simulate evolution due to UJU^*.

$$U e^{-iJ} U^* = e^{-iJ}$$

B. If we can simulate evolution due to J_1 and J_2 for a small time Δ, then we can approximately simulate evolution due to $J_1 + J_2$ for time Δ.

$$e^{-i(J_1 + J_2)\Delta} = e^{-iJ_1\Delta} e^{-iJ_2\Delta} + O(\Delta^2)$$

C. If we can simulate evolution due to J, then we can exactly simulate evolution due to αJ for any positive α.

A two-qubit example

Given: $H = Z \otimes I + 2X \otimes Z + Z \otimes Z$

$$(X \otimes I)H(X \otimes I)^\dagger = -Z \otimes I + 2X \otimes Z - Z \otimes Z$$

$$X \otimes Z = \frac{(X \otimes I)H(X \otimes I)^\dagger + H}{4}$$

$$\sigma_j \otimes \sigma_k = (U \otimes V)X \otimes Z (U \otimes V)^\dagger$$

$$-\sigma_j \otimes \sigma_k = (U \otimes I)\sigma_j \otimes \sigma_k (U \otimes I)^\dagger$$

Any desired K can be written as a positive linear combination of $\pm \sigma_j \otimes I_x, \pm I \otimes \sigma_k$, and $\pm \sigma_j \otimes \sigma_k$ terms.
General two-qubit case

Given: $H = \sum_{j,k} h_{jk} \sigma_j \otimes \sigma_k$

Choose the largest entangling term: $\sigma_r \otimes \sigma_s$.

$$\sigma_r \otimes \sigma_s = \frac{1}{4h_{rs}} \sum_{j=0, r, K=0, s} (\sigma_j \otimes \sigma_k) H (\sigma_j \otimes \sigma_k)^\dagger$$

$$- \frac{h_{rs}}{h_{rs}} \sigma_r \otimes I - h_{rs} I \otimes \sigma_s - h_{rs} I \otimes I$$

$$\sigma_j \otimes \sigma_k = (U \otimes V) \sigma_r \otimes \sigma_s (U \otimes V)^\dagger$$

$$- \sigma_j \otimes \sigma_k = (U \otimes I) \sigma_r \otimes \sigma_s (U \otimes I)^\dagger$$

Any desired K can be written as a positive linear combination of $\pm \sigma_j \otimes I$, $\pm I \otimes \sigma_k$, and $\pm \sigma_j \otimes \sigma_k$ terms.

Errors

To get 10^{-3} accuracy in a cnot we need $\approx 10^7$ operations.

Using higher-order simulation techniques, can achieve 10^{-3} accuracy using $\approx 10^4$ operations.

Leveraging specific knowledge we can get, for example, 10^{-3} accuracy using $\approx 10^2$ operations.
Extension to n qubits

\(X_S = \) tensor product of \(X \) operators on system \(S \).

\[
H' = \frac{H + X_S H X_S + Y_S H Y_S + Z_S H Z_S}{4}
\]

Leaves the Hamiltonian on \(P \) invariant, and eliminates all couplings between \(P \) and \(S \), all single qubit terms in \(S \), and all asymmetric couplings in \(S \), that is, couplings like \(X \otimes Y \).

Extension to n qubits

\[
H'' = \frac{H' + X_{S_0} H' X_{S_0} + Y_{S_0} H' Y_{S_0} + Z_{S_0} H' Z_{S_0}}{4}
\]

Leaves the Hamiltonian on \(P \) invariant, and eliminates all couplings between \(S_0 \) and \(S_1 \).

\[
H'' + X_{S_{00}S_{10}} H'' X_{S_{00}S_{10}} + Y_{S_{00}S_{10}} H'' Y_{S_{00}S_{10}} + Z_{S_{00}S_{10}} H'' Z_{S_{00}S_{10}}
\]

Leaves the Hamiltonian on \(P \) invariant, and eliminates all couplings between \(S_{00} \) and \(S_{01} \), and between \(S_{10} \) and \(S_{11} \).
Summary

Any (two-body) entangling Hamiltonian is sufficient to do universal quantum computation, provided we can also do local unitaries.

Problem: Can we turn this scheme into a practical method for doing quantum computation?