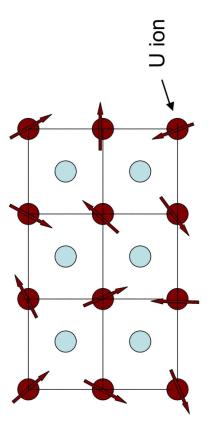
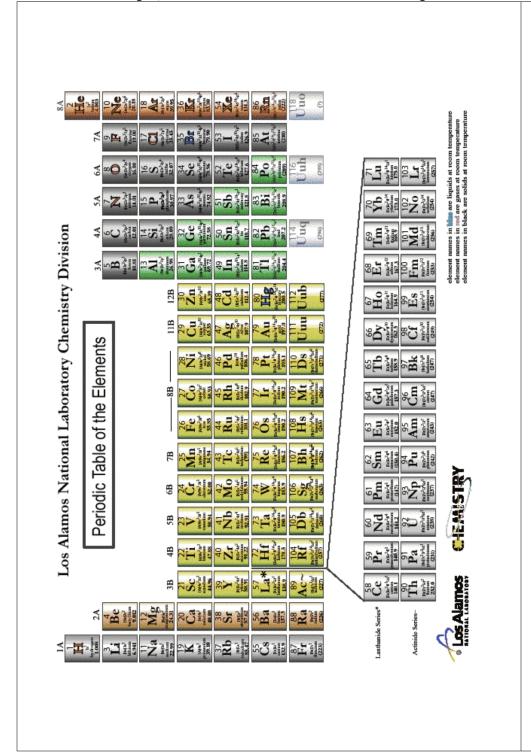
quantum critical points in U-based systems Non-Fermi liquid behavior near magnetic U. California, San Diego M. Brian Maple

- Introduction to the physics of strongly correlated f-electron materials
- Interplay between Kondo effect, disorder, antiferromagnetic Y_{1-x}U_xPd₃: first f-electron system to exhibit NFL behavior Recent experiments on $M_{1-x}U_xPd_3$ (M = Y,Sc) systems Both systems: NFL behavior near spin glass QCP interactions


 $\mathsf{Sc}_\mathsf{1-x}\mathsf{U}_\mathsf{x}\mathsf{Pd}_\mathsf{3}\colon \omega/\mathsf{T}\ \mathsf{scaling}\ \mathsf{of}\ \chi''(\omega,\mathsf{T})$

URu_{2-x}Re_xSi₂: NFL behavior near ferromagnetic QCP Recent experiments on URu_{2-x}Re_xSi₂ URu₂Si₂: "Hidden order?"

Supported by US DOE and NSF


U-based systems

Intermetallic compounds containing sublattice of U ions

Derived from Hund's rules: S, L, J = |L - S| (<half-filled shell) Associated with partially-filled 5f electron shell U ion carries magnetic moment μ_{eff} Degeneracy = 2J+1

$$\mu_{\text{eff}} = g_J[J(J + 1)]^{1/2}\mu_B$$

 $g_J = 1 + \{[J(J+1)+S(S+1)-L(L+1)]/2J(J+1)\}$

U-based systems

U: [Rn]5f36d17s2 (atom)

• Trivalent (U3+): 5f3

S = 3/2, L = 6, J = 9/2, degeneracy =

10

 $\Rightarrow \mu_{\text{eff}} = 3.58\mu_{\text{B}}$

Tetravalent (U⁴⁺): 5f²

S = 1, L = 5, J = 4, degeneracy

 $\Rightarrow \mu_{eff} = 3.62 \mu_{B}$

CEF can lift degeneracy of Hund's rule multiplet

5 triplets Γ_1 singlet, Γ_3 nonmagnetic doublet, e.g., U4+ in cubic CEF

Example of energy level scheme appropriate for quadrupolar Kondo effect

U-based systems

Hybridization of localized 5f and conduction electron states ⇒ interesting correlated electron physics!

Hybridization strength:

Weak ⇒ ionic behavior (5f occupation number <n> integral) Moderate ⇒ Kondo behavior (<n> ~integral)

Appreciable ⇒ Valence fluctuations (<n> nonintegral) Strong ⇒ f-bands

Heavy fermion f-electron materials

significant hybridization between localized 5f- & conduction-electron states Underlying physics

AFM exchange interaction

$$\mathcal{H}_{ex} = -2\mathcal{J}\mathbf{S.s}$$
 where $\mathcal{I} \sim -/(E_F - F_f) < 0$

Kondo effect (lattice of U ions)

$$T_K \sim T_F exp(-1/N(E_F)|\mathcal{J}|) \sim T^*$$
 (effective T_F)

T*: local moment behavior $\chi(T) \sim N \mu_{eff}^{2/3} K_B(T+T^*)$ $\rho(T) \sim - InT$. ^

<< T*: many body singlet

Nonmagnetic heavy Fermi liquid (FL)

$$\chi(T) \rightarrow \chi_0 \propto m^* \propto 1/T^*$$

$$\gamma(T) = C_e(T)/T \rightarrow \gamma_o \propto m^* \propto 1/T^*$$

$$R = (\chi_o/\mu_{eff}^2)/(\gamma_o/\pi^2k_B^2) \approx 1$$
 (Wilson-Sommerfeld ratio)

$$\rho(T) \propto \rho_{e-e}(T) \sim AT^2$$
 with A $\sim \gamma_o^2$

Heavy FL unstable to SC & magnetic order (RKKY)

Heavy fermion f-electron materials

Superconductivity

- Pairing of electrons with L > 0
 - L=1 (p-wave), S=1 (triplet) L=2 (d-wave), S=0 (singlet)
- Pairing mechanism spin fluctuations
 - Anisotropic energy gap $\Delta(\mathbf{k}) \neq \text{const.}$
- $\Delta(\mathbf{k})$ vanishes at points or lines on Fermi surface
- e.g., $C_e(T) \sim T^n$ (n=2, line nodes; n=3, point nodes) Superconducting properties ~ Tn for T << T_c
- Multiple superconducting states (complex T-x-P phase diagrams)

[exp(- Δ/T) with const. Δ for BCS superconductor]

- e.g., UPt₃, U_{1-x}Th_xBe₁₃, PrOs₄Sb₁₂
- Sometimes occurs near x or P where T_M - QCP) (quantum critical point -

Non-Fermi liquid behavior

- Materials: U, Ce, Yb intermetallic compounds
- Chemically substituted: Y_{1-x}U_xPd₃, UCu_{5-x}Pd_x, CeCu_{6-x}Au_x,... Stoichiometric: (P=0) - UBe₁₃, CeCoIn₅, YbRh₂Si₂,...;
 - $(P>0) CeIn_3, CePd_2Si_2,...$
- Physical properties weak power law, logarithmic
- divergences in T at low T << T_o $\rho(T) \approx \rho(0)[1 \pm (T/T_o)^n]$ (1 ≤ n ≤ 1.5)
- $C(T)/T \approx (1/T_o) \ln(T/T_o), (T/T_o)^{-1+\lambda}$
- $\chi(T) \approx \chi(0)[1 (T/T_o)^n] (n \sim 0.5), (1/T_o)\ln(T/T_o), (T/T_o)^{-1+\lambda},$ $C/(T^{\alpha} + \theta)$
- χ "(ω ,T): ω /T scaling
- Appreciable T-dependence below T_o ⇒ lower energy scale than Fermi liquid (FL)

Non-Fermi liquid behavior

Experiments ⇒ two routes to NFL behavior:

- (1) Single ion & (2) inter-ionic interactions
- (1) Single ion models
- Multichannel Kondo effect
- Single channel Kondo effect with disorder $P(T_K)$

(2) Interacting ion models

- Fluctuations of order parameter
- above 2nd order phase transition at 0 K
- Griffiths' phase interplay between disorder & competing Kondo and RKKY interactions

Superconductivity near magnetic QCP mediated by spin fluctuations

Recent experiments on $M_{1-x}U_xPd_3$ (M = Y,Sc) systems

Y_{1-x}U_xPd₃: First f-electron system in which NFL behavior observed

C. L. Seaman, M. B. Maple, B. W. Lee, S. Ghamaty, M. S. Torikachvili, K. N. Yang, L. Z. Liu, J. W. Allen, D. L. Cox, PRL 67, 2882 '91

 $\rho(T,H)$, C(T), M(T,H) for $0 < x \le 0.2$

Interpreted NFL behavior in terms of quadrupolar Kondo effect

B. Andraka, A. M. Tsvelik, PRL 67, 2886 '91

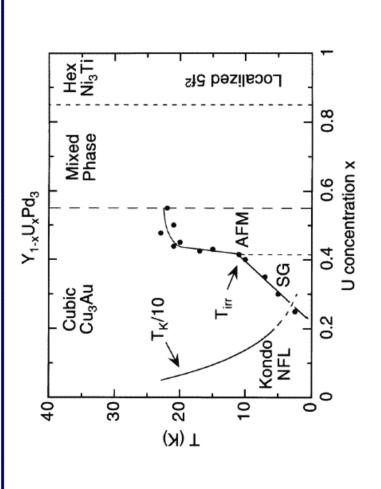
 $\rho(T,H)$, C(T,H), M(T,H) for x = 0.2

Interpreted NFL behavior in terms of OP fluctuations

associated with magnetic transition suppressed to 0 K

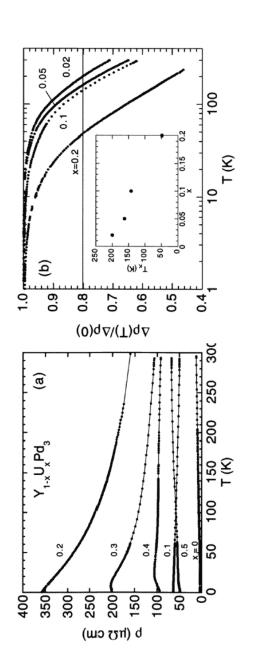
Extensive investigations ⇒ situation much more complex

Fluctuations in U concentration x on ~10 µm scale (S. Süllow et al. '91) INS studies: U4+ energy level scheme in cubic CEF not yet established


Sc_{1-x}U_xPd₃: NFL behavior similar to that observed in Y_{1-x}U_xPd₃ system

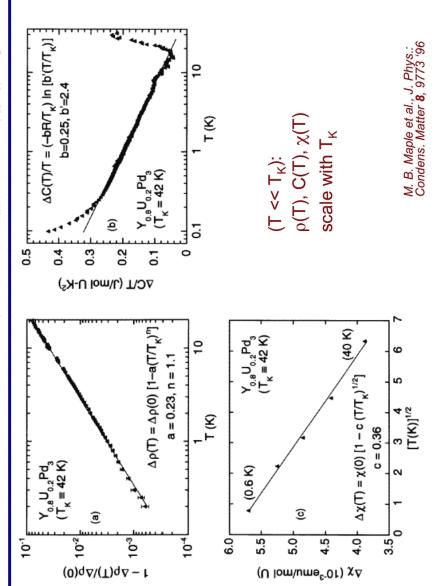
More homogeneous distribution of U

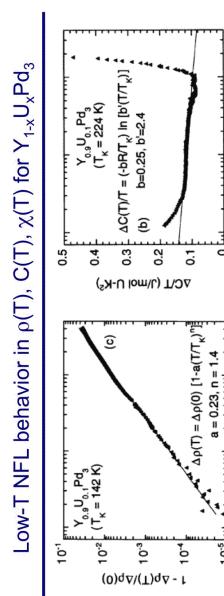
INS studies: ω/T scaling of $\chi''(\omega,T)$

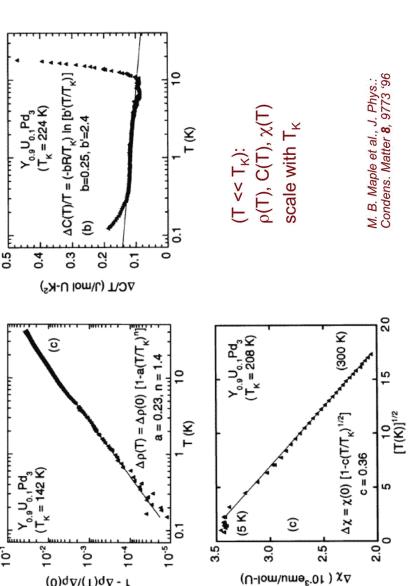

Interplay between Kondo effect, disorder, AFM interactions

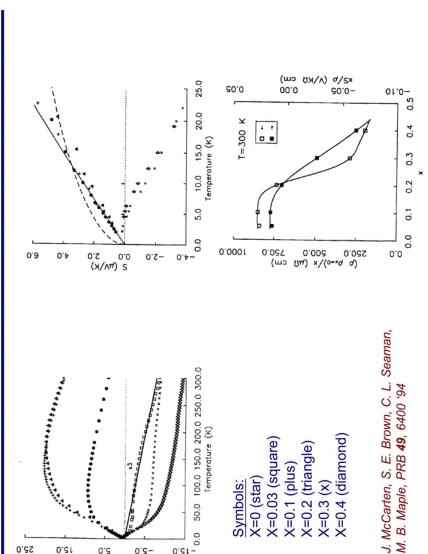

C. L. Seaman et al., PRL **67**, 2882 '91 D. A. Gajewski, N. R. Dilley, R. Chau, M. B. Maple, J. Phys.: Condens. Matter **8**, 9793 '96

Electrical resistivity ρ vs T for the Y $_{ extsf{1-x}}\mathsf{U_xPd_3}$ system (high T



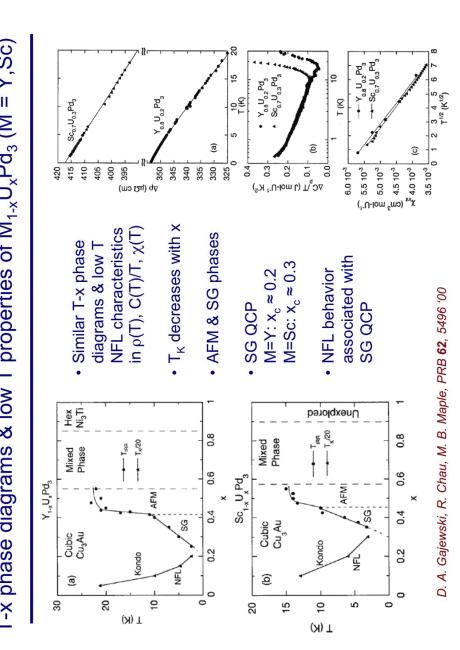

M. B. Maple, R. P. Dickey, J. Herrmann, M. C. de Andrade, E. J. Freeman, D. A. Gajewski, R. Chau, J. Phys.: Condens. Matter 8, 9773 '96


Magnetic susceptibility χ vs T for the Y_{1-x}U_xPd₃ system (high T)

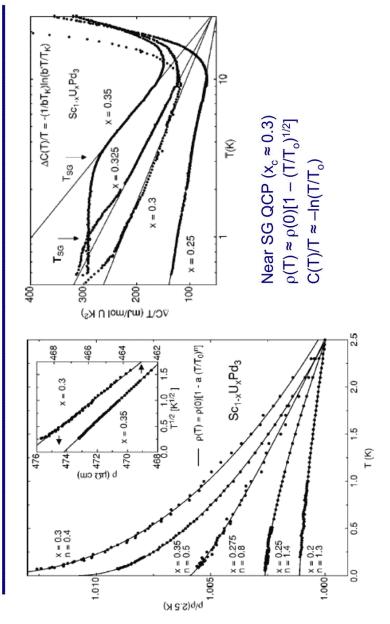

Low-T NFL behavior in $\rho(T)$, C(T), $\chi(T)$ for $Y_{1-x}U_xPd_3$

vs T for the Y_{1-x}U_xPd₃ system S Thermoelectric power

0.21-

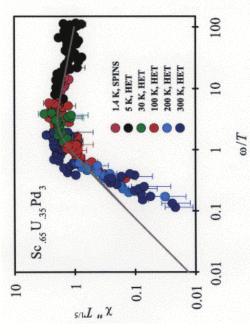

5.0 (¼√/K) S

0.2-


0.62

15.0

Y,Sc) II properties of M_{1-x}U_xPd₃ (M T-x phase diagrams & low T



of the Sc_{1-x}U_xPd₃ system near SG and C(T)/T $(T)^{d}$

R. P. Dickey, V. S. Zapf, P.-C. Ho, E. J. Freeman, N. A. Frederick, M. B. Maple, PRB 68, 104404 '03

scaling Inelastic neutron scattering on Sc_{1.65}U_{0.35}Pd₃: ω/T

 $\chi''(q,\omega,T) = 1/[AT^{\alpha}F(\omega/T)]$ with $\alpha = 1/5$ No q-dependence \Rightarrow no evidence for U-U correlations Single impurity critical scaling associated with spin glass transition suppressed to 0 K

— Q. Si et al., Nature 413, 804 '01 Solid line: $F(\omega/T) = \exp[\alpha \Psi(1/2 - i\omega/2\pi T)]$ Proposed for AFM QCP

S. D. Wilson, P. Dai, D. T. Androja, S.-H. Lee, J.-H. Chung, J. W. Lynn, N. P. Butch, M. B. Maple, PRL '05 (in press)

scaling Inelastic neutron scattering on Sc_{1.65}U_{0.35}Pd₃: ω/T

Similar behavior: $\chi''(q,\omega,T) \propto 1/AT^{\alpha}F(\omega/T)$

 $UCu_{5-x}Pd_x (x = 1, 1.5); \alpha = 1/3$

Near AFM QCP

M. Aronson et al., PRL 75, 725 '95; PRL 87, 197205 '01

 $CeCu_{5.9}Au_{0.1}$; $\alpha = 0.75$

A. Schröder et al., PRL 80, 5623 '98

Near AFM QCP

individual ions near 0 K spin glass phase transition microscopic origin of the NFL behavior involves Absence of energy scale, other than T itself ⇒

Although impurities may play role, they do not appear to be primary cause

The URu_{2-x}Re_xSi₂ system

NFL behavior in the vicinity of FM QCP

- Substitution of other elements for Ru (i.e., URu_{2-x}M_xSi₂) depresses Dalichaouch et al. '90 T_N amd T_c
 - FM instability observed in URu_{2-x}M_xSi₂ for M=Tc, Re at higher x Dalichaouch, Torikachvili, Maple, Giorgi '89
- Similar behavior for Tc, Re FM extends over range of x values, maxima in $\theta_c,\,\mu_s,\,\gamma$ at nearly same x
 - FM determined from M(H,T) measurements & analyzed - No anomalies in C(T) & $\rho(T)$ due to FM near θ_c by means of modified Arrott plots

M^{1/β} vs (H/M)^{1/γ}

- Standard Arrott plots: $\beta = 1/2$, $\gamma = 1$ (MFT)
- Critical exponents $\beta,\,\gamma,\,\delta$ defined by

 $M(t,H=0) \propto t^{\beta}$; $M(t=0,H) \propto H^{1/\gamma}$; $\gamma = \beta(\delta - 1)$

Analysis based on Arrott-Noakes equation

where T₁ & M₁ are normalization factors

 $(H/M)^{1/\gamma} = (T-\theta_c)/T_1 + (M/M_1)^{1/\beta}$

Parent compound URu₂Si₂

Moderately heavy Fermi liquid: m* ≈ 25 m_e

Superconductivity: $T_c = 1.5 \text{ K}$, $\Delta_s \approx 0.1 \text{ meV}$

Hidden order (HO) phase: $T_o = 17.5 \text{ K}$, $\Delta \approx 11 \text{ meV}$

AFM (U 5f): $\mu \approx 0.02\text{-}0.04 \, \mu_B/\text{U}$, (||c-axis), (100) modulation

Transport, thermal, magnetic properties:

Single crystal specimens

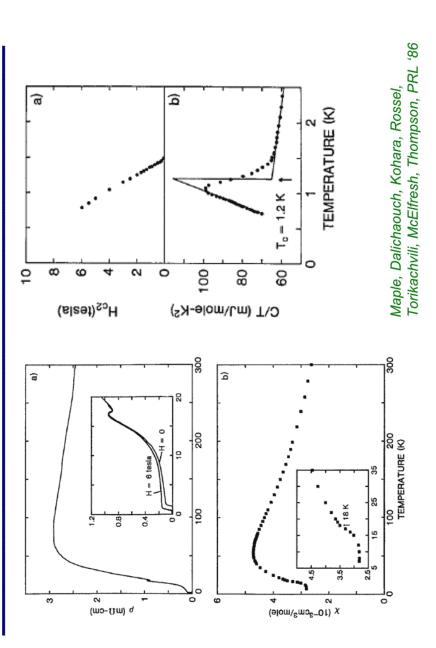
Palstra, Menovsky, van den Berg, Dirkmaat, Kes, Nieuwenhuys, Mydosh '85

Polycrystalline specimens

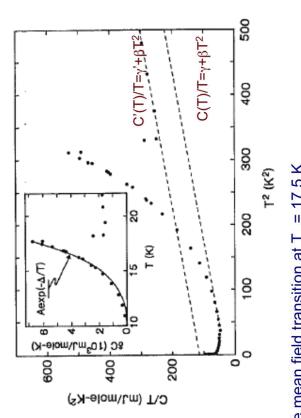
Schlabitz, Baumann, Pollit, Rauchschwalbe, Mayer, Alheim, Bredl ZP '86

98, Maple, Dalichaouch, Kohara, Rossel, Torikachvili, McElfresh, Thompson PRL

Neutron scattering


Single crystal specimens

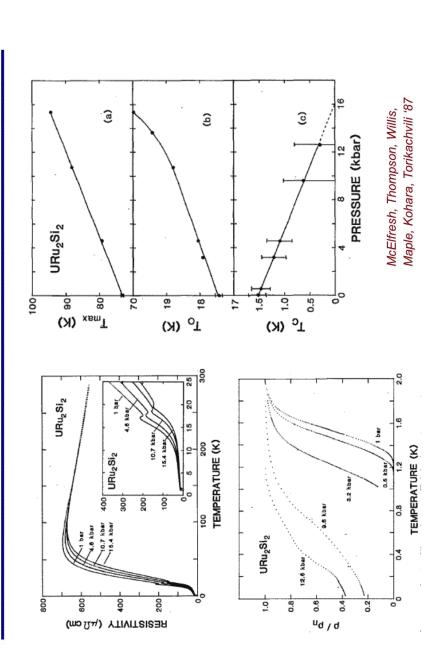
Broholm, Kjems, Buyers, Matthews, Palstra, Menovsky, Mydosh '86


Polycrystals (INS)

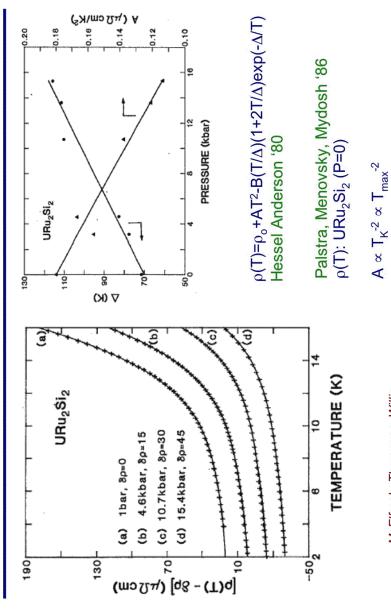
Walter, Loong, Loewenhaupt, Schlabitz '86

Normal and superconducting state properties of URu₂Si₂

Specific heat of URu₂Si₂

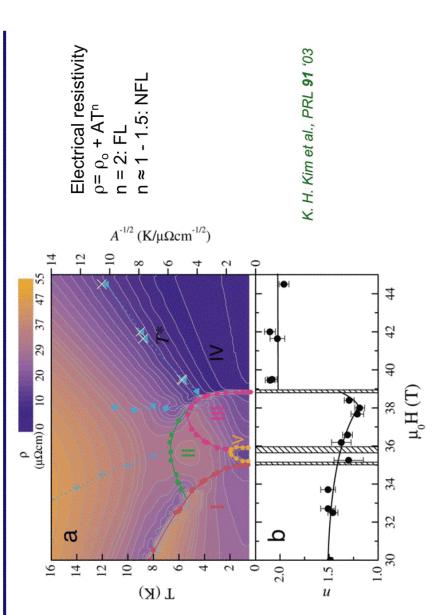

~ 40 % Fermi surface removed by SDW or CDW 17.5 K AFM ($\mu \approx 0.02 \mu_B/U$) coexists with SC BCS-type mean field transition at T_o = $\delta C \approx Aexp(-\Delta/T)$; $\Delta \sim 10^2 \text{ K} \sim 10 \text{ meV}$ $\delta C \approx A \exp(-\Delta/T)$; Δ $\gamma(0)/\gamma \approx 0.6 \Rightarrow$

SC & SDW or CDW compete for Fermi surface!

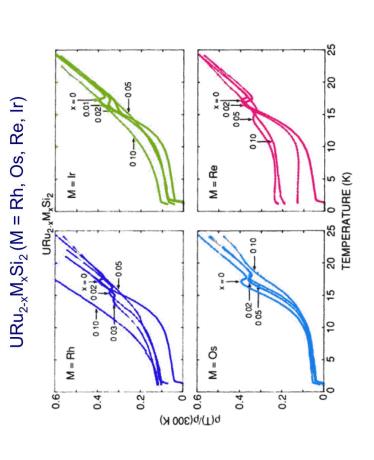

Maple, Dalichaouch, Kohara, Rossel, Torikachvili, McElfresh, Thompson, PRL

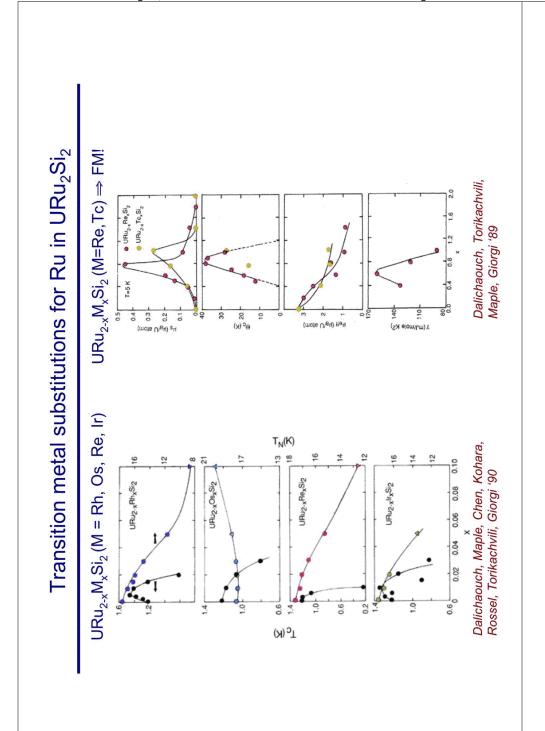
McElfresh, Thompson, Willis, Maple, Kohara, Torikachvili '87

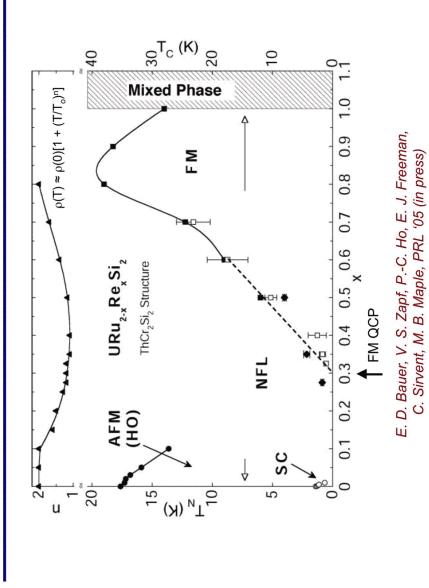
Effect of pressure on competing electronic states in URu₂Si₂



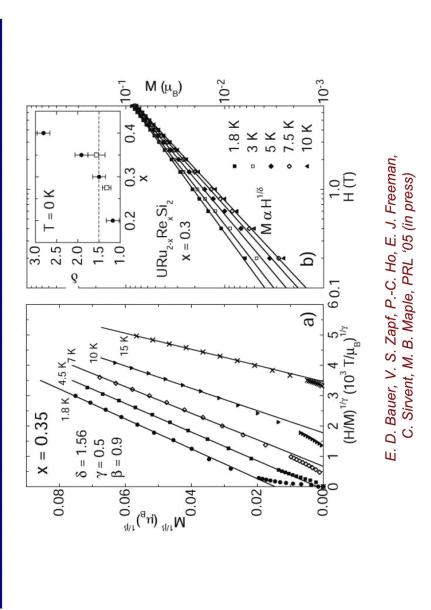
Electrical resistivity $\rho(T)$ of URu $_2$ Si $_2$ under pressure

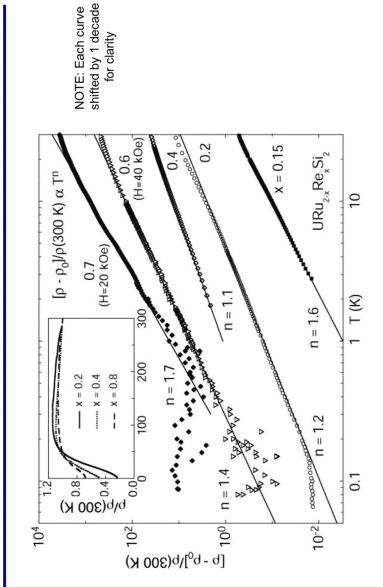


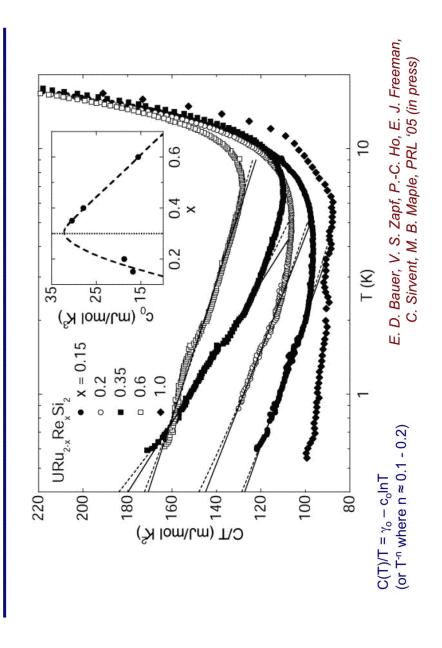

Dalichaouch, Maple, Chen, Kohara, Rossel, Torikachvili, Giorgi '90



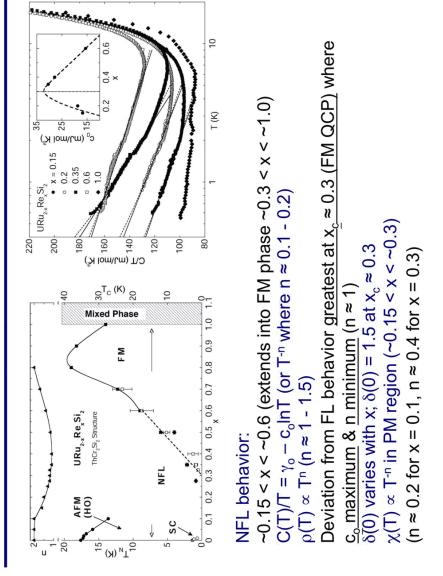
Transition metal substitutions for Ru in URu₂Si₂




T-x phase diagram of the URu_{2-x}Re_xSi₂ system



 $URu_{2-x}Re_xSi_2$: $\rho(T)$ at low T



E. D. Bauer, V. S. Zapf, P.-C. Ho, E. J. Freeman, C. Sirvent, M. B. Maple, PRL '05 (in press)

URu_{2-x}Re_xSi₂: C(T) at low T

T-x phase diagram and C(T) of the URu_{2-x}Re_xSi₂ system

Possible scenarios for NFL behavior in URu_{2-x}Re_xSi₂

magnetic clusters embedded in a nonmagnetic FL \Rightarrow NFL characteristics Castro Neto, Castilla, Jones Competition between Kondo effect & RKKY interaction + disorder ⇒ Griffiths-McCoy phase

$$C(T)/T \propto \chi(T) \propto T^{-n}$$
 (n $\approx 0.2 - 0.3$)

Could account for NFL behavior in PM & FM phases in vicinity of FM QCP Millis '93; Moriya, Takamoto Spin fluctuation models

2D:
$$\rho(T) \propto T^{5/3}$$
 3D: $\rho(T) \propto T^{4/3}$ C(T)/T $\propto - \ln T$ C(T)/T $\propto T^{-1/3}$ $\chi(T) \propto T^{-4/3}$ $\chi(T) \propto T^{-4/3}$ $\chi(T) \propto T^{-1} \text{ or } 1/T \ln T$ $\theta_c \propto |\delta - \delta_c|^{3/4}$ $\theta_c \propto |\delta - \delta_c|$

∝ T-1/3

Quantum critical behavior of itinerant FMs incorporating effects of Belitz, Kirkpatrick '01 nonmagnetic disorder

Near
$$x_c$$
 C(T)/T \propto - InT $\beta = 2, \gamma = 1, \delta = 1.$